The present invention relates generally to transducers and circuits, and, in particular embodiments, to a system and method for automatic calibration of a transducer.
Transducers convert signals from one domain to another and are often used in sensors. A common sensor with a transducer that is seen in everyday life is a microphone, a sensor that converts sound waves to electrical signals.
Microelectromechanical system (MEMS) based sensors include a family of transducers produced using micromachining techniques. MEMS, such as a MEMS microphone, gather information from the environment through measuring physical phenomena, and electronics attached to the MEMS then process the signal information derived from the sensors. MEMS devices may be manufactured using micromachining fabrication techniques similar to those used for integrated circuits.
Audio microphones are commonly used in a variety of consumer applications such as cellular telephones, digital audio recorders, personal computers and teleconferencing systems. In a MEMS microphone, a pressure sensitive diaphragm is disposed directly onto an integrated circuit. As such, the microphone is contained on a single integrated circuit rather than being fabricated from individual discrete parts. The monolithic nature of the MEMS microphone produces a higher yielding, lower cost microphone.
MEMS devices may be formed as oscillators, resonators, accelerometers, gyroscopes, pressure sensors, microphones, micro-mirrors, and other devices, and often use capacitive sensing techniques for measuring the physical phenomenon being measured. In such applications, the capacitance change of the capacitive sensor is converted into a usable voltage using interface circuits. However, the fabrication of MEMS devices introduces variations in the physical size and shape, thereby causing variations in the characteristic performance of completed MEMS devices. For example, MEMS microphones fabricated in the same process with the same design may have some variation in sensitivity.
In accordance with an embodiment, an interface circuit includes a variable voltage bias generator coupled to a transducer, and a measurement circuit coupled to an output of the transducer. The measurement circuit is configured to measure an output amplitude of the transducer. The interface circuit further includes a calibration controller coupled to the bias generator and the measurement circuit, and is configured to set a sensitivity of the transducer and interface circuit during an auto-calibration sequence.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawing, in which:
Corresponding numerals and symbols in the different figures generally refer to corresponding parts unless otherwise indicated. The figures are drawn to clearly illustrate the relevant aspects of the embodiments and are not necessarily drawn to scale.
The making and using of various embodiments are discussed in detail below. It should be appreciated, however, that the various embodiments described herein are applicable in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use various embodiments, and should not be construed in a limited scope.
Description is made with respect to various embodiments in a specific context, namely microphone transducers, and more particularly, MEMS microphones. Some of the various embodiments described herein include MEMS transducer systems, MEMS microphone systems, interface circuits for transducer and MEMS transducer systems, and automatic methods of calibrating MEMS transducer systems. In other embodiments, aspects may also be applied to other applications involving any type of sensor or transducer converting a physical signal to another domain and calibrating such a sensor or transducer and interface electronics according to any fashion as known in the art.
Fabricated MEMS devices exhibit variation in performance characteristics. For example, MEMS microphones exhibit different sensitivity values even among MEMS microphones fabricated on a same wafer. According to various embodiments described herein, an interface circuit is presented capable of performing an auto-calibration procedure that determines bias voltages and amplifier gains in order to set overall transducer system sensitivity values within a target range for MEMS devices.
According to various embodiments, the auto-calibration procedure includes applying an audio signal of known amplitude to the system and applying an auto calibration start condition. During the auto calibration procedure, a bias voltage applied to the MEMS and/or a gain of a variable gain amplifier is adjusted until the overall sensitivity of the system approaches a target sensitivity. In some embodiments, this auto-calibration procedure, once started, occurs on-chip (e.g. within the interface circuit and the MEMS microphone).
According to an embodiment, the sensitivity of MEMS microphone 120 is affected by fabrication variations such that even MEMS microphones fabricated using a same process, on a same wafer, with a same design may have different sensitivity values. In various embodiments, the sensitivity of MEMS microphone 120 is dependent on a bias voltage applied across terminals 126 and 128. An overall sensitivity of the transducer system 100, including the sensitivity of MEMS microphone 120 and a sensitivity of interface circuit 110, may also be influenced by a gain G of amplifier 104, which may be coupled to terminal 126. Conventionally, a calibration procedure is applied to a MEMS microphone during manufacturing and an interface circuit is either programmed or selected from a limited number of variations to set the bias voltage and gain in order to set the sensitivity of the complete transducer system.
In an embodiment, interface circuit 110 includes a calibration controller 102 capable of setting a bias voltage supplied to MEMS microphone 120 via charge pump 108 and capable of setting a gain G of amplifier 104. In various embodiments, charge pump 108 is a variable voltage charge pump and amplifier 104 is a variable gain amplifier. In some embodiments, amplifier 104 may be implemented, for example, as described in U.S. patent application Ser. No. 13/665,117, filed on Oct. 31, 2012 and entitled “System and Method for Capacitive Signal Source Amplifier,” which application is incorporated herein by reference in its entirety. Amplifier 104 may receive input signals from MEMS microphone 120 via terminal 126 which is coupled to backplate 122. Charge pump 108 may provide a variable bias voltage to MEMS microphone 120 via terminal 128 which is coupled to membrane 124. Charge pump 108 may be implemented, for example, as described in U.S. patent application Ser. No. 13/217,890, filed on Aug. 25, 2011 and entitled “System and Method for Low Distortion Capacitive Signal Source Amplifier,” which application is incorporated herein by reference in its entirety. According to an alternative embodiment, backplate 122 may be coupled to terminal 128 and membrane 124 may be coupled to terminal 126.
According to the embodiment shown, interface circuit 110 includes a bias voltage source 112 coupled to terminal 126 via a resistive element 116. Amplifier 104 is coupled to a measurement circuit 106. In the embodiment shown, measurement circuit 106 is implemented as an analog to digital converter (ADC) 106 and is coupled to output 130 and calibration controller 102. As shown, calibration controller 102 receives a clock signal 132, detects a control signal 134, and is coupled to fuse 114. In various embodiments, fuse 114 may include a non-transitory memory that is set to prevent further calibration after an initial calibration. In some embodiments, fuse 114 may be implemented as a physical fuse, flash memory, or any other non-volatile physical memory.
According to various embodiments, calibration controller 102 detects a calibration procedure start condition, ramps the bias voltage of charge pump 108 until pull-in is detected, sets the bias voltage of charge pump 108 based on a detected pull-in voltage, measures an output signal from ADC 106, and adjusts the gain G of amplifier 104 if necessary. More detailed descriptions of embodiment calibration procedures are described below with reference to the remaining figures.
In some embodiments, calibration controller 102 may include a state machine with digital control logic. In other embodiments, calibration controller 102 may be implemented as a microcontroller. In further embodiments, calibration controller 102 may be implemented as an analog control circuit. Interface circuit 110 may be a fully custom or semi-custom integrated circuit (IC). In various embodiments, interface circuit 110 may be packaged separately or be included as part of a system, such as a system on a chip (SoC). In some embodiments, MEMS microphone and interface circuit 110 may be fabricated and diced on a same semiconductor die. Those skilled in the art will easily imagine numerous other implementations and configurations and such variations are within the scope of the embodiments described herein.
According to various embodiments, features of sensitivity waveform 210 may be used in a test to determine pull-in voltage 220 for a MEMS microphone, such as MEMS microphone 120 for example. In some embodiments, a constant known input sound wave is provided to MEMS microphone 120 as the bias voltage applied to one of the plates of MEMS microphone 120 is increased by charge pump 108. According to various embodiments, calibration controller 102 monitors an electrical output signal from ADC 106 as the bias voltage is increased. The on-chip control block detects a drop in the electrical output signal level when pull-in occurs and may store the value of pull-in voltage 220. According to various embodiments, these steps may be performed partially or fully by interface circuit 110 with numerous embodiments as described herein.
In a specific embodiment, the test tone in step 314 may have a 1 kHz frequency and 94 dB sound pressure level (SPL), generally equivalent to about 1 Pascal. In some embodiments, setting the control signal in step 318 may include asserting the control signal for a certain period of time. In various embodiments, the control signal (such as control signal 134) may be active high or active low and may be a left-right (LR) indicator control input used during normal operation of a stereo system to indicate if the microphone signal is routed to a left or right speaker. In such embodiments, the LR input may be set low during start up for step 318 to indicate a calibration procedure is being performed.
According to various embodiments, setting the control signal in step 318 may also include setting an external clock signal to a special frequency and comparing to an internal oscillator. Some embodiments may include setting the LR input according to a predetermined pattern. Further embodiments may include pulling an output pin high or low externally. In some embodiments, the supply voltage applied to the interface circuit may be modified during a start condition. Setting the control signal may include applying a test tone. Additionally, any combination of such example control signals is also possible as a part of setting the control signal in step 318.
In some embodiments, when the MEMS device and interface circuit are powered on in step 316, a calibration state machine begins operation in step 322 of internal procedure 320. Internal procedure 320 then checks for a calibration timeout in step 324. If the calibration has not timed out, a calibration start condition is checked in step 326. In some embodiments, a start condition may include a control signal (such as control signal 134) being set to a specific value and/or a specific tone being supplied to the MEMS device. In a specific embodiment, a LR-input is set low and a 1 kHz and 94 dB SPL signal is detected by a MEMS microphone during a start condition. According to various embodiments, a calibration memory bit or a fuse bit, as indicated by fuse 114 in
According to various embodiments, if a start condition is detected in step 326, a bias voltage is increased or ramped in step 328 and a sensitivity drop is checked for in step 330 as described with reference to
According to the embodiment shown, if pull-in is detected, a determined pull-in voltage is used to calculate a fixed bias voltage in step 332 to apply to the MEMS device in step 334 (such as setting charge pump 108 to apply a fixed bias voltage to membrane 124). The sensitivity of the MEMS device and interface circuit may be tested and compared to a target sensitivity range in step 336. In some embodiments, if the sensitivity is not within the target sensitivity range, an amplifier gain is adjusted in step 338 and the sensitivity is may be tested and compared to the target sensitivity range a second time in step 340. According to various embodiments, if the sensitivity is within the target sensitivity range in either step 336 or step 340, a sealing step 342 may be performed which prevents any calibration procedure from being performed thereafter. Step 342 may include setting a fuse that may be coupled to the calibration state machine. In other embodiments, step 342 may include setting a value in a non-transitory memory such as flash memory.
According to various embodiments, the final steps of internal procedure 320 include switching off the calibration state machine in step 342 and entering normal MEMS device and interface circuit operation in step 344. In some embodiments, the calibration state machine may be calibration controller 102 or may be included in calibration controller 102. In an alternative embodiment where interface circuit 110 provides an analog output 130, step 344 may also shut off power to a measurement circuit (such as an ADC in some embodiments) coupled to the calibration state machine. The steps described as a part of calibration procedure 300 may be performed in various different orders and may be modified to include additional steps or fewer steps. Various combinations, orders, and modifications are within the scope of the embodiments described herein.
According to various embodiments, digital control logic 402 may contain a state machine having state registers, next state logic, and output logic. Digital control logic 402 may be implemented as a synchronous state machine clocked by clock signal 416. In various embodiments, digital control logic receives a control signal 418 which may correspond to start condition detection. In a specific embodiment, control signal 418 may be a left-right control signal for a microphone system. Digital control logic 402 also receives a calibration bit 420 that may originate from a calibration memory bit or a fuse bit, such as fuse 114 in
In the embodiment shown, digital control logic 402 is coupled to threshold comparator 404 which provides information related to an output level of a MEMS device to digital control block 402. Threshold comparator 404 receives information about the output level from amplitude input 410. In an embodiment, amplitude input 410 may come from a measurement circuit such as ADC 106 in
According to the embodiment shown, digital control logic 402 is coupled to bias voltage register 406 and gain register 408 and may be configured to perform calibration procedure 300 by implementing the calibration state machine. In various embodiments, digital control logic 402 may be configured to determine a sensitivity and pull-in voltage of a MEMS device (such as MEMS microphone 120) based on information provided by threshold comparator 404 and set a bias voltage value and/or a gain value with bias voltage register 406 and gain register 408, respectively. The set bias voltage value and gain value may be provided to a variable voltage bias generator and a variable gain amplifier via outputs 412 and 414, respectively.
In a specific example, bias voltage register 406 provides a bias voltage value to charge pump 108 in
According to various embodiments, steps 720, 730, and 740 may be performed by the interface circuit and, specifically, by a calibration state machine within the interface circuit. Step 720 includes detecting a start condition. In various embodiments, the start condition may include checking a write protect memory, checking a timeout after reset, checking a control signal, and/or detecting a specific tone (e.g. a 1 kHz tone). The control signals and start condition may include any of the elements described with reference to the preceding figures. In particular, the embodiments described with reference to steps 318 and 326 in
According to various embodiments, an interface circuit includes a variable voltage bias generator configured to be coupled to a transducer, a measurement circuit configured to be coupled to an output of the transducer, and a calibration controller coupled to the bias generator and the measurement circuit. The measurement circuit is configured to measure an output amplitude of the transducer, and the calibration controller is configured to set a sensitivity of the transducer and interface circuit during an auto-calibration sequence.
In some embodiments, the interface circuit includes the transducer. The calibration controller may be configured to detect a calibration sequence start condition, determine a pull-in voltage of the transducer, determine a fixed bias voltage based on the pull-in voltage, and supply the fixed bias voltage to the transducer. The interface circuit may also include an amplifier configured to be coupled to the transducer, the calibration controller, and the measurement circuit. In some embodiments, the measurement circuit includes an analog to digital converter (ADC). The calibration controller may also be configured to determine a sensitivity of the transducer and interface circuit, and adjust the amplifier gain if the sensitivity is not within a target sensitivity range.
In some embodiments, the transducer includes a first capacitive plate coupled to the amplifier and a second capacitive plate coupled to the bias generator. The interface circuit may also include a bias voltage source coupled to the first capacitive plate and the amplifier. According to various embodiments, the bias generator, the measurement circuit, and the calibration controller are all deposed on a same integrated circuit. The calibration controller may include digital control logic coupled to the bias generator. The calibration controller may further include a bias voltage memory coupled to the digital control logic and a threshold comparator coupled to the digital control logic and the measurement circuit. The interface circuit may also include a write protect fuse that is configured to disable the auto-calibration sequence after a first auto-calibration sequence is performed.
According to various embodiments, a method of calibrating a transducer includes supplying a reference input signal for calibration to the transducer and performing an auto-calibration procedure. The auto-calibration procedure may include detecting a calibration procedure start condition, determining a fixed bias voltage, and supplying the fixed bias voltage to the transducer. The method may also include attaching an auto-calibrating interface circuit to the transducer. In some embodiments, determining a fixed bias voltage includes determining a pull-in voltage of the transducer and calculating a fixed bias voltage based on the pull-in voltage.
According to further embodiments, the method may also include determining a sensitivity of the transducer a first time and adjusting an amplifier gain if the sensitivity is not within a target sensitivity range. The method may include determining the sensitivity of the transducer a second time and preventing further calibration when the sensitivity calculated the second time is within a target sensitivity range. The method may include indicating a failed calibration when the sensitivity calculated the second time is not within a target sensitivity range.
In some embodiments, detecting a calibration procedure start condition includes checking a calibration memory bit and detecting a first control signal value. Detecting a calibration procedure start condition may also include checking a calibration memory bit and detecting the reference input signal. The reference input signal may include a tone with a first frequency and a first sound pressure level.
In various embodiments, the method includes alternatingly increasing a bias voltage supplied to the transducer and measuring an output signal produced by supplying the reference input signal, detecting a first threshold at which the measured output signal decreases, and calculating a fixed bias voltage based on the first threshold. The method may also include determining a sensitivity of the transducer a first time, adjusting an amplifier gain if the sensitivity is not within a target sensitivity range, determining the sensitivity of the transducer a second time, preventing further calibration if the sensitivity calculated the second time is within a target sensitivity range, and indicating a failed calibration if the sensitivity calculated the second time is not within a target sensitivity range.
According to various embodiments, a transducer system includes a MEMS microphone having a backplate with a first terminal and a membrane with a second terminal and an auto-calibrating interface circuit. The auto-calibrating interface circuit may include an analog to digital converter (ADC), a bias generator coupled to the second terminal, and a calibration state machine coupled to the bias generator. The bias generator may be configured to perform an auto-calibration procedure that includes determining a pull-in voltage of the MEMS microphone, and setting the bias generator based on the determined pull-in voltage. In some embodiments, the ADC, the bias generator, and the calibration state machine are deposed on a same integrated circuit.
The transducer system may also include an amplifier coupled to the first terminal and the ADC. In some embodiments, the calibration state machine is coupled to the amplifier and may be configured to compare a sensitivity of the transducer and interface circuit to a target sensitivity range and change the amplifier gain if the sensitivity of the transducer and interface circuit is outside the target sensitivity range. The calibration state machine may include digital control logic coupled to the bias generator, a bias voltage memory coupled to the digital control logic, and a threshold comparator coupled to the digital control logic and the ADC. The calibration state machine may also include an amplifier gain memory coupled to the digital control logic, and the digital control logic may be coupled to the amplifier. In various embodiments, the MEMS microphone and the auto-calibrating interface circuit are deposed on a same integrated circuit.
Advantages of some embodiments include the ability to calibrate the signal path of an audio system without using external measurement and/or calibration equipment. In particular, an external interface controller, an external control switch, and external interface circuitry implemented on the interface chip is not necessary to perform a calibration in some embodiments. A further advantage in some embodiments is a short test time due to a large portion of the calibration process occurring without excessive interface bus traffic caused by an external tester.
While this invention has been described with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to the description. It is therefore intended that the appended claims encompass any such modifications or embodiments.
Number | Name | Date | Kind |
---|---|---|---|
5399989 | Chern | Mar 1995 | A |
6121908 | Sevastopoulos et al. | Sep 2000 | A |
6975193 | Knieser et al. | Dec 2005 | B2 |
7088981 | Chang | Aug 2006 | B2 |
7286811 | Kral | Oct 2007 | B2 |
7304679 | Johnson et al. | Dec 2007 | B1 |
7386074 | Venkatesh et al. | Jun 2008 | B1 |
7522193 | Itani et al. | Apr 2009 | B2 |
7548626 | Stenberg et al. | Jun 2009 | B2 |
7589766 | Itani et al. | Sep 2009 | B2 |
7646883 | Kogure et al. | Jan 2010 | B2 |
7663432 | Prandi et al. | Feb 2010 | B2 |
7719595 | Johnson et al. | May 2010 | B1 |
7734272 | Kral | Jun 2010 | B2 |
7986182 | Prandi et al. | Jul 2011 | B2 |
8004350 | Draxelmayr | Aug 2011 | B2 |
8067958 | Draxelmayr | Nov 2011 | B2 |
8200179 | Mosinskis et al. | Jun 2012 | B1 |
8325949 | Qian et al. | Dec 2012 | B2 |
8374363 | Onishi | Feb 2013 | B2 |
8625809 | Josefsson et al. | Jan 2014 | B2 |
8675895 | Hovesten et al. | Mar 2014 | B2 |
20020039463 | Degertekin et al. | Apr 2002 | A1 |
20030155966 | Harrison | Aug 2003 | A1 |
20050219953 | Bayram et al. | Oct 2005 | A1 |
20060083392 | Akino | Apr 2006 | A1 |
20080075306 | Poulsen et al. | Mar 2008 | A1 |
20090134501 | Ganitzer et al. | May 2009 | A1 |
20110056302 | Lutz | Mar 2011 | A1 |
20110142261 | Josefsson | Jun 2011 | A1 |
20110150243 | Onishi | Jun 2011 | A1 |
20110175243 | Jo et al. | Jul 2011 | A1 |
20120250881 | Mulligan | Oct 2012 | A1 |
20130015919 | Kropfitsch et al. | Jan 2013 | A1 |
20130051582 | Kropfitsch et al. | Feb 2013 | A1 |
20130129116 | Kropfitsch et al. | May 2013 | A1 |
20130136267 | Hammerschmidt et al. | May 2013 | A1 |
20130271307 | Kropfitsch et al. | Oct 2013 | A1 |
20140064523 | Kropfitsch et al. | Mar 2014 | A1 |
20140140538 | Kropfitsch et al. | May 2014 | A1 |
Number | Date | Country |
---|---|---|
202011106756 | Apr 2012 | DE |
1906704 | Apr 2008 | EP |
2223654 | Sep 2010 | EP |
2653846 | Oct 2013 | EP |
2008209182 | Sep 2008 | JP |
20110009150 | Jan 2011 | KR |
2009135815 | Nov 2009 | WO |
Entry |
---|
Delbruek, T., et al., “Analog VLSI Adaptive, Logarithmic, Wide-Dynamic-Range Photoreceptor,” May 1994, 4 pages. |
Feng, P., et al., “History of the High-Voltage Charge Pump,” Book Excerpt, Nov. 2006, pp. 1-9, Chapter 1, Professional Engineering 6X9, Charge Pump Circuit Design. |
Harrison, R. R., et al., “A Low-Power Low Noise CMOS Amplifier for Neural Recording Applications,” IEEE Journal of Solid-State Circuits, Jun. 2003, pp. 958-965, vol. 38, No. 6. |
Harrison, R.R., “Integrated Circuits for Neural Interfacing,” Circuits for Emerging Technologies, Feb. 15, 2008, pp. 1-12. |
Oralkan, O., et al., “Experimental Characterization of Collapse-Mode CMUT Operation,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Aug. 2006, 1513-1523, vol. 53, No. 8. |
Vittoz, E., et al., “CMOS analog Integrated Circuits Based on Weak Inversion Operation,” IEEE Journal of SolidState Circuits, Jun. 1977, pp. 224-231. |
Number | Date | Country | |
---|---|---|---|
20150110295 A1 | Apr 2015 | US |