System and method for authenticating an optical pattern

Information

  • Patent Grant
  • 8848973
  • Patent Number
    8,848,973
  • Date Filed
    Wednesday, June 26, 2013
    10 years ago
  • Date Issued
    Tuesday, September 30, 2014
    9 years ago
Abstract
A system for authenticating an optical pattern created by exposing a magnetically sensitive material to one or more magnetic field sources. The system includes illumination sources configured to illuminate the optical pattern, sensors configured to generate sensed optical characteristic data when the optical pattern is illuminated, a memory configured to store a reference optical data associated with a reference optical pattern, and a processor configured to access the memory and compare the reference optical data to the sensed optical characteristic data in order to authenticate the optical pattern.
Description
FIELD OF THE INVENTION

The present invention relates generally to a system and method for authentication. More particularly, the present invention relates to a system and method for authentication of an optical pattern produced using a magnetic structure.


BACKGROUND OF THE INVENTION

For counterfeiting prevention, systems and methods for authenticating of components are known. Counterfeiting of components may involve repurposing, remarking or recycling used components along a supply chain. As such, a counterfeit component may pass all production testing, but its reliability may be affected because the part may be near the end of its useful life when it is installed. For this reason, counterfeit components pose a very high risk especially when such components are used in sensitive applications, such as national defense, military or intelligence.


Known marking, authentication and anti-counterfeiting technologies use taggants comprising chemical or physical markers. Some taggants consist of microscopic particles built up in many layers, which are made of different materials. Other taggants can be engineered particles with unique structures, chemical signatures, photo emission characteristics or combinations of these that can be added to plastics or inks. Unique micro-structures can be read using microscopes. Chemicals or nano-structures that have spectral-shift characteristics can be illuminated and read by specially tuned readers. But readers that must be matched to specific taggants limit the variation that can be applied to components and the options for reading them.


For example, Authentix™ (www.authentix.com) has commercialized several taggant technologies and offers authentication and security solutions for food, pharmaceutical and manufactured goods. Authentix's taggant technology uses magnetic ink that includes magnetic particles that are applied to individual components. InkSure™ (www.inksure.com) has developed a unique chemical signature technology that is recognized by US courts as a viable, forensic method for identifying material sources. Applied DNA Sciences (www.adnas.com) offers marking and authentication solutions based on chemically modified (and inherently randomized) botanical DNA. This technology adds phosphors to marking solutions for low-level authentication and use well-developed DNA sequencing technologies to verify the authenticity of marked components. 3M offers a line of holographic authentication products that can be added to products or packaging.


One known authentication system and method described in U.S. Pat. No. 8,286,551 uses pieces of magnetic material to produce magnetic fields for orienting pigments in ink. Under this prior art, a printing machine has a transfer system for conveying a substrate onto an impression cylinder. A screen of cylindrical or flat shape with a doctor blade, collaborates with the impression cylinder to print the substrate with an ink containing pigments that can be orientated by a magnetic field. An unloading system carries the substrate away. The impression cylinder has a magnetic element on its impression surface, that is positioned at a point corresponding to impression performed by the screen on the substrate.


Currently available authentication techniques, however, offer partial solutions and cannot be broadly deployed across complex supply chains. For example, the processes of creating complex chemical signatures such as DNA occur in centralized facilities in batches. This limits the number of changes that can be made to the marking other than varying concentrations of multiple batches during component marking. Use of magnetic pieces is cumbersome and not easily varied. Ideally, a complete authentication would be changeable more frequently and not require the synthesis of complex chemicals, micro-scale printing or fixed micro-scale structures or magnetic pieces. DNA-based authentication requires removing a sample of the DNA-bearing material to detect the presence of the correct code using laboratory sequencing machines. Further, authentication that requires laboratories limits the ability to increase inspection.


Ideally, a marking technology would contain enough information to provide authentication and be expensive to copy, but not require laboratory analysis. Holographic printing techniques are widely available, but can be mimicked and have costs that are well over 0.01 per component.


Thus, there exists a need to inexpensively deliver secure authentication, rapid, automated screening throughout the supply chain and ultimately facilitate the elimination of purchases containing counterfeit components.


SUMMARY OF THE INVENTION

In accordance with one embodiment of the invention, a system and method authenticates an optical pattern created by exposing a magnetically sensitive material, for example a magnetically sensitive coating, to one or more magnetic field sources, such as permanent magnets, electromagnets or electro permanent magnets. The magnetically sensitive material can comprise flexible or rigid material. Magnetically sensitive coatings such as dichroic paint, a colloidal nanocrystal structure, or superparamagnetic photonic crystals may be used for creating the optical pattern by curing, fixing or setting the magnetically sensitive coating. The optical pattern is illuminated by one or more illumination sources to generate sensed optical characteristic data from one or more sensors such as photodetectors, photocells, photodiodes, fiber optics, pyrometers, proximity detectors, or infrared sensors. A memory is configured to store reference optical data. The reference optical data is associated with a reference optical pattern created by exposing a reference magnetically sensitive material to one or more reference magnetic field sources, and corresponds to data generated by one or more reference sensors when the reference optical pattern is illuminated by one or more reference illumination sources. In order to authenticate the optical pattern, the reference optical data is compared to the sensed optical characteristic data by a processor that is configured to access the memory.


According to some of the more detailed features of the invention, the optical characteristic data can correspond to physical attributes of the optical pattern, such as lattice structures of magnetically sensitive particles suspended in the magnetically sensitive material or a dichroic characteristic of the magnetically sensitive material. The optical characteristic data can also correspond to illumination attributes of the one or more illumination sources, such as intensity, propagation direction, frequency, wavelength, polarization or illumination angle. The optical characteristic data can also correspond to magnetic attributes of the one or more magnetic field sources such as position of the one or more magnetic field sources relative to a reference coordinate as well as size, shape, polarity or field strength of the one or more magnetic field sources. In one embodiment, the magnetic attributes of the one or more magnetic field sources can be varied over time for demodulating information conveyed by the optical pattern. The optical characteristic data can also correspond to orientation of the one or more illumination sources or the sensors.


According to other more detailed features of the invention, the optical pattern is created on a surface area that comprises the one or more magnetic field sources. The magnetic field sources can be arranged in a pattern in accordance with a code, such as Barker code, Gold code, Kasami code, Costas code, or pseudorandom code. The surface area can comprise overlapping magnetic field sources or magnetic field sources separated by non-magnetized regions.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is described with reference to the accompanying drawings. In the drawings, like reference numbers indicate identical or functionally similar elements. Additionally, the left-most digit(s) of a reference number identifies the drawing in which the reference number first appears.



FIG. 1 depicts one embodiment of an authentication system for authenticating an optical pattern according to one aspect of the present invention.



FIG. 2 depicts a system for generating reference optical data used in the authentication system of FIG. 1.



FIG. 3 depicts another embodiment of an authentication system for authenticating an optical pattern according to another aspect of the present invention.



FIG. 4 depicts still another embodiment of an authentication system for authenticating an optical pattern according to another aspect of the present invention.



FIG. 5 depicts an embodiment of one exemplary process for creating an optical pattern on a magnetically sensitive material.



FIG. 6 depicts another embodiment of an exemplary process for creating an optical pattern on a magnetically sensitive material.



FIG. 7 depicts a flow chart of a method for authenticating an optical pattern according to one aspect of the invention.





DETAILED DESCRIPTION OF THE INVENTION

The present invention will now be described more fully in detail with reference to the accompanying drawings, in which the preferred embodiments of the invention are shown. This invention should not, however, be construed as limited to the embodiments set forth herein; rather, they are provided so that this disclosure will be thorough and complete and will fully convey the scope of the invention to those skilled in the art.


Certain described embodiments may relate, by way of example but not limitation, to systems and/or apparatuses comprising magnetic structures, methods for using magnetic structures, magnetic structures produced via magnetic printing, magnetic structures comprising arrays of discrete magnetic elements, combinations thereof, and so forth. Material presented herein may relate to and/or be implemented in conjunction with systems and methods described in U.S. Pat. No. 7,681,256 issued Mar. 23, 2010, U.S. Pat. No. 7,750,781 issued Jul. 6, 2010, U.S. Pat. No. 7,755,462 issued Jul. 13, 2010, U.S. Pat. No. 7,800,471 issued on Sep. 21, 2010, U.S. Pat. No. 7,812,698 issued Oct. 12, 2010, U.S. Pat. No. 8,115,581 issued on Feb. 14, 2012, U.S. Pat. No. 7,817,002, U.S. Pat. No. 7,817,003, U.S. Pat. No. 7,817,004, U.S. Pat. No. 7,817,005, and U.S. Pat. No. 7,817,006 issued Oct. 19, 2010, U.S. Pat. No. 7,821,367 issued Oct. 26, 2010, U.S. Pat. Nos. 7,823,300 and 7,824,083 issued Nov. 2, 2011, U.S. Pat. No. 7,834,729 issued Nov. 16, 2011, U.S. Pat. No. 7,839,247 issued Nov. 23, 2010, U.S. Pat. No. 7,843,295, U.S. Pat. No. 7,843,296, and U.S. Pat. No. 7,843,297 issued Nov. 30, 2010, No. 7,868,721 issued on Jan. 11, 2011, U.S. Pat. No. 7,893,803 issued Feb. 22, 2011, U.S. Pat. Nos. 7,956,711 and 7,956,712 issued Jun. 7, 2011, U.S. Pat. No. 7,958,575, U.S. Pat. Nos. 7,961,068 and 7,961,069 issued Jun. 14, 2011, U.S. Pat. No. 7,963,818 issued Jun. 21, 2011, U.S. Pat. No. 7,982,568 issued Jul. 19, 2011, U.S. Pat. Nos. 8,015,752 and 8,016,330 issued Sep. 13, 2011, U.S. Pat. No. 8,035,260 issued Oct. 11, 2011, and U.S. Pat. No. 8,222,986 issued on Jul. 17, 2012, which are all incorporated by reference herein in their entirety.


The present invention uses an optical pattern created on magnetically sensitive material for marking components that is impractical, if not virtually impossible, for a counterfeiter to copy. The coating inexpensively withstands normal component handling and usage without significant deterioration while offering a verification process that is not cost or time prohibitive. One such coating system and method is disclosed in U.S. application Ser. No. 13/240,335, filed Sep. 22, 2011, titled Magnetic Structure Production, which is hereby incorporated by reference in its entirety. As disclosed, a magnetizable material that is non-magnetized is brought into proximity with a magnetic-field-sensitive solution or other substance (e.g., an iron oxide solution of superparamagnetic photonic crystals). Proximity may be achieved by, for example, suspending particles in a liquid or applying a solution to a surface of the panel using, for instance, a paint having photonic crystals. Objects having magnetic paint may be magnetized with a pattern that may then be optically recognized by a camera or other optical recognition device. Light sources may be controlled to cause different magnetic field attributes to appear or be enhanced.



FIG. 1 shows an embodiment of an authentication system 100 for authenticating an optical pattern 102 according to one aspect of the present invention. The optical pattern 102 is created by exposing a magnetically sensitive coating 104 to one or more magnetic field sources 105. The magnetically sensitive coating 104 may include, for example, a dichroic paint, Colloidal Nanocrystal Clusters such as COLR™ Technology, superparamagnetic photonic crystals, or the like. Exposing the magnetically sensitive coating 104 to the one or more magnetic field sources 105, for example, comprising permanent magnets, electromagnets or electro permanent magnets, can affect physical attributes of the optical pattern 102. In one embodiment, the physical attributes of optical pattern 102 can be associated with one or more lattice structures of magnetically sensitive particles suspended in magnetically sensitive coating 104. For example, when a magnetic field is applied to COLR™ Technology, individual particles self-assemble to form a microscopic, lattice-like structure which diffracts specific wavelengths of light. Adjusting the strength of the magnetic field tunes the color to display brilliant, iridescent colors across the entire visible spectrum and beyond. The particles used in COLR™ Technology are iron oxide superparamagnetic Colloidal Nanocrystal Clusters (CNC) created using a wet synthesis process.


In another embodiment, the physical attributes of the optical pattern 102 are associated with dichroic characteristics of magnetically sensitive coating 104. Such dichroic characteristics act as a very accurate color filter used to selectively pass light of a small range of colors while reflecting other colors. When light strikes the coating at an angle, some of the light is reflected from the top surface of the coating, and some is reflected from the bottom surface where it is in contact with a surface. Because the light reflecting from the bottom travels a slightly longer path, some light wavelengths are reinforced by this delay, while others tend to be canceled, producing visible colors


The system 100 operates under the control of one more processors 112 having access to one or more memory devices 110 that store programs for operating the system as well as data used for authenticating the optical pattern. The system 100 further comprises one or more illumination sources 106, which are configured to illuminate the optical pattern 102. Illumination sources 106 can be located at any location relative to a reference coordinate system, and can be configured to have a particular orientation relative to such reference coordinate system. The illumination sources can be associated with illumination characteristics such as intensity, propagation direction, frequency or wavelength spectrum, illumination angle, and polarization, where one or more illumination characteristics of a given illumination source 106 may or may not be varied. Under one embodiment shown in FIG. 1, the illumination characteristics may be varied under the control of the processor 112.


One or more sensors 108 sense optical characteristics resulting from reflection of light rays on the optical pattern 102 to generate sensed optical characteristic data. Such data is provided to the processor 112 when the optical pattern is illuminated by illumination sources 106. The sensors 108 may comprise photodetectors (e.g., photocells, photodiodes, transistors, etc.), fiber optic, pyrometer, proximity detector, infrared sensor, or any other optical sensor technology. The sensors 108 can be located at any location relative to the reference coordinate system, and can be and configured to have a particular orientation relative to the reference coordinate system. The sensors 108 may collect information at specific measurement times that may be at regular time intervals, random times, or at times determined using any other data sampling scheme.


The sensed optical characteristic data can correspond to, for example, physical attributes of the optical pattern 102 created on the magnetically sensitive coating 104, illumination attributes of one or more illumination sources 106, magnetic attributes of the one or more magnetic field sources 105, an orientation of at least one of the one or more illumination sources 106 or an orientation of at least one of the one or more sensors 108 relative to the reference coordinates.


According to one embodiment, the memory 110 is configured to store a reference optical data associated with a reference optical pattern 202. As shown in FIG. 2, the reference optical pattern 202 is created by exposing a reference magnetically sensitive coating 204 to one or more reference magnetic field sources 205. The reference magnetically sensitive coating 204 has coating properties that are used as a reference for authentication purposes. Similarly, the one or more reference magnetic field sources 205 has reference magnetic field properties that impact or otherwise influence the physical attributes of the reference optical pattern. The reference optical data corresponds to data generated by one or more reference sensors 208. The reference sensors have reference sensing properties for sensing optical attributes associated with the physical attributes of the reference optical pattern 202 when the reference optical pattern is illuminated by one or more reference illumination sources 206. The one or more reference illumination sources 206 and sensors 208 have sensing and illumination properties used as reference for generating the reference optical data.


Referring back to FIG. 1, the processor 112 compares the reference optical data stored in the memory 110 to the sensed optical characteristic data after the illumination in order to authenticate the optical pattern 102. The optical pattern 102 may be a one-dimensional pattern, a two-dimensional pattern, or three-dimensional pattern. In one embodiment, the magnetic field sources comprise at least one electromagnet or electro permanent magnet for which at least one characteristic may vary over time. Varying over time may correspond to a repetition rate, a period or periods of time when one or more magnetic field sources are present, a period or periods of time when a magnetic source is not present (i.e., power to an electromagnet is off), where such varying in time of the at least one characteristic can be measured and optionally demodulated to convey information.


In some embodiments, the optical pattern 102 can convey such information as an identification code, a bar code, a Quick Response (QR) code, a logo, a number, a letter, or any other identifying symbol or symbols. The information can be used for identification and for other purposes comprising a serial number, a date of manufacturing, a location of manufacturing, etc. Such information could even identify, for example, devices used to create the optical pattern 102, an operator of the devices, the date and time of creation, or any other desired information.


The optical pattern 102 can include, for example, one or more registration marks common to all patterns that are used to determine a geometry of the optical pattern 102, for example the alignment and orientation of the optical pattern relative to a reference coordinate system. The registration marks can be used to determine, for example the relative location of illumination sources 106 or sensors 108.


As shown in FIG. 3, the one or more magnetic field sources 105 can be magnetically printed onto a surface 302 of a magnetizable material onto which a magnetically sensitive coating 104 can be applied. FIG. 4 shows a set of print heads 402 imprinting a magnetic pattern 404 formed by maxels on a magnetic structure 406, which could comprise surface 302 on solid or flexible magnetizable material. A magnetically sensitive coating 104 is then applied to the magnetic structure 406 to form an optical pattern 102 that corresponds to the printed maxel pattern 404 beneath the coating 104 on the flexible or solid magnetizable material. The optical sensing approach shown in FIG. 3 could be combined with magnetic sensing using magnetic sensors, for example using a Hall Effect sensor array.



FIG. 5 shows an embodiment where a magnetic structure 502 comprising a plurality of magnetic field sources 105 having magnetic attributes such as locations, sizes, polarities, field intensities, etc. are used to expose a complex magnetic field to a magnetically sensitive coating 104 on an component 504 during the curing of the magnetically sensitive material. The magnetic field sources 105 can be discreet magnets, electromagnets, electropermanent magnets, or maxels printed into one or more pieces of magnetizable material. Under this embodiment, the magnetic structure 502, which may be made of rigid/solid or flexible material, serves as a magnetic field template for imprinting on the magnetically sensitive coating 104 an optical pattern corresponding to the complex magnetic field. For example, the magnetically sensitive coating 104 can be applied on to a number of marked components 504 based on the magnetic template by bringing the complex magnetic field of the magnetic structure 502 into proximity with the component while the magnetically sensitive coating 104 is cured.



FIG. 6 shows using multiple print heads 402, electromagnets, or electropermanent magnets to produce a complex magnetic field that exposes a magnetically sensitive coating 104 during its curing process. The one or more magnetic field sources 105 can be brought into proximity to the magnetically sensitive coating 104 while the magnetically sensitive coating 104 is cured, fixed, or otherwise set. In this way, the physical attributes of the optical pattern 102 can be set in place while the magnetically sensitive field coating 104 is exposed to the one or more magnetic field sources 105, but can remain in place after the one or more magnetic field sources 105 is removed.


The one or more magnetic field sources 105 can have one or more magnetic attributes. Magnetic attributes may include position or print location, size (e.g., diameter, length, width), shape (e.g., round, square, hexagonal, etc.), polarity, field strength, print order, magnetization time, magnetization angle, or density and may involve overlapping of magnetic field sources 105 and/or magnetic field sources 105 separated by non-magnetized regions. The magnetic attributes of the one or more magnetic field sources can be varied in accordance with a code. A code may belong to a code family, for example Barker code family, Gold code family, Kasami code family, Costas code family or any other code family such as those disclosed in U.S. Pat. No. 8,179,219, issued May 15, 2012, which is incorporated herein by reference in its entirety. Alternatively, a code may be a pseudorandom code.


The sensed optical characteristic data can correspond to, for example, physical attributes of optical pattern 102 created on the magnetically sensitive coating 104, illumination attributes of one or more illumination sources 106, magnetic attributes of the one or more magnetic field sources 105, an orientation of at least one of the one or more illumination sources 106 or an orientation of at least one of the one or more sensors 108 relative to the reference coordinate.


As stated above, authentication of the optical pattern 102 can be determined or not based on a comparison of the optical characteristic data with the reference optical data. As an example, if sensed optical characteristic data for an optical pattern 102 matches reference optical data then the optical pattern 102 can be determined by processor 112 to be authentic. However, as another example, if optical characteristic data for another optical pattern also matches reference optical data, then the optical pattern 102 is treated as being counterfeited and the two optical patterns are treated as likely not being authentic.



FIG. 7 shows an embodiment of a process for authenticating an optical pattern 102 according to one aspect of the invention. At step 702, the optical pattern 102 can be illuminated using one or more illumination sources 106. At step 704, sensors 108 can generate optical characteristic data associated with optical characteristics sensed when the optical pattern 102 is illuminated by one or more illumination sources 106. At step 706, the sensed optical characteristic data can be compared to reference optical data in order to authenticate optical pattern 102. The reference optical data can be associated with a reference optical pattern created by exposing a reference magnetically sensitive coating to one or more reference magnetic field sources. The reference optical data can correspond to data generated by one or more reference sensors when the reference optical pattern is illuminated by one or more reference illumination sources.


From the foregoing it would be appreciated that the present invention can be used to create complex signatures based on optical, magnetic and orientation attributes that can for example be used to prevent purchases from unknown suppliers while creating an ability to identify the original source of components. The present invention can further be used to block the harvesting of components from assembled systems.


While particular embodiments of the invention have been described, it will be understood, however, that the invention is not limited thereto, since modifications may be made by those skilled in the art, particularly in light of the foregoing teachings.

Claims
  • 1. A system for authenticating, said system comprising: one or more illumination sources configured to illuminate an optical pattern of a magnetically sensitive material, said optical pattern having physical attributes resulting from said magnetically sensitive material having been exposed to a magnetic field during a curing process of said magnetically sensitive material, said magnetic field having been produced by a magnetizable material having been magnetically printed with one or more magnetic field sources;one or more sensors configured to generate sensed optical characteristic data when the optical pattern is illuminated;a memory configured to store a reference optical data associated with a reference optical pattern created by exposing a reference magnetically sensitive material to a reference magnetic field during a curing process of said reference magnetically sensitive material, said reference magnetic field having been produced by a reference magnetizable material having been printed with one or more reference magnetic field sources, said reference optical data corresponding to data generated by one or more reference sensors when the reference optical pattern is illuminated by one or more reference illumination sources; anda processor configured to access said memory and compare the reference optical data to the sensed optical characteristic data in order to authenticate the optical pattern.
  • 2. The system of claim 1, wherein the optical characteristic data corresponds to at least one of: 1) physical attributes of the optical pattern created on the magnetically sensitive material;2) illumination attributes of the one or more illumination sources;3) magnetic attributes of the one or more magnetic field sources4) an orientation of at least one of the one or more illumination sources; and5) an orientation of at least one of the one or more reference sensors.
  • 3. The system of claim 2, wherein the magnetic attributes of the one or more magnetic field sources comprise at least one of a position of at least one of the one or more magnetic field sources relative to a reference coordinate, a size of at least one of the one or more magnetic field sources, a shape of at least one of the one or more magnetic field sources, a polarity of at least one of the one or more magnetic field sources, a field strength of at least one of the one or more magnetic field sources.
  • 4. The system of claim 2, wherein the physical attributes of the optical pattern are associated with one or more lattice structures of magnetically sensitive particles suspended in the magnetically sensitive material.
  • 5. The system of claim 2, wherein the physical attributes of the optical pattern are associated with a dichroic characteristic of the magnetically sensitive material.
  • 6. The system of claim 1, wherein the magnetically sensitive material comprises at least one of a dichroic paint, a colloidal nanocrystal structure, or superparamagnetic photonic crystals.
  • 7. The system of claim 2, wherein the illumination attributes of the one or more illumination sources include at least one of an intensity, a propagation direction, a frequency, a wavelength, a polarization or an illumination angle.
  • 8. The system of claim 1, wherein the one or more sensors include at least one of a photodetector, a photocell, photodiode, a fiber optic, a pyrometer, a proximity detector, or an infrared sensor.
  • 9. The system of claim 1, wherein the optical pattern is created by at least one of curing the magnetically sensitive material, fixing the magnetically sensitive material, or setting the magnetically sensitive material.
  • 10. The system of claim 1, wherein the optical pattern is created by magnetically printing on a surface area of said magnetizable material and applying the magnetically sensitive material to the surface area, wherein the surface area comprises the one or more magnetic field sources.
  • 11. The system of claim 10, wherein the magnetic field sources are arranged in a pattern in accordance with a code.
  • 12. The system of claim 1, wherein the code is at least one of a Barker code, a Gold code, a Kasami code, a Costas code, or a pseudorandom code.
  • 13. The system of claim 10, wherein the surface area comprises at least one of overlapping magnetic field sources or magnetic field sources separated by non-magnetized regions.
  • 14. The system of claim 1, wherein the one or more magnetic field sources comprise at least one of electromagnets or electro permanent magnets.
  • 15. The system of claim 2, wherein at least one of the magnetic attributes of the one or more magnetic field sources is varied over time for demodulating information conveyed by the optical pattern.
  • 16. A method for authenticating, said method comprising: illuminating an optical pattern of a magnetically sensitive material using one or more illumination sources, said optical pattern having physical attributes resulting from said magnetically sensitive material having been exposed to a magnetic field during a curing process of said magnetically sensitive material, said magnetic field having been produced by a magnetizable material having been magnetically printed with one or more magnetic field sources;generating optical characteristic data associated with optical characteristics sensed when the optical pattern has been illuminated by one or more sensors; andcomparing the sensed optical characteristic data to reference optical data in order to authenticate the optical pattern, wherein the reference optical data is associated with a reference optical pattern created by exposing a reference magnetically sensitive material to a reference magnetic field during a curing process of said reference magnetically sensitive material, said reference magnetic field having been produced by a reference magnetizable material having been printed with one or more reference magnetic field sources, said reference optical data corresponding to data generated by one or more reference sensors when the reference optical pattern is illuminated by one or more reference illumination sources.
  • 17. The method of claim 16, wherein the optical characteristic data corresponds to at least one of: 1) physical attributes of the optical pattern created on the magnetically sensitive material;2) illumination attributes of the one or more illumination sources;3) magnetic attributes of the one or more magnetic field sources4) an orientation of at least one of the one or more illumination sources; and5) an orientation of at least one of the one or more reference sensors.
  • 18. The method of claim 17, wherein the magnetic attributes of the one or more magnetic field sources comprise at least one of a position of at least one of the one or more magnetic field sources relative to a reference coordinate, a size of at least one of the one or more magnetic field sources, a shape of at least one of the one or more magnetic field sources, a polarity of at least one of the one or more magnetic field sources, a field strength of at least one of the one or more magnetic field sources.
  • 19. The method of claim 17, wherein the physical attributes of the optical pattern are associated with one or more lattice structures of magnetically sensitive particles suspended in the magnetically sensitive material.
  • 20. The method of claim 17, wherein the physical attributes of the optical pattern are associated with a dichroic characteristic of the magnetically sensitive material.
  • 21. The method of claim 17, wherein the magnetically sensitive material comprises at least one of a dichroic paint, a colloidal nanocrystal structure, or superparamagnetic photonic crystals.
  • 22. The method of claim 17, wherein the illumination attributes of the one or more illumination sources include at least one of an intensity, a propagation direction, a frequency, a wavelength, a polarization or an illumination angle.
  • 23. The method of claim 17, wherein the optical pattern is created by at least one of curing the magnetically sensitive material, fixing the magnetically sensitive material, or setting the magnetically sensitive material.
  • 24. The method of claim 17, wherein the optical pattern is created by magnetically printing on a surface area of a magnetizable material and applying the magnetically sensitive material to the surface area, wherein the surface area comprises the one or more magnetic field sources.
  • 25. The method of claim 24, wherein the magnetic field sources are arranged in a pattern in accordance with a code.
  • 26. The method of claim 24, wherein the surface area comprises at least one of overlapping magnetic field sources or magnetic field sources separated by non-magnetized regions.
  • 27. The method of claim 16, wherein the one or more magnetic field sources comprise at least one of electromagnets or electro permanent magnets.
  • 28. The method of claim 17, wherein at least one of the magnetic attributes of the one or more magnetic field sources is varied over time for demodulating information conveyed by the optical pattern.
CLAIMING BENEFIT OF PRIOR FILED U.S. APPLICATIONS

This Non-provisional Patent Application is a continuation-in-part of U.S. application Ser. No. 13/240,335, filed Sep. 22, 2011, titled “MAGNETIC STRUCTURE PRODUCTION”, and claims the benefit of U.S. Provisional Patent Application 61/664,581, filed Jun. 26, 2012, titled “AUTHENTICATION SYSTEM AND METHOD”, which are incorporated by reference herein in their entirety.

US Referenced Citations (232)
Number Name Date Kind
493858 Edison Mar 1893 A
687292 Armstrong Nov 1901 A
996933 Lindquist Jul 1911 A
1171351 Neuland Feb 1916 A
1236234 Troje Aug 1917 A
2243555 Faus May 1941 A
2389298 Ellis Nov 1945 A
2438231 Schultz Mar 1948 A
2471634 Vennice May 1949 A
2570625 Zimmerman et al. Oct 1951 A
2722617 Cluwen et al. Nov 1955 A
2932545 Foley Apr 1960 A
3055999 Lucas Sep 1962 A
3102314 Alderfer Sep 1963 A
3208296 Baermann Sep 1965 A
3238399 Johanees et al. Mar 1966 A
3288511 Tavano Nov 1966 A
3301091 Reese Jan 1967 A
3382386 Schlaeppi May 1968 A
3408104 Raynes Oct 1968 A
3468576 Beyer et al. Sep 1969 A
3474366 Barney Oct 1969 A
3521216 Tolegian Jul 1970 A
3645650 Laing Feb 1972 A
3668670 Andersen Jun 1972 A
3684992 Huguet et al. Aug 1972 A
3696258 Anderson et al. Oct 1972 A
3790197 Parker Feb 1974 A
3791309 Baermann Feb 1974 A
3802034 Bookless Apr 1974 A
3803433 Ingenito Apr 1974 A
3808577 Mathauser Apr 1974 A
3845430 Petkewicz et al. Oct 1974 A
3893059 Nowak Jul 1975 A
4079558 Gorham Mar 1978 A
4117431 Eicher Sep 1978 A
4129846 Yablochnikov Dec 1978 A
4209905 Gillings Jul 1980 A
4296394 Ragheb Oct 1981 A
4352960 Dormer et al. Oct 1982 A
4355236 Holsinger Oct 1982 A
4399595 Yoon et al. Aug 1983 A
4416127 Gomez-Olea Naveda Nov 1983 A
4453294 Morita Jun 1984 A
4535278 Asakawa Aug 1985 A
4547756 Miller et al. Oct 1985 A
4629131 Podell Dec 1986 A
4645283 MacDonald et al. Feb 1987 A
4680494 Grosjean Jul 1987 A
381968 Tesla May 1988 A
4764743 Leupold et al. Aug 1988 A
4837539 Baker Jun 1989 A
4849749 Fukamachi et al. Jul 1989 A
4862128 Leupold Aug 1989 A
H000693 Leupold Oct 1989 H
4893103 Leupold Jan 1990 A
4912727 Schubert Mar 1990 A
4941236 Sherman et al. Jul 1990 A
4956625 Cardone et al. Sep 1990 A
4993950 Mensor, Jr. Feb 1991 A
4994778 Leupold Feb 1991 A
4996457 Hawsey et al. Feb 1991 A
5013949 Mabe, Jr. May 1991 A
5020625 Yamauchi et al. Jun 1991 A
5050276 Pemberton Sep 1991 A
5062855 Rincoe Nov 1991 A
5123843 Van der Zel et al. Jun 1992 A
5179307 Porter Jan 1993 A
5213307 Perrillat-Amede May 1993 A
5302929 Kovacs Apr 1994 A
5309680 Kiel May 1994 A
5345207 Gebele Sep 1994 A
5367891 Furuyama Nov 1994 A
5383049 Carr Jan 1995 A
5394132 Poil Feb 1995 A
5399933 Tsai Mar 1995 A
5425763 Stemmann Jun 1995 A
5440997 Crowley Aug 1995 A
5461386 Knebelkamp Oct 1995 A
5492572 Schroeder et al. Feb 1996 A
5495221 Post Feb 1996 A
5512732 Yagnik et al. Apr 1996 A
5570084 Ritter et al. Oct 1996 A
5582522 Johnson Dec 1996 A
5604960 Good Feb 1997 A
5631093 Perry et al. May 1997 A
5631618 Trumper et al. May 1997 A
5633555 Ackermann et al. May 1997 A
5635889 Stelter Jun 1997 A
5637972 Randall et al. Jun 1997 A
5730155 Allen Mar 1998 A
5742036 Schramm et al. Apr 1998 A
5759054 Spadafore Jun 1998 A
5788493 Tanaka et al. Aug 1998 A
5838304 Hall Nov 1998 A
5852393 Reznik et al. Dec 1998 A
5935155 Humayun et al. Aug 1999 A
5956778 Godoy Sep 1999 A
5983406 Meyerrose Nov 1999 A
6039759 Carpentier et al. Mar 2000 A
6047456 Yao et al. Apr 2000 A
6072251 Markle Jun 2000 A
6074420 Eaton Jun 2000 A
6115849 Meyerrose Sep 2000 A
6118271 Ely et al. Sep 2000 A
6120283 Cousins Sep 2000 A
6142779 Siegel et al. Nov 2000 A
6170131 Shin Jan 2001 B1
6187041 Garonzik Feb 2001 B1
6205012 Lear Mar 2001 B1
6210033 Karkos, Jr. et al. Apr 2001 B1
6224374 Mayo May 2001 B1
6234833 Tsai et al. May 2001 B1
6241069 Mazur et al. Jun 2001 B1
6273918 Yuhasz et al. Aug 2001 B1
6275778 Shimada et al. Aug 2001 B1
6285097 Hazelton et al. Sep 2001 B1
6387096 Hyde, Jr. May 2002 B1
6457179 Prendergast Oct 2002 B1
6467326 Garrigus Oct 2002 B1
6535092 Hurley et al. Mar 2003 B1
6540515 Tanaka Apr 2003 B1
6599321 Hyde, Jr. Jul 2003 B2
6607304 Lake et al. Aug 2003 B1
6652278 Honkura et al. Nov 2003 B2
6653919 Shih-Chung et al. Nov 2003 B2
6720698 Galbraith Apr 2004 B2
6747537 Mosteller Jun 2004 B1
6842332 Rubenson et al. Jan 2005 B1
6847134 Frissen et al. Jan 2005 B2
6850139 Dettmann et al. Feb 2005 B1
6862748 Prendergast Mar 2005 B2
6864773 Perrin Mar 2005 B2
6913471 Smith Jul 2005 B2
6927657 Wu Aug 2005 B1
6954968 Sitbon Oct 2005 B1
6971147 Halstead Dec 2005 B2
7016492 Pan et al. Mar 2006 B2
7031160 Tillotson Apr 2006 B2
7033400 Currier Apr 2006 B2
7038565 Chell May 2006 B1
7065860 Aoki et al. Jun 2006 B2
7066739 McLeish Jun 2006 B2
7066778 Kretzschmar Jun 2006 B2
7101374 Hyde, Jr. Sep 2006 B2
7137727 Joseph et al. Nov 2006 B2
7186265 Sharkawy et al. Mar 2007 B2
7224252 Meadow, Jr. et al. May 2007 B2
7264479 Lee Sep 2007 B1
7276025 Roberts et al. Oct 2007 B2
7339790 Baker et al. Mar 2008 B2
7362018 Kulogo et al. Apr 2008 B1
7381181 Lau et al. Jun 2008 B2
7402175 Azar Jul 2008 B2
7438726 Erb Oct 2008 B2
7444683 Prendergast et al. Nov 2008 B2
7453341 Hildenbrand Nov 2008 B1
7498914 Miyashita et al. Mar 2009 B2
7583500 Ligtenberg et al. Sep 2009 B2
7715890 Kim et al. May 2010 B2
7775567 Ligtenberg et al. Aug 2010 B2
7796002 Hashimoto et al. Sep 2010 B2
7808349 Fullerton et al. Oct 2010 B2
7812697 Fullerton et al. Oct 2010 B2
7817004 Fullerton et al. Oct 2010 B2
7832897 Ku Nov 2010 B2
7837032 Smeltzer Nov 2010 B2
7839246 Fullerton et al. Nov 2010 B2
7843297 Fullerton et al. Nov 2010 B2
7868721 Fullerton et al. Jan 2011 B2
7874856 Schriefer et al. Jan 2011 B1
7889037 Cho Feb 2011 B2
7903397 McCoy Mar 2011 B2
7905626 Shantha et al. Mar 2011 B2
8002585 Zhou Aug 2011 B2
8099964 Saito et al. Jan 2012 B2
20020125977 VanZoest Sep 2002 A1
20030136837 Amon et al. Jul 2003 A1
20030170976 Molla et al. Sep 2003 A1
20030179880 Pan et al. Sep 2003 A1
20030187510 Hyde Oct 2003 A1
20040003487 Reiter Jan 2004 A1
20040155748 Steingroever Aug 2004 A1
20040244636 Meadow et al. Dec 2004 A1
20040251759 Hirzel Dec 2004 A1
20050102802 Sitbon et al. May 2005 A1
20050196484 Khoshnevis Sep 2005 A1
20050231046 Aoshima Oct 2005 A1
20050240263 Fogarty et al. Oct 2005 A1
20050263549 Scheiner Dec 2005 A1
20050283839 Cowburn Dec 2005 A1
20060066428 McCarthy et al. Mar 2006 A1
20060189259 Park et al. Aug 2006 A1
20060198047 Xue et al. Sep 2006 A1
20060198998 Raksha et al. Sep 2006 A1
20060214756 Elliott et al. Sep 2006 A1
20060290451 Prendergast et al. Dec 2006 A1
20060293762 Schulman et al. Dec 2006 A1
20070072476 Milan Mar 2007 A1
20070075594 Sadler Apr 2007 A1
20070103266 Wang et al. May 2007 A1
20070138806 Ligtenberg et al. Jun 2007 A1
20070255400 Parravicini et al. Nov 2007 A1
20080119250 Cho et al. May 2008 A1
20080139261 Cho et al. Jun 2008 A1
20080174392 Cho Jul 2008 A1
20080181804 Tanigawa et al. Jul 2008 A1
20080186683 Ligtenberg et al. Aug 2008 A1
20080218299 Arnold Sep 2008 A1
20080224806 Ogden et al. Sep 2008 A1
20080272868 Prendergast et al. Nov 2008 A1
20080282517 Claro Nov 2008 A1
20090021333 Fiedler Jan 2009 A1
20090209173 Arledge et al. Aug 2009 A1
20090250576 Fullerton et al. Oct 2009 A1
20090251256 Fullerton et al. Oct 2009 A1
20090254196 Cox et al. Oct 2009 A1
20090278642 Fullerton et al. Nov 2009 A1
20090289090 Fullerton et al. Nov 2009 A1
20090289749 Fullerton et al. Nov 2009 A1
20090292371 Fullerton et al. Nov 2009 A1
20100033280 Bird et al. Feb 2010 A1
20100126857 Polwart et al. May 2010 A1
20100167576 Zhou Jul 2010 A1
20110026203 Ligtenberg et al. Feb 2011 A1
20110085157 Bloss et al. Apr 2011 A1
20110101088 Marguerettaz et al. May 2011 A1
20110210636 Kuhlmann-Wilsdorf Sep 2011 A1
20110234344 Fullerton et al. Sep 2011 A1
20110248806 Michael Oct 2011 A1
20110279206 Fullerton et al. Nov 2011 A1
20120064309 Kwon et al. Mar 2012 A1
Foreign Referenced Citations (16)
Number Date Country
1615573 May 2005 CN
2938782 Apr 1981 DE
0 345 554 Dec 1989 EP
0 545 737 Jun 1993 EP
823395 Jan 1938 FR
1 495 677 Dec 1977 GB
S57-055908 Apr 1982 JP
S57-189423 Dec 1982 JP
60-091011 Jun 1985 JP
60-221238 Nov 1985 JP
2001-328483 Nov 2001 JP
05-038123 Oct 2012 JP
WO-0231945 Apr 2002 WO
WO-2007081830 Jul 2007 WO
WO-2009124030 Oct 2009 WO
WO-2010141324 Dec 2010 WO
Non-Patent Literature Citations (67)
Entry
Atallah, K., Calverley, S.D., D. Howe, 2004, “Design, analysis and realisation of a high-performance magnetic gear”, IEE Proc.-Electr. Power Appl., vol. 151, No. 2, Mar. 2004.
Atallah, K., Howe, D. 2001, “A Novel High-Performance Magnetic Gear”, IEEE Transactions on Magnetics, vol. 37, No. 4, Jul. 2001, p. 2844-2846.
Bassani, R., 2007, “Dynamic Stability of Passive Magnetic Bearings”, Nonlinear Dynamics, V. 50, p. 161-68.
BNS 33 Range, Magnetic safety sensors, Rectangular design, referenced Jun. 2010 http://www.farnell.com/datasheets/36449.pdf, 3 pages, date unknown.
Boston Gear 221S-4, One-stage Helical Gearbox, http://www.bostongear.com/pdf/product—sections/200—series—helical.pdf.
Charpentier et al., 2001, “Mechanical Behavior of Axially Magnetized Permanent-Magnet Gears”, IEEE Transactions on Magnetics, vol. 37, No. 3, May 2001, p. 1110-17.
Chau et al., 2008, “Transient Analysis of Coaxial Magnetic Gears Using Finite Element Comodeling”, Journal of Applied Physics, vol. 103.
Choi et al., 2010, “Optimization of Magnetization Directions in a 3-D Magnetic Structure”, IEEE Transactions on Magnetics, vol. 46, No. 6, Jun. 2010, p. 1603-06.
Correlated Magnetics Research, 2009, Online Video, “Innovative Magnetics Research in Huntsville”, http://www.youtube.com/watch?v=m4m81JjZCJo.
Correlated Magnetics Research, 2009, Online Video, “Non-Contact Attachment Utilizing Permanent Magnets”, http://www.youtube.com/watch?v=3xUm25CNNgQ.
Correlated Magnetics Research, 2010, Company Website, http://www.correlatedmagnetics.com.
Furlani 1996, “Analysis and optimization of synchronous magnetic couplings”, J. Appl. Phys., vol. 79, No. 8, p. 4692.
Furlani 2001, “Permanent Magnet and Electromechanical Devices”, Academic Press, San Diego.
Furlani, E.P., 2000, “Analytical analysis of magnetically coupled multipole cylinders”, J. Phys. D: Appl. Phys., vol. 33, No. 1, p. 28-33.
General Electric DP 2.7 Wind Turbine Gearbox, http://www.gedrivetrain.com/insideDP27.cfm, referenced Jun. 2010.
Ha et al., 2002, “Design and Characteristic Analysis of Non-Contact Magnet Gear for Conveyor by Using Permanent Magnet”, Conf. Record of the 2002 IEEE Industry Applications Conference, p. 1922-27.
Huang et al., 2008, “Development of a Magnetic Planetary Gearbox”, IEEE Transactions on Magnetics, vol. 44, No. 3, p. 403-12.
International Search Report and Written Opinion dated Jun. 1, 2009, directed to counterpart application No. PCT/US2009/002027. (10 pages).
International Search Report and Written Opinion of the International Searching Authority issued in Application No. PCT/US12/61938 dated Feb. 26, 2013.
International Search Report and Written Opinion of the International Searching Authority issued in Application No. PCT/US2013/028095 dated May 13, 2013.
International Search Report and Written Opinion, dated Apr. 8, 2011 issued in related International Application No. PCT/US2010/049410.
International Search Report and Written Opinion, dated Aug. 18, 2010, issued in related International Application No. PCT/US2010/036443.
International Search Report and Written Opinion, dated Jul. 13, 2010, issued in related International Application No. PCT/US2010/021612.
International Search Report and Written Opinion, dated May 14, 2009, issued in related International Application No. PCT/US2009/038925.
Jian et al., “Comparison of Coaxial Magnetic Gears With Different Topologies”, IEEE Transactions on Magnetics, vol. 45, No. 10, Oct. 2009, p. 4526-29.
Jian, L., Chau, K.T., 2010, “A Coaxial Magnetic Gear With Halbach Permanent-Magnet Arrays”, IEEE Transactions on Energy Conversion, vol. 25, No. 2, Jun. 2010, p. 319-28.
Jørgensen et al., “The Cycloid Permanent Magnetic Gear”, IEEE Transactions on Industry Applications, vol. 44, No. 6, Nov./Dec. 2008, p. 1659-65.
Jørgensen et al., 2005, “Two dimensional model of a permanent magnet spur gear”, Conf. Record of the 2005 IEEE Industry Applications Conference, p. 261-5.
Kim, “A future cost trends of magnetizer systems in Korea”, Industrial Electronics, Control, and Instrumentation, 1996, vol. 2, Aug. 5, 1996, pp. 991-996.
Krasil'nikov et al., 2008, “Calculation of the Shear Force of Highly Coercive Permanent Magnets in Magnetic Systems With Consideration of Affiliation to a Certain Group Based on Residual Induction”, Chemical and Petroleum Engineering, vol. 44, Nos. 7-8, p. 362-65.
Krasil'nikov et al., 2009, “Torque Determination for a Cylindrical Magnetic Clutch”, Russian Engineering Research, vol. 29, No. 6, pp. 544-547.
Liu et al., 2009, “Design and Analysis of Interior-magnet Outer-rotor Concentric Magnetic Gears”, Journal of Applied Physics, vol. 105.
Lorimer, W., Hartman, A., 1997, “Magnetization Pattern for Increased Coupling in Magnetic Clutches”, IEEE Transactions on Magnetics, vol. 33, No. 5, Sep. 1997.
Mezani, S., Atallah, K., Howe, D. , 2006, “A high-performance axial-field magnetic gear”, Journal of Applied Physics vol. 99.
Mi, “Magnetreater/Charger Model 580” Magnetic Instruments Inc. Product specification, May 4, 2009, http://web.archive.org/web/20090504064511/http://www.maginst.com/specifications/580—magnetreater.htm, 2 pages.
Neugart PLE-160, One-Stage Planetary Gearbox, http://www.neugartusa.com/ple—160—gb.pdf, referenced Jun. 2010.
Series BNS, Compatible Series AES Safety Controllers, http://www.schmersalusa.com/safety—controllers/drawings/aes.pdf, pp. 159-175, date unknown.
Series BNS-B20, Coded-Magnet Sensorr Safety Door Handle, http://www.schmersalusa.com/catalog—pdfs/BNS—B20.pdf, 2pages, date unknown.
Series BNS333, Coded-Magnet Sensors with Integral Safety Control Module, http://www.schmersalusa.com/machine—guarding/coded—magnet/drawings/bns333.pdf, 2 pages, date unknown.
Tsurumoto 1992, “Basic Analysis on Transmitted Force of Magnetic Gear Using Permanent Magnet”, IEEE Translation Journal on Magnetics in Japan, Vo 7, No. 6, Jun. 1992, p. 447-52.
United States Office Action issued in U.S. Appl. No. 13/104,393 dated Apr. 4, 2013.
United States Office Action issued in U.S. Appl. No. 13/236,413 dated Jun. 6, 2013.
United States Office Action issued in U.S. Appl. No. 13/246,584 dated May 16, 2013.
United States Office Action issued in U.S. Appl. No. 13/374,074 dated Feb. 21, 2013.
United States Office Action issued in U.S. Appl. No. 13/430,219 dated Aug. 13, 2013.
United States Office Action issued in U.S. Appl. No. 13/470,994 dated Aug. 8, 2013.
United States Office Action issued in U.S. Appl. No. 13/470,994 dated Jan. 7, 2013.
United States Office Action issued in U.S. Appl. No. 13/529,520 dated Sep. 28, 2012.
United States Office Action issued in U.S. Appl. No. 13/530,893 dated Mar. 22, 2013.
United States Office Action issued in U.S. Appl. No. 13/855,519 dated Jul. 17, 2013.
United States Office Action issued in U.S. Appl. No. 12/206,270, dated Aug. 26, 2011.
United States Office Action issued in U.S. Appl. No. 12/476,952, dated Feb. 2, 2011.
United States Office Action, issued in U.S. Appl. No. 12/206,270 dated Mar. 12, 2012.
United States Office Action issued in U.S. Appl. No. 13/371,280 dated Mar. 9, 2012.
United States Office Action issued in U.S. Appl. No. 12/476,952 dated Oct. 12, 2011.
Wikipedia, “Barker Code”, Web article, last modified Aug. 2, 2008, 2 pages.
Wikipedia, “Bitter Electromagnet”, Web article, last modified Aug. 2011, 1 page.
Wikipedia, “Costas Array”, Web article, last modified Oct. 7, 2008, 4 pages.
Wikipedia, “Gold Code”, Web article, last modified Jul. 27, 2008, 1 page.
Wikipedia, “Golomb Ruler”, Web article, last modified Nov. 4, 2008, 3 pages.
Wikipedia, “Kasami Code”, Web article, last modified Jun. 11, 2008, 1 page.
Wikipedia, “Linear feedback shift register”, Web article, last modified Nov. 11, 2008, 6 pages.
Wikipedia, “Walsh Code”, Web article, last modified Sep. 17, 2008, 2 pages.
International Search Report and Written Opinion of the International Searching Authority issued in Application No. PCT/US2013/047986 dated Nov. 21, 2013.
United States Office Action issued in U.S. Appl. No. 13/246,584 dated Oct. 15, 2013.
United States Office Action issued in U.S. Appl. No. 13/470,994 dated Nov. 8, 2013.
United States Office Action issued in U.S. Appl. No. 13/530,893 dated Oct. 29, 2013.
Related Publications (1)
Number Date Country
20130284807 A1 Oct 2013 US
Provisional Applications (1)
Number Date Country
61664581 Jun 2012 US
Continuation in Parts (1)
Number Date Country
Parent 13240335 Sep 2011 US
Child 13928126 US