Security systems can employ cameras to secure or monitor a specific area. Some security systems provide manual controls for a user to rotate or zoom cameras to monitor an area. Other security systems have cameras rotate or zoom on a schedule to monitor different locations periodically. Based on the video footage, security personnel can deploy to an area to stop a current threat or disturbance.
In one embodiment, a system may include an arrangement of at least four audio sensors configured to produce independent outputs. The system further may include a processing module configured to determine an angle and distance of an audio source relative to a location of the arrangement of the at least four audio sensors.
In another embodiment, the processing module may be further configured to orient a camera lens of a camera system to the audio source. The camera system may be operationally coupled to the processing module. The processing module may be further configured to instruct the camera system to cause the camera lens to adjust its zoom to a zoom factor as a function of the distance of the audio source. In another embodiment, the processing module may be further configured to calculate an azimuth angle from the audio source to the arrangement and an elevation angle from the audio source to the arrangement.
In another embodiment, the arrangement of audio sensors may include a central audio sensor and three surrounding audio sensors. Each of the three surrounding audio sensors may be positioned on a respective axis orthogonal to each other axis with an origin located at the central audio sensor. Distances between the audio sensors of the arrangement may be at least one order of magnitude smaller than the distance of the arrangement of audio sensors to the audio source.
In another embodiment, the independent outputs of the at least four audio sources may be audio signals. The arrangement of at least four audio sources may be configured to produce a combined output of the distance of the audio source to the arrangement by correlating the audio signals received at the at least four audio sources.
In another embodiment, method may include producing independent outputs from audio sensors from an arrangement of at least four audio sensors. The method may further include determining an angle and distance of an audio source relative to a location of the arrangement of the at least four audio sensors.
In another embodiment, a non-transitory computer-readable medium can be configured to store instructions for locating an audio source. The instructions, when loaded and executed by a processor, may cause a system coupled to the processor to receive independent outputs from an arrangement of at least four audio sensors. The instructions may further cause the system to determine an angle and distance of an audio source relative to a location of the arrangement of the at least four audio sensors.
The foregoing will be apparent from the following more particular description of example embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating embodiments of the present invention.
A description of example embodiments of the invention follows.
An arrangement of at least four audio sensors can be configured to localize a location of an audio source. The direction of the audio source can be detected with three audio sensors; however, three audio sensors can only narrow the possible directions to two. A fourth sensor can isolate the location of the audio source. Four sensors can correctly identify the location of the audio source, but also the distance from the audio source to the arrangement of audio sensors as well. A video surveillance Pan/Tilt/Zoom (PTZ) camera installed with three audio sensors can be directed to the audio source, but if the audio source is far away from the camera, the camera cannot see the details of what caused the sound. If the distance to the audio source is known, then the camera can be zoomed-in according to the distance detected to see the details of an object or subject producing the audio source within the video.
The camera 104 can be used for surveillance of areas around the building 110. The camera 104 can, upon hearing audio from the audio source 106, determine the location of the audio source 106, rotate to point at the audio source 106 and zoom and/or focus on audio source 106 to acquire video.
The camera 104 is operatively coupled with the processing module 112, which is configured to receive data from the arrangement of audio sensors 102 of the camera 104 and output processed data 114 that indicates the location of the audio source 106. The processed data 114 can be in the form of an azimuth (and/or pan) angle, an altitude (and/or tilt) angle, and/or the distance to the target. The processing module 112 also outputs a zoom or position command 122 to the camera 104. The zoom or position command 122 can cause the camera 104 to rotate along the azimuth and/or elevation angle and zoom to the audio source 106.
In one embodiment, the processed data 114 is transmitted over a network 116 to a control system 118. An operating user 120 can operate the control system 118 and see the location of the target relative to the camera. In another embodiment, the control system can output the location of the target relative to the building 110. The operating user 120 can then act appropriately by, for example, dispatching security to the location of the audio source 106.
Distances to audio source 320a, 320b, and 320c (D1, D2, and D3, respectively) are approximately congruent (e.g., D1≈D2≈D3) and are each represented collectively by D, such that D is at least an order of magnitude greater than d2 and d3 (e.g., D>>d2, and D>>d3). Azimuth 310a (ϕ1), is approximately congruent to azimuth 310b (ϕ2) (e.g., ϕ1≈ϕ2) and both azimuths 310a-b are represented collectively by φ. Elevation angle 308a (θ1) is approximately congruent to elevation angle 308b (θ2) (e.g., θ1≈θ2) and are represented collectively by θ. The three lines from audio source 214 to audio sensors 302, 304, and 306 (M1, M2, and M3, respectively) are approximately parallel.
Azimuth (e.g., pan or horizontal) angles 310a-b and elevation (e.g., tilt or vertical) angle 308a-b are represented by the symbols φ and Θ, respectively. Azimuth and altitude can be computed by using similar formulae. The formulae are as follows:
φ and Θ correspond to the pan and tilt angles of the PTZ camera, respectively.
The system can also perform zoom adjustment. If the targeted object is an individual and the individual stands a distance from the camera such that zoom is needed to see the individual clearly, the system can zoom the camera to focus on the individual.
Θ0 represents the tilt angle of the camera when the camera centers on the person. Z0 represents zooming factor of the camera needed to see the person clearly. D0 represents a distance from the camera to the person.
In actual detection and tracking, the pan angle (φ), tilt angle (Θ) and distance (D) from the camera to the audio source can be computed by using the equations described above. The zooming factor (Z) can be computed by the either of the following formulae:
The zooming factor controls the pan-tilt-zoom camera such that the size of the object seen in the image stays constant. Z0, D0, and θ0 are determined in a calibration stage. Z0 represents a zooming factor of an object at distance D0 and with a tilt angle θ0. For instance, during the calibration stage, the system computes the tilt angle θ0 of a person standing at a known location away from the camera with a known distance D0 and using the height of the camera (H) and D0 according to the following formula:
The system adjusts the camera to center at the person and adjusts the zooming factor to a number, Z0, which is a zooming factor where the person fills the image. These are used as the calibration variables for the system.
Three audio sensors can isolate the correct audio source location to two possibilities but cannot eliminate one of the two possible audio source locations. Four audio sensors can identify the one location. Assuming the three audio sensors are on the X and Z axes, the following analysis applies to determining the location with three audio sensors; however, the three audio sensors can be on any combination of axes and similar analyses can apply. From
Then, the system calculates distance to the audio source based on a height of the arrangements of sensors and an altitude angle (608). Then, the system calculates the zoom factor based on distance or altitude angle, and height (610). Then, the system zooms the camera to the audio source (612). The system then rotates the camera to the audio source (614). The system then takes a picture and/or records video using the camera correctly oriented at the audio source.
Embodiments or aspects of the present invention may be implemented in the form of hardware, software, or firmware. If implemented in software, the software may be any form of software capable of performing operations consistent with the example embodiments disclosed herein. The software may be stored in any non-transient computer readable medium, such as RAM, ROM, magnetic disk, or optical disk. When loaded and executed by processor(s), the processor(s) are configured to perform operations consistent with the example embodiments disclosed herein. The processor(s) may be any form of processor(s) capable of being configured to execute operations as disclosed herein.
While this invention has been particularly shown and described with references to example embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4176922 | Roth | Dec 1979 | A |
5051964 | Sasaki | Sep 1991 | A |
5715319 | Chu | Feb 1998 | A |
5808663 | Okaya | Sep 1998 | A |
6198693 | Marash | Mar 2001 | B1 |
6593956 | Potts et al. | Jul 2003 | B1 |
7324664 | Jouppi | Jan 2008 | B1 |
8169463 | Enstad | May 2012 | B2 |
8787114 | Plotke | Jul 2014 | B1 |
8983089 | Chu | Mar 2015 | B1 |
20010012441 | Lee | Aug 2001 | A1 |
20010019516 | Wake | Sep 2001 | A1 |
20020181721 | Sugiyama | Dec 2002 | A1 |
20030231547 | Yang | Dec 2003 | A1 |
20050078833 | Hess | Apr 2005 | A1 |
20060104458 | Kenoyer | May 2006 | A1 |
20070280051 | Novick | Dec 2007 | A1 |
20080219099 | Novick | Sep 2008 | A1 |
20080273683 | Cohen | Nov 2008 | A1 |
20090002476 | Cutler | Jan 2009 | A1 |
20090015658 | Enstad | Jan 2009 | A1 |
20090175466 | Elko | Jul 2009 | A1 |
20100019715 | Roe | Jan 2010 | A1 |
20110141853 | Megdal | Jun 2011 | A1 |
20110157300 | Solvang | Jun 2011 | A1 |
20110264249 | Derkx | Oct 2011 | A1 |
20120076316 | Zhu | Mar 2012 | A1 |
20120128160 | Kim et al. | May 2012 | A1 |
20120327115 | Chhetri | Dec 2012 | A1 |
20130058492 | Silzle | Mar 2013 | A1 |
20130141576 | Lord | Jun 2013 | A1 |
20130300648 | Kim | Nov 2013 | A1 |
20130317830 | Visser et al. | Nov 2013 | A1 |
20140070942 | Haase | Mar 2014 | A1 |
20140112483 | Etter | Apr 2014 | A1 |
Number | Date | Country |
---|---|---|
2006304124 | Nov 2006 | JP |
2012150059 | Aug 2012 | JP |
2012120059 | Sep 2012 | JP |
Entry |
---|
Yamasaki et al. “Measurement of spatial information in sound fields by closely located four point microphone method” Journal of the Acoustical Society of Japan (E) 1989, vol. 10 No. 2 pp. 101-110. |
Yong Rui, Liwei He, Anoop Gupta, and Qiong Liu. 2001. Building an intelligent camera management system. In Proceedings of the ninth ACM international conference on Multimedia (Multimedia '01). ACM, New York, NY, USA, 2-11. DOI: https://doi.org/10.1145/500141.50014 (Year: 2001). |
Yiteng Huang, J. Benesty and G. W. Elko, “Passive acoustic source localization for video camera steering,” 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 00CH37100), Istanbul, Turkey, 2000, pp. II909-II912 vol. 2.doi: 10.1109/ICASSP.2000.859108 (Year: 2000). |
Number | Date | Country | |
---|---|---|---|
20140267704 A1 | Sep 2014 | US |