This application claims the benefit of a priority under 35 USC 119 to Indian Patent Application No. 3014/CHE/2007, filed Dec. 18, 2007, entitled “SYSTEM AND METHOD FOR AUGMENTED REALITY INSPECTION AND DATA VISUALIZATION”, the entire contents of which is hereby incorporated by reference.
The invention relates generally to non-destructive inspection techniques and, more particularly, to inspection techniques employing augmented reality.
Inspection techniques are commonly used in a variety of applications ranging from aircraft industry, health industry to security applications. Inspection of complex parts and structures generally require immense inspector skill and experience. Borescope inspection is one of the commonly used sources of information for monitoring of industrial infrastructure due to easy access to in-service parts and reduced downtime. Condition based maintenance strategies on gas turbine and related systems rely heavily on data obtained from such inspection. Generally, probes that use long cables with display pendants have been employed for borescope inspection. However, once the probe is inserted into a borescope inspection hole, minimal information about a location and pose of a tip of the borescope is available to an operator. Tracking the location and the pose reduces error in measurements and is very important to accurately locate flaws and damages seen. Moreover, during tip change scenarios, it is almost impossible to bring the tip to the same location.
Thus a lot of the inspection is dependant on operator skill and is subjective. Accurate information about the borescope tip and pose also enables automation and control of an entire inspection process, beginning from inspection planning to guidance to damage reporting.
Therefore, a need exists for an improved inspection system that addresses problems set forth above.
In accordance with an embodiment of the invention, a 3D tracking system is provided. The 3D tracking system includes at least two acoustic emission sensors disposed around an object. The acoustic emission sensors are configured to identify location of a probe inserted into the object based upon time of arrival of an acoustic signature emitted from a location on or near the probe. The 3D tracking system also includes a first sensor configured to detect an elevation of the probe. The 3D tracking system further includes a second sensor configured to detect an azimuth of the probe.
In accordance with another embodiment of the invention, an augmented reality system for inspection within an object is provided. The augmented reality system includes a tracking system configured to identify a 3D location of a probe inserted into the object. The 3D tracking system includes at least one acoustic emission sensors disposed around an object. The acoustic emission sensors are configured to identify location of a probe inserted into the object based upon time of arrival of an acoustic signature emitted from a location on or near the probe. The 3D tracking system also includes a first sensor configured to detect an elevation of the probe. The 3D tracking system further includes a second sensor configured to detect an azimuth of the probe. The augmented reality system also includes a microprocessor configured to generate graphics and superimpose the graphics on the image captured by the camera based upon the 3D location identified by the tracking system. The augmented reality system further includes a display unit configured to display an augmented reality image.
In accordance with another embodiment of the invention, a method of 3D tracking within an object is provided. The method includes inserting a probe into the object. The method also includes disposing at least one acoustic emission sensor around the object. The method further includes attaching a first sensor and a second sensor to the probe.
In accordance with another embodiment of the invention, a method for forming an augmented reality image for inspection within an object is provided. The method includes capturing an image via a camera. The method also includes identifying a location of a probe within the object via a plurality of acoustic emission sensors. The method further includes determining elevation of the probe via a first sensor. The method also includes determining azimuth of the probe via a second sensor. The method also includes generating graphics of the object. The method further includes registering the graphics on the image captured based upon the location, elevation and the azimuth determined to form an augmented reality image.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
As discussed in detail below, embodiments of the invention include a system and method for non-destructive inspection of an object. The system and method disclosed herein generate an augmented reality image using an improved tracking system for inspection. As used herein, ‘augmented reality image’ refers to an image that includes real world data superimposed with computer generated data. Non-limiting examples of the object include aircraft engines, gas turbines, steam turbines, diesel engines and a living organism.
Turning to the drawings,
The real image captured is used as a reference by a microprocessor 20 that is configured to generate graphics corresponding to the real image. In an example, the graphics includes computer-aided design drawings of the object 12. The microprocessor 20 further superimposes the graphics on the real image based upon the 3D location identified by the tracking system 14 to generate an augmented reality image. Thus, the stereoscopic view obtained from the camera 18 is augmented with additional information and provided to a user in real time. The additional information may include, for example, text, audio, video, and still images. For example, in a surgical workspace, a surgeon may be provided with a view of a patient including, inter alia, the view of the patient and an overlay generated by the microprocessor 20. The overlay may include a view of the patient's internal anatomical structures as determined, for example, during a Computerized Axial Tomography (CAT) scan, or by Magnetic Resonance Imaging (MRI).
In another embodiment, the overlay includes a textual view of the patient's medical and family history. The overlays may be displayed in real-time. The augmented reality image includes the real image captured by the camera 18 overlaid with an additional virtual view. The virtual view is derived from the microprocessor 20 and stored information, for example, images. The augmented reality image also enables detection of flaws or cracks in the object 12. In an exemplary embodiment, the microprocessor 20 includes a wearable computer. The microprocessor 20 displays an augmented reality image on a display unit 22 but not limited to, a personal digital assistant (PDA), pendant, an external computer and semi-transparent goggles.
It should be noted that embodiments of the invention are not limited to any particular microprocessor for performing the processing tasks of the invention. The term “microprocessor” as that term is used herein, is intended to denote any machine capable of performing the calculations, or computations, necessary to perform the tasks of the invention. The term “microprocessor” is intended to denote any machine that is capable of accepting a structured input and of processing the input in accordance with prescribed rules to produce an output.
The tracking system 14 further includes a second sensor 36 configured to detect an azimuth of the probe 13. In an exemplary embodiment, the second sensor 36 includes a magnetic sensor such as, but not limited to, a magnetic compass, configured to detect the azimuth in presence of a magnetic field. In an example, a solenoid is employed to apply a magnetic field to the magnetic sensor. In yet another embodiment, the second sensor 36 is a gyroscope that detects angular rotation rate along three orthogonal axes. In yet another embodiment, output of the second sensor 36 is integrated over time to determine a position of the tip of the probe 13. In a non-limiting example, the acceleration is integrated twice over time to determine the position.
In order to overlay an image, position and orientation of the camera 18 with respect to the gas turbine 72, and the orientation of the gas turbine, need to be determined. As a result, it is desirable to know the relationship between two coordinate systems, a camera coordinate system (not shown) attached to the camera 18, and a coordinate system 78 attached to the gas turbine 72. Tracking denotes the process of monitoring the relationship between the coordinate systems. The microprocessor 20 (
As illustrated, a real view and a virtual view are blended. For example, the virtual view is provided as a transparency over the real view of the gas turbine 72. Registration between the real view and the virtual view aligns the real and virtual views. Registration of the virtual view includes, inter alia, position, orientation, scale, perspective, and internal camera parameters for each camera. Preferably, the internal camera parameters such as, but not limited to, magnification are determined in a prior camera calibration procedure. The registered virtual view is aligned with the real image of the gas turbine 72 in real time. In a particular embodiment, an operator carries the display unit 100 which will provide him/her with an augmented reality view of the gas turbine 72. In an exemplary embodiment, the display unit 100 is of a “video see through” type.
“Video see-through” generates and presents an augmented reality world at a handheld display device such as display unit 100. The camera integrated with the display device is used to capture a live video stream of the real world. The camera 18 (
The various embodiments of an augmented reality system and method described above thus provide a way to achieve a convenient and efficient means for inspection. The system and method also provides for a guided and enhanced insitu inspection & repair and foreign debris removal. Further, it provides a lower risk of forced outage due to improved damage reporting.
It is to be understood that not necessarily all such objects or advantages described above may be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the systems and techniques described herein may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein.
Furthermore, the skilled artisan will recognize the interchangeability of various features from different embodiments. For example, the use of a web camera with respect to one embodiment can be adapted for use with a pendant as a display unit described with respect to another. Similarly, the various features described, as well as other known equivalents for each feature, can be mixed and matched by one of ordinary skill in this art to construct additional systems and techniques in accordance with principles of this disclosure.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
3014/CHE2007 | Dec 2007 | IN | national |
Number | Name | Date | Kind |
---|---|---|---|
4176662 | Frazer | Dec 1979 | A |
5493308 | Bingham et al. | Feb 1996 | A |
6091546 | Spitzer | Jul 2000 | A |
6349001 | Spitzer | Feb 2002 | B1 |
6500008 | Ebersole et al. | Dec 2002 | B1 |
6503195 | Keller et al. | Jan 2003 | B1 |
6511418 | Shahidi et al. | Jan 2003 | B2 |
6517478 | Khadem | Feb 2003 | B2 |
6589163 | Aizawa et al. | Jul 2003 | B2 |
6625299 | Meisner et al. | Sep 2003 | B1 |
6809743 | Ebersole et al. | Oct 2004 | B2 |
6809744 | Ebersole et al. | Oct 2004 | B2 |
6867753 | Chinthammit et al. | Mar 2005 | B2 |
6989831 | Ebersole et al. | Jan 2006 | B2 |
7110909 | Friedrich et al. | Sep 2006 | B2 |
7126558 | Dempski | Oct 2006 | B1 |
7127082 | Neely | Oct 2006 | B2 |
7162054 | Meisner et al. | Jan 2007 | B2 |
20020036649 | Kim et al. | Mar 2002 | A1 |
20030037449 | Bani-Hashemi et al. | Feb 2003 | A1 |
20040131232 | Meisner et al. | Jul 2004 | A1 |
20040183751 | Dempski | Sep 2004 | A1 |
20040189675 | Pretlove et al. | Sep 2004 | A1 |
20050182295 | Soper et al. | Aug 2005 | A1 |
20050251030 | Azar et al. | Nov 2005 | A1 |
20060106283 | Wallace et al. | May 2006 | A1 |
20060152478 | Simon | Jul 2006 | A1 |
20060241792 | Pretlove et al. | Oct 2006 | A1 |
20060244677 | Dempski | Nov 2006 | A1 |
20060259041 | Hoffman et al. | Nov 2006 | A1 |
20060281971 | Sauer et al. | Dec 2006 | A1 |
20070217672 | Shannon et al. | Sep 2007 | A1 |
20070233185 | Anderson et al. | Oct 2007 | A1 |
20080146941 | Dala-Krishna | Jun 2008 | A1 |
20080200807 | Wright et al. | Aug 2008 | A1 |
20080287860 | Tgavalekos et al. | Nov 2008 | A1 |
Number | Date | Country |
---|---|---|
1157314 | Nov 2001 | EP |
2331365 | May 1999 | GB |
Entry |
---|
Chinese Office Action for corresponding CN200810184990.3 dated Oct. 25, 2011. |
Number | Date | Country | |
---|---|---|---|
20090154293 A1 | Jun 2009 | US |