A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.
This disclosure is directed to wagering games, systems and methods, and in particular to augmented approaches to wagering on sporting events.
Very often, there is more than one sport event occurring simultaneously. During an NFL season, for example there may be four or more games being played alongside other events such as NBA and NHL contests. Internationally, it is common for seven or more games to be played in the English Premier League simultaneously.
A conventional response to this has been the construction of huge Sports Book areas within casinos. While impressive to look at, the number of displays can be intimidating and does not necessarily aid a player in choosing which game on which to place wagers. The long list of posted odds is complicated to navigate, and isn't updated very often because a complicated, quick updating display would be even harder for players to follow.
Thus, there exists a strong need for simpler betting interfaces, targeted towards what a particular player is interested in. Ideally, these interfaces should be able to predict what a player is likely to be interested in before the player has made a decision to place a bet.
This present disclosure aims to solve these problems in a novel and practical way. Multiple different implementations are contemplated, encompassing both the home and the casino as locations for wagering. This disclosure describes how it may be determined which sporting event is being watched by a bettor, and therefore how context-sensitive betting options can be presented to the bettor in real-time, tailored to the sporting event being watched.
While conventional sporting wagering games, systems and methods include features which have proved to be successful, there remains a need for features that provide players with enhanced excitement and an increased opportunity of convenient participation and winning. The present disclosure addresses these and other needs.
Briefly, and in general terms, the present disclosure is directed towards a method and system for augmented wagering. In one aspect, the wagering can be conducted for sports betting.
In at least one implementation, the system augments content for an active event subject to a focus of a user, in an environment including a presentation of two or more active events. The system includes: a user focus determination unit including a camera that captures video data associated with the focus of the user; a memory and a buffer that store digital fingerprints from the events; an active content determination component that compares one or more digital fingerprints from an active event with the captured video for determination of the event being focused on by the user; and a display that displays content and augments the determined active event being focused upon by the user that was identified by the active content determination component.
In some implementations of the content augmentation system, the buffer is a circular buffer. In other implementations of the content augmentation system, the buffer is a time-stamped circular buffer. In still other implementations, the content augmentation system further includes a user focus determination unit having an apparatus for generating data indicative of the geographical location of the unit. In yet other implementations, the content augmentation system further includes a user focus determination unit having a microphone that captures fingerprint data associated with the events. The active content determination component buffer is configured to store audio fingerprints of active events. The active content determination component is further configured to compare a digital fingerprint from an active event with the captured fingerprint data for determination of the event being focused on by the user.
In another implementation, the system provides augmenting content to an event, from a group of presented events, focused upon by a user using a mobile device including a video camera and microphone. Such a system includes: a server; a memory storing one or both of contemporaneous digital video and audio fingerprints for the events; a video display; and a communication network that connects the video display, the server, and the memory. The mobile device is configured by an application to provide one or more of video and audio data associated with a selected event focused upon by the user for one or more of the server and mobile device to compare with the stored digital fingerprint data and determine the event focused upon by the user for display at the video display. In the system, one or more of the server and the mobile device also provides video content that augments the display of the event at the video display.
In some implementations of the content augmentation system, the mobile device includes a component that determines the geographic location of the mobile device. The system further includes one or more of a mobile device and a server configured to receive data from the component and determine the event focused upon by the user. In other implementations of the content augmentation system, the component is a GPS sensory component. In still other implementations of the content augmentation system, the mobile device includes one or more sensors selected from a group consisting of: a gyroscope, accelerometer, and compass, the system further comprising one or more of a mobile device and a server configured to receive data from the sensors and determine the event focused upon by the user.
In one embodiment, the wagering method and system operates to bring context-sensitive betting options to a player with no effort on the player's behalf. The contemplated approaches allow promotion of instant/time-sensitive propositions and simplify betting for inexperienced players, and for more experienced players provide a better targeted experience. Moreover, this system and method integrates with other initiatives such as E-Wallet. Also, multiple methods are used to determine games being watched, thus being resilient to many different modes of operation. Furthermore, failure modes are graceful in that a player may be presented with less relevant betting options.
In one currently preferred implementation, the method and system employs a standard mobile device such as an Apple iPad (late 2012 model) or Google Nexus 10, along with WiFi or 3G/4G/LTE backhaul. An internet based server hosting audio fingerprint comparison software is contemplated along with circular buffers of all currently broadcast sport-event related audio from TV networks. Optionally, Google Glass can be employed as a camera for capturing images of TV being watched for fingerprinting. Further, DirecTV Set top boxes with external (whole home DVR) access enabled are contemplated.
In one or more other approaches, the method and system can include audio fingerprint comparison of live TV to detect channel being watched. Further, use of SLAM technology is contemplated to determine which TV is being watched in a multiple TV situation such as a Sports Book. Also contemplated is analysis of broadcast station watermarks to detect channel being watched.
Features and advantages will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, which illustrate by way of example, the features of the various embodiments.
Various embodiments are directed to a game, gaming machine, gaming systems and method for playing a game. The embodiments are illustrated and described herein, by way of example only, and not by way of limitation. Referring now to the drawings, and more particularly to
With reference to
The difference between these modes is that in the home or at an electronic gaming machine (EGM) equipped with DM sports it can usually be expected that the player is only looking at one TV channel at a time (with some exceptions which will be discussed below). In contrast, at a sports book it is inevitable that multiple displays will be active simultaneously. Thus, a first aspect of this contemplated approach in the sports book is concerned with determining which TV is being mainly watched by the player.
Thus, in one contemplated approach, a system or method to determine a person's focus from within an environment including a single or multiple object of attention is employed. In a first step, location data 110 is inputted into or communicated to a simultaneous location and mapping (SLAM) operational system 120 that receives, analyzes and/or manipulates location data. The SLAM operational system develops a collection of related sets of location information composed of separate elements but which are manipulatable as a unit. Such location data can be an indication of various factors, such as a location of a person, place or device and can be collected via various sources such as GPS or other sensory systems and devices. This information is one component which can be employed to determine a player's focus 130.
Mobile sensors 140, such as gyroscopes, compasses and/or accelerometers can act as a further source of information for determination of a player focus 130. These and other sensory devices can be incorporated into various devices which a player carries or possesses. In this way, player movement and orientation can be tracked and analyzed, and form a component of assessing focus.
Also inputted into a player focus determination can be a camera input 150. The camera can again be any device where it is carried or possessed by a player, or which is otherwise oriented to best capture aspects of a player's focus. Here, it is contemplated that both broad and/or micro movements associated with a player's focus can be captured using the camera input. Further, it is contemplated that time spent in an area, or a direction of attention can be tracked using the camera input to add further details concerning a player's interest.
An aggregate or weighted and analyzed focus of a player is then calculated to best estimate the directional interest of a player. A single display upon which the player has directed an interest is identified. This display is then decoded 160 by the overall system. The decoded display information is communicated to determine active content 170 of the display.
Audio fingerprints 175 of a display which has been determined as a focus viewing point can also be gathered. This information is analyzed (described below) to determine active content.
Also employed to facilitate the determination of active content is a universal plug and play (UPuP) set of networking protocols. These protocols enable networked devices to discover the presence on the network of other devices and to establish a functional network for sharing. That is, UPuP discovery is conducted and the information gleaned is also communicated to determine active content.
Once the active content has been identified, the system 100 generates then provides wagering options to a player 190. In one specific embodiment, these options are transmitted to a player's cell phone, PDA or other computerized device.
While it may be possible to determine which display is being generally viewed in a sportsbook, the content of this display may be harder to determine. Accordingly, as stated, it is proposed that the use of SLAM that is contemplated. SLAM was originally developed by NASA to allow robots to operate on Mars. A robot landing on Mars has limited information about topography, mainly from low-resolution satellite photos. As the rover moves around Mars it sends data back to mission control consisting of camera images and other sensors such as gyroscopes and compasses. From this data a 3D map is made which is fed back to the robot to enable it to navigate the environment better.
In the mobile device space, SLAM is the 4th generation of augmented reality tracking. The first generation—printed markers such as QR codes are widely used. The 2nd generation—image markers were used in the gaming industry. The 3rd generation of tracking is object tracking, and is now becoming widely available on the market. This allows, for example, the identification of components within an electronic gaming machine.
SLAM takes these technologies to the next stage. A 3D representation of an environment such as the interior of a casino can be captured by a mobile device using only its inbuilt camera and sensors. In this context, a representation is captured initially by an interested party such as the casino owner, and stored in the cloud for access by mobile devices later.
Turning to
Using this SLAM data, along with sensors such as its inbuilt compass, the camera 204 of the glasses 200 is able to identify these ‘star’ points in its image, corresponding to the previously stored points 300. By comparing the topography of the points 300, the glasses are able to determine accurately the position and orientation of the player inside the casino.
Once the position and orientation of the player has been determined, raycasting from this position through the 3D environment previously stored is conducted to determine which display is currently being watched by the player. Preferably, knowing which display is being watched in the casino environment allows knowing what sport event is being watched, since as part of this system, the casino would maintain a live database table of display identifiers matched with TV channels, and thus sporting events.
Even if such a table is not maintained in certain applications, the problem of delivering player focus has been reduced to identify which sporting event is being watched based upon capturing a TV output. This is the same problem that needs to be solved in a home environment, so both scenarios can now be jointly considered.
Both of these features can be reliably used to identify the channel by using techniques previously disclosed in application Ser. No. 13/918,741 entitled “Complex Augmented Reality Image Tags,” the contents of which are incorporated by reference. Experience has shown that this technique is more than robust enough to work with existing technology.
It is to be noted that the present system and method do not particularly require instant identification of a TV channel. It may be beneficial, in fact, to have the identification process spread over a period of up to at least a minute or more to ensure higher accuracy and less false-positives and determine that an appropriate level of engagement has been met by the bettor such that bets may be offered in a way that are relevant.
Turning now to
Because it is not realistic to determine which of the events the bettor is watching, it may be appropriate to offer bets for all of these events. Identification of this particular mix of events can again be done by use of image tracking. In this example, a “DirecTV” logo would be tracked to determine that this is the “SportsMix” channel.
One other contemplated feature allows targeting of the sporting event of most interest to the viewer. While a person can easily watch multiple events simultaneously, it is much more difficult to listen to multiple events simultaneously. To solve this, almost every sportsbook venue, and every mix of multiple video streams in the home mutes every audio track except for one. In the example shown, there is a box to highlight the video stream 502 which is selected for audio. The viewer is able to change the audio selection with a remote control.
The mobile devices contemplated for use with the present method and system, be it glasses, smart phone or tablet, has network connectivity and audio recording capability via a microphone. Thus, the microphone on a tablet, phone or glasses (See
In another approach, a Java Script Object Notification (JSON) output from a receiving (e.g. DirecTV) can be interpreted using UPuP.
It is thus a feature of set top boxes that they can be addressed over the home network. Such a feature is used so that one set top box can retrieve the contents of the DVR of another box. Thus,
If more than one set top box is found on the local network by the mobile device, then each may be queried in turn, and if only one is showing a live sporting event that would be the source for betting information. If more than one is showing a live sporting event, audio fingerprinting could be used, or a mix or more than one sport event could be combined in the betting interface.
It is now well established that digital fingerprints can be taken from an audio sample and compared against a database to identify the audio sample. Examples of such technology are the ‘Shazam’ and ‘Soundhound’ applications for mobile phones.
Shazam, in particular, works as follows (information taken from Wikipedia):
Thus, instead of using an existing database, the audio match may be made against a set of circular audio buffers stored on a server. The process for achieving this will next be described with respect to
First, the bettor initiates a betting application 700 on their mobile device, be it a phone or tablet.
This application passively captures audio in segments of appropriate length, for example, for ten seconds at a time 702. This ten seconds is analyzed to compute a digital fingerprint, and if it is deemed acceptable 704 (too much background noise may corrupt the fingerprint) it is transmitted to a server connected to the internet over WiFi/3G/4G/LTE. If the noise level is unacceptable, another segment of audio is captured and analyzed for acceptance. When an acceptable noise level is captured, the audio information is timestamped and relayed to a server 706.
The server maintains a list of active sporting TV channels 708. Preferably, the mobile device also transmits gross location data which enable the server to determine which market the bettor is in. The mobile device can also transmit the timestamp with the fingerprint. Assuming normal network conditions, such a fingerprint could be easily transmitted within a few seconds of computation.
The server, meanwhile, is continuously generating audio fingerprints for each active sport TV channel. These audio fingerprints are stored in a time-stamped circular buffer 710, so that the last, say 5 minutes (or a portion thereof), of audio generated by each TV channel may be audio fingerprint matched 712. If there is no match 714, the system returns to examining the list of active sporting events. When a “no match” occurs a subsequent time 716, the inquiry finishes. The number of “no matches” to reach a finish event can be set to any number. While the buffer could technically be larger, given the focus of real-time betting options to a bettor, it may not beneficial to make matches further back in time. Restricting the fingerprints to a short period of time means that if a bettor ‘pauses’ their TV DVR for a substantial time they will lose the ability to receive live betting updates. This might be seen as a desirable feature to the bettor because they would not wish to receive updates that may pre-empt their enjoyment of the game being watched on delay (such as the result).
Once the TV channel has been identified by the audio fingerprint, it is a straightforward operation for the server to determine the sporting event being broadcast by the channel using publically available TV listing information 718. The sporting event data can thus be passed back to the mobile device 720 at Finish 722.
In yet another alternative for determining the channel being watched, closed caption (CC) data could be captured and recognized using OCR technology. So in the case where a bettor has their TV on mute, or is in a sports bar environment where no audio is present, but CC text is shown on TV, the CC text would be recognized and passed to the server for comparison against a circular buffer of CC text from each active TV channel in the local market.
In one implementation, the primary delivery surface for the betting interface can be a mobile device such as an iPad or other tablet. While wagers may be presented to a better via augmented glasses, it is also contemplated that the glasses be mainly used as a way of indicating to the bettor that context-sensitive bets have been made available on their tablet. A bettor could then peruse the bets at their leisure on the tablet 800, as shown in
Accordingly, an augmented wagering system and method have been disclosed. Real time betting options can thus be presented to a bettor. In this way, players are provided with enhanced excitement and increased opportunities for participation and winning.
Those skilled in the art will readily recognize various modifications and changes that may be made to the claimed systems and methods without following the example embodiments and applications illustrated and described herein, and without departing from the true spirit and scope of the claimed systems and methods.
This application is a continuation of U.S. application Ser. No. 15/847,704, filed Dec. 19, 2017, which is a continuation of U.S. application Ser. No. 15/589,742, filed May 8, 2017 (now U.S. Pat. No. 9,875,598), which is a continuation of U.S. application Ser. No. 14/248,053, filed Apr. 8, 2014 (now U.S. Pat. No. 9,659,447). The foregoing applications and corresponding U.S. Patents are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
8814691 | Haddick | Aug 2014 | B2 |
8986125 | Ellsworth | Mar 2015 | B2 |
20090305765 | Walker et al. | Dec 2009 | A1 |
20100216533 | Crawford, Jr. et al. | Aug 2010 | A1 |
20100268604 | Kim et al. | Oct 2010 | A1 |
20110153362 | Valin et al. | Jun 2011 | A1 |
20120004956 | Huston et al. | Jan 2012 | A1 |
20120121161 | Eade et al. | May 2012 | A1 |
20120182573 | Mok | Jul 2012 | A1 |
20120239175 | Mohajer et al. | Sep 2012 | A1 |
20120295698 | Dernino et al. | Nov 2012 | A1 |
20130326082 | Stokking et al. | Dec 2013 | A1 |
20140085333 | Pugazhendhi et al. | Mar 2014 | A1 |
20140171039 | Bjontegard | Jun 2014 | A1 |
20140180674 | Neuhauser et al. | Jun 2014 | A1 |
20140253326 | Cho et al. | Sep 2014 | A1 |
20150065214 | Olson et al. | Mar 2015 | A1 |
20150286873 | Davis et al. | Oct 2015 | A1 |
20150287416 | Brands et al. | Oct 2015 | A1 |
20160379176 | Brailovskiy et al. | Dec 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20190122483 A1 | Apr 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15847704 | Dec 2017 | US |
Child | 16225234 | US | |
Parent | 15589742 | May 2017 | US |
Child | 15847704 | US | |
Parent | 14248053 | Apr 2014 | US |
Child | 15589742 | US |