System and method for automatic landmark labeling with minimal supervision

Information

  • Patent Grant
  • 8897550
  • Patent Number
    8,897,550
  • Date Filed
    Friday, May 10, 2013
    11 years ago
  • Date Issued
    Tuesday, November 25, 2014
    10 years ago
Abstract
A system and method for estimating a set of landmarks for a large image ensemble employs only a small number of manually labeled images from the ensemble and avoids labor-intensive and error-prone object detection, tracking and alignment learning task limitations associated with manual image labeling techniques. A semi-supervised least squares congealing approach is employed to minimize an objective function defined on both labeled and unlabeled images. A shape model is learned on-line to constrain the landmark configuration. A partitioning strategy allows coarse-to-fine landmark estimation.
Description
BACKGROUND

This invention relates generally to image labeling, and more particularly, to a system and method for implementing automatic landmark labeling for a predetermined object class.


Image labeling for training data is an essential step in many learning-based vision tasks. There are at least two types of prior knowledge represented by image labeling. One is semantic knowledge, such as human IDs for face recognition, or an object's name for content-based image retrieval. The other is geometric/landmark knowledge. The position of an object (face/pedestrian/car) needs to be labeled for all training images, for example, in learning-based object detection. Each training image must be labeled with a set of landmarks which describe the shape of the face for supervised face alignment.


Geometric/landmark knowledge labeling is typically carried out manually. Practical applications, such as object detection, often require thousands of labeled images to achieve sufficient generalization capability. Manual labeling however, is labor-intensive and time-consuming. Furthermore, image labeling is an error-prone process due to labeler error, imperfect description of the objectives, and inconsistencies among different labelers.


Some notable and early work on unsupervised alignment denotes the process as congealing. The underlying idea is to minimize an entropy-based cost function by estimating the warping parameter of an ensemble. More recently, a least squares congealing (LSC) algorithm has been proposed which uses L2 constraints to estimate each warping parameter. These approaches estimate affine warping parameters for each image. The embodiments described herein estimate non-rigid shape deformation described by a large set of landmarks, rather than the relatively simple global ante transformation.


Additional work on unsupervised image, alignment has incorporated more general deformation models, though not with the use of a well-defined set of landmarks by including a free-form B-spline deformation model. Bootstrapping algorithms to compute image correspondences and to learn a linear model based on optical flow and the use of an iterative Active Appearance Model (AAM) learning and fitting to estimate the location of mesh vertices, reporting results on images of the same person's face have also been developed. Further work formulates AAM learning as an EM algorithm and extends it to learning parts-based models for flexible objects. Other known techniques include 1) the use of a group-wise objective function to compute non-rigid registration, 2) improvements in manual facial landmark labeling based on parameterized kernel PCA, 3) an MDL-based cost function for estimating the correspondences for a set of control points, and 4) alignment by tracking the image sequence with an adaptive template.


Generally, one cannot rely upon unsupervised learning methods to locate landmarks on physically meaningful features of an object, such as mouth/eye corners or nose tip on a face; while supervised facial alignment undesirably requires a large number of labeled training images to train a statistical model so that it can generalize and fit unseen images well.


It would be desirable to provide a system and method that automatically provides landmark labeling for a lare set of images in a fashion that alleviates the foregoing problems.


BRIEF DESCRIPTION

Briefly, in accordance with one embodiment, a method of determining landmark locations comprises automatically propagating a set of landmark points from a small set of images to a large set of images for a predetermined object class.


According to another embodiment, a vision system is configured to automatically propagate a set of landmark points from a small set of images to a large set of images for a predetermined object class in response to an algorithmic software.





DRAWINGS

These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:



FIG. 1 is a simplified diagram illustrating a vision system configured to automatically propagate a set of landmark points from a small set of images to a large set of images for a predetermined object class in response to an algorithmic software according to one embodiment;



FIG. 2 illustrates exemplary input data and output data for the vision system illustrated in FIG. 1 according to one embodiment;



FIG. 3 illustrates multi-level partitioning according to one enmbodiment;



FIG. 4 is a set of graphs illustrating a performance comparison for SLSC, SSLSC and partition-based SSLSC in terms of NRMSE of landmarks excluding outliers (%) and SOF (%) according to one embodiment; and



FIG. 5 is a set of graphs illustrating performance analysis by varying partition levels in terms of NRMSE of landmarks and SOF according to one embodiment.





While the above-identified drawing figures set forth alternative embodiments, other embodiments of the present invention are also contemplated, as noted in the discussion. In all cases, this disclosure presents illustrated embodiments of the present invention by way of representation and not limitation. Numerous other modifications and embodiments can be devised by those skilled in the art which fall within the scope and spirit of the principles of this invention.


DETAILED DESCRIPTION

The following preliminary discussion presents a framework to provide a better understanding of the system and method embodiments described thereafter with reference to the Figures that are directed to automatic landmark labeling for a large set of images in a semi-supervised fashion. These embodiments automatically estimate the landmark locations for a full set of images such as, for example, a complete training set of 300 images using manually labeled landmark locations for a few images such as, for example, 10 manually labeled images.


According to one aspect, a semi-supervised least squares congealing (SLSC) method minimizes an objective function defined as the summation of pairwise L2 distances between warped images. Two types of distances are utilized including the distance between the labeled and unlabeled images, and the distance between the unlabeled images. The objective function is iteratively minimized via an inverse warping technique. During the optimization process, estimated landmark locations are constrained according to one embodiment by utilizing shape statistics learned from relatively low-error estimations in an on-line manner, which was found to yield better convergence of landmark position estimates.


Modern work on joint alignment for an image ensemble mainly estimates global affine parameters for each image. The present inventors recognized however that most real-world objects exhibit non-rigid deformation that is not well-modeled by the affine transformation, and that estimating more realistic deformations using a large set of landmarks would provide an important step toward accurately characterizing the shape variation within an object class.


Hierarchical patch-based embodiments that estimate landmark positions are thus described herein. Patches, starting from a whole warped image region treated as the first level patch, are iteratively partitioned into smaller child patches, in which initial landmark locations are obtained from the parent patch and whose refined landmark estimations result in an accurate landmark labeling based on the local patch appearance. Applications in facial images were found by the present inventors to demonstrate that by labeling only 1% to 3% of the ensemble, the landmarks of the remaining images could be accurately estimated.


An automatic image labeling framework according to one embodiment has three main contributions including:


1) a core methodology for (described herein with reference to Equation 1 below) semi-supervised least-squares-based alignment of an image ensemble, described herein using the inverse warping technique;


2) two additional methodologies (described herein with reference to Algorithms 1 and 2 below) for improving landmark estimation via i) a statistical shape model learned on-line to reduce outliers among the ensemble, and ii) patch-based partitioning to improve the precision of landmark estimation; and


3) an end-to-end system for automatic estimation of a set of landmarks in an ensemble of the images for a predetermined object class with very few manually labeled images and described herein with reference to FIGS. 1 and 2.



FIG. 1 is a simplified diagram illustrating a vision system 10 that may be a computer vision system configured to automatically propagate a set of landmark points from a small set of images 14 to a large set of images 16=images 12+images 14 for a predetermined object class in response to an algorithmic software according to one embodiment.



FIG. 2 illustrates exemplary input data 12, 14 and output data 16 for the vision system 10 illustrated in FIG. 1 according to one embodiment.


The embodiments described herein address discovery of non-rigid shape deformation using a specific set of physically defined landmarks enumerated 18 in FIG. 1 and semi-supervised learning in which prior knowledge of landmark location(s) can advantageously be incorporated easily via a few manually labeled examples. Given an ensemble of images 12, 14, where a few manually labeled images 14 have known warping parameters, the embodied SLSC approach estimates the warping parameters of the remaining unlabeled images 12 using the cost function:













ɛ


(
P
)


=






i
=
1

K




ɛ
i



(

p
i

)









=







i
=
1

K





1
-
α


K
-
1








j
=
1

,

j

i


K








I
j



(

W


(

x
;

p
j


)


)


-


I
i



(

W


(

x
;

p
i


)


)





2




+














i
=
1

K




α

K
~







n
=
1


K
~










I
~

n



(

W


(

x
;


p
~

n


)


)


-


I
i



(

W


(

x
;

p
i


)


)





2




,








(
1
)








where {tilde over (K)} is the number of labeled images Ĩ={Ĩn}nε[1,{tilde over (K)}], and K is the number of unlabeled images I={Ii}iε[1,K], pi is an m-dimensional warping parameter vector to warp Ii to a common mean shape using a warping function W(x; pi), which can be a simple affine warp or a complex non-rigid warp such as the piecewise affine warp. Ii(W(x;pi)) is the corresponding N-dimensional warped image vector. {tilde over (p)}n is the known warping parameter vector for Ĩn. x is a collection of N pixel coordinates within the mean shape. P=[p1, . . . , pK] contains all the warping parameters for I that need to be estimated by minimizing ε(P). Since ε(P) is difficult to optimize directly, εi(pi) is iteratively minimized for each Ii. In the cost function, εi(pi) equals the summation of the pairwise difference between Ii and all the other images in the warped image space. On the one hand, minimizing the 1st term of Eqn. (1) makes the warped image content of the ith unlabeled image similar to that of the other unlabeled images, without regard for the physical meaning of the content. On the other hand, the 2nd term of Eqn. (1) constrains Ii(W(x;pi)) to be similar to those of the labeled images and enforces the physical meaning of the content during alignment. Thus, the labels of Ĩ are propagated to I. Since K>>{tilde over (K)}, a weighting coefficient α can balance the contributions of the two terms in the overall cost.


An inverse warping technique is employed to minimize εi(pi). Warping parameter updates Δpi are first estimated by minimizing the following equation:











ɛ
i



(

Δ






p
i


)


=




1
-
α


K
-
1









j
=
1

,

j

i



K








I
j



(

W


(


W


(

x
;

Δ






p
i



)


;

p
j


)


)


-


I
i



(

W


(

x
;

p
i


)


)





2



+


α

K
~







n
=
1


K
~









I
~

n

(


W


(


W


(

x
;

Δ






p
i



)


;


p
~

n


)


-


I
i



(

W


(

x
;

p
i


)


)





2









(
2
)








and then update the warping function by:

W(x;pi)←W(x;pi)∘W(x;Δpi)−1  (3)

The function εi(Δpi) is nonlinear with respect to Δpi. To support numeric optimization of this function, a first order Taylor expansion is performed on Ij(W(W(x;Δpi);pj) and Ĩn(W(W(x;Δpi);{tilde over (p)}n) to yield:








I
j



(

W


(


W


(

x
;

Δ






p
i



)


;

p
j


)


)






I
j



(

W


(

x
;

p
j


)


)


+






I
j



(

W


(

x
;

p
j


)


)






p
j




Δ







p
i

.








As a result, Eqn. (2) is simplified to:













1
-
α


K
-
1








j
=
1

,

j

i


K







b
j

+


c
j


Δ






p
i





2



+


α

K
~







n
=
1


K
~








b
n

+


c
n


Δ






p
i





2









where







b
j

=



I
j



(

W


(

x
;

p
j


)


)


-


I
i



(

W


(

x
;

p
i


)


)




,


c
j

=





I
j



(

W


(

x
;

p
j


)


)






p

j









,






b
n

=




I
~

n



(

W


(

x
;


p
~

n


)


)


-


I
i



(

W


(

x
;

p
i


)


)




,


c
n

=







I
~

n



(

W


(

x
;


p
~

n


)


)







p
~

n



.






(
4
)








The least squares solution of Eqn. (4) yields:











Δ






p
i


=

-


H

-
1




[




1
-
α


K
-
1








j
=
1

,

j

i


K




c
j
T



b
j




+


α

K
~







n
=
1


K
~





c
n
T



b
n





]




,




with




(
5
)






H
=




1
-
α


K
-
1








j
=
1

,

j

i


K




c
j
T



c
j




+


α

K
~







n
=
1


K
~





c
n
T




c
n

.









(
6
)







The computational cost for solving the second term of Eqn. (4) is negligible. Therefore, semi-supervised congealing has a computational cost similar to that of unsupervised congealing. According to one aspect, a shape-constrained SLSC improves the robustness of the congealing process by reducing outliers. According to another aspect, this is extended to a patch-based approach to achieve an accurate estimate of the landmarks by partitioning the mean shape space.


Given the warping parameters for all images {P,{tilde over (P)}}=[pi, . . . , pK, {tilde over (p)}1, . . . , {tilde over (p)}{tilde over (K)}], and their corresponding landmark locations {S,{tilde over (S)}}=[s1, . . . , sK, {tilde over (s)}1, . . . , {tilde over (s)}{tilde over (K)}], where s is a concatenated vector of a set of 2D landmark coordinates s=[x1, y1, x2, y2, . . . , xv, yv]T, there are two ways of mapping between {P,{tilde over (P)}} and {S,{tilde over (S)}}. First, the landmarks si can be obtained from the warping parameter pi via si=W(xs; pi), where xs is a vector containing the coordinates of the target landmarks in the mean shape space. As a result, an incorrect warping parameter, which can result from an outlier in the congealing process, would produce a landmark set that is not a valid shape instance. Second, the warping parameter pi can be obtained given the corresponding landmark pairs (xs and si). Consequently, refining the positions of the landmarks can improve the estimation of the warping parameters. A shape-constrained SLSC (SSLSC) approach described herein integrates the shape constraints with the appearance-based congealing process to improve the robustness of the SLSC.


Given that the objects in the images have the same topological structure, an assumption is made that the shape deformation of si satisfies a Point Distribution Model (PDM). Since only a few labeled images are available, the PDM is learned from both the labeled landmarks and an automatically chosen low-error subset of the estimated landmarks in an online manner. Then, any other poor estimations can be “corrected” through a PCA reconstruction as follows:

ŝi= s+Qz  (7)

where ŝi is the reconstructed shape vector for the ith image; s and Q are the mean shape and the shape basis obtained through the on-line training; and z is the shape parameter vector that is restricted in some range. Finally, a new warping parameter vector {circumflex over (p)}i is computed from the refined landmark positions ŝi such that the outliers of the congealing process are discovered and constrained in a principled way.


The SSLSC is summarized as Algorithm 1 below, where P0 represents the initial warping parameters for I. The labeled landmarks are fully utilized in the sense that they not only contribute for the cost minimization for Eqn. (2), but also provide guidance for shape deformation.












Algorithm 1 Shape-constrained SLSC (SSLSC)















Input: I, Ĩ, P0, {tilde over (P)}, x, and xs


Output: Pt, St, and ∈


 t ← 0;


 Compute {tilde over (s)}i = W(xs; {tilde over (p)}i) for i ε [1, {tilde over (K)}];


 repeat


  for i = 1 to K do


   ∈i (Δpi), pit+1 ← SLSC(I, Ĩ, Pt, {tilde over (P)}, x);


  end for


  Rank ∈i (Δp1), . . . , ∈K (ΔpK) in ascending order and pick the first


  KM images;


  Compute sit+1 = W(xs; pit+1) for i ε [1, KM];


   s, Q, λ ← PCA on S = [{tilde over (s)}1, . . . , {tilde over (s)}{tilde over (K)}, s1t+1, . . . , sKMt+1]T;


  for i = KM + 1 to K do


   Reconstruct sit+1 as Eqn. (7);


   Compute pit+1 from sit+1;


  end for


  Pt+1 ← [p1t+1, . . . , pKt+1]; St+1 ← [s1t+1, . . . , sKt+1]T;


  
ɛi=1Kɛi(Δpi);tt+1.



until Converge










The warping function W(x; pi) can be a simple global affine warp to model rigid transformation, or a piecewise affine warp to model non-rigid transformation. The SSLSC algorithm does not however, perform satisfactorily with direct use of the piecewise affine warp. This difficulty is related to the high dimensionality of the warping parameter pi. Looking at the piecewise affine warp closely, it can be noted that the warping function W is a series of affine transformations, each operating within a small triangular patch. While the patch allows a workspace whose dimension is much smaller than the original space, and thus makes the problem easier to solve, directly applying the SSLSC on the small patches is not reliable due to the poor initialization and limited information encoded in the patch. Based on these observations, a coarse-to-fine partition-based congealing method improves the precision of landmark labeling.


The partitioning strategy is summarized as Algorithm 2 below, where Sinit is the initial guess of the landmark positions for I. In the algorithm, besides the notation mentioned previously, R represents the indices of the patches to be aligned in the current partition level; d represents the index of the patch. Starting from the initial mean shape space x1, the process is conducted by repeatedly partitioning the mean shape space for a selected patch (xk*) which has the maximal congealing error (ε), into multiple child patches. In one embodiment, two equal sized child patches are generated by each partitioning. To enforce a geometrical relationship between the child patches, they are overlapped such that some landmarks reside in both of them. Positions of these landmarks are estimated as averages of the SSLSC results of the two child patches. After the partitioning, the SSLSC is applied on each child patch, independently, to obtain the corresponding landmark positions within the patch itself. The partitioning is stopped when no cost reduction is achieved or the size of the patch is too small. According to one embodiment, the patch reaches its size limit if the number of target landmarks in xd is less than the number of corresponding landmarks required for computing pi. One example of multiple level partitioning is shown in FIG. 3.












Algorithm 2 Landmark Labeling by Partition















Input: I, Ĩ, Sinit, {tilde over (S)}


Output: S


 lmin ← minimum number of landmarks in a patch;


 d ← 1; R ← {1}, Sinit1 ← Sinit;


 Compute x1 and xs1 from {tilde over (S)};


 while d < maximum number of patches do


  for each r ε R do


   Calculate Pinitr and {tilde over (P)}r from Sinitr, xsr, {tilde over (S)}, and xsr, respectively;


   Pr, Sr, ∈r ← SSLSC(I, Ĩ, Pinitr, {tilde over (P)}r, xr, xsr);


   if no cost reduction is achieved in r over its parent patch then


    return Sd-2 // return labeling results of last partition level;


   end if


  end for


  
k=argmaxkɛk,k[1,d];



  child patches xd+1, xd+1, xsd+1, xsd+2 ← Partition the k*th patch;


  Sinitd+1 ← Sk*; Sinitd+2 ← Sk*; ∈k* ← 0;


  if size( xsd+1) < lmin or size( xsd+1) < lmin then


   return Sd;


  end if


  d ← d + 2; R ← {d + 1, d + 2};


 end while










The top-down congealing strategy performs a coarse-to-fine alignment for the entire image ensemble. The congealing in the coarse level partition focuses on aligning the features that are most similar among the image ensemble such as eyes on the face, whereas the other features like nose and mouth are neglected. Hence, the landmark estimation on the larger patches is often coarse and used to provide a good initialization for the latter levels. With the increasing of the partition level, more details of the target object are revealed. As a result, the estimation of the landmarks becomes more and more precise.


The effectiveness of the landmark labeling methods described herein has been demonstrated in one application by automatically annotating 33 specific landmarks around facial features (i.e., eyes, eyebrows, nose, mouth, and contour) for a large image set, given a few labeled images. For this application, 300 images were collected from a known database in which the facial regions were unaligned. Then, 33 landmarks were labeled for each image to establish a ground truth and to enable a quantitative evaluation for the labeling performance.


The 300 labeled images were divided into two non-overlapping sets: a labeled set with {tilde over (K)} images and an unlabeled set with 300−{tilde over (K)} images. The initial value of the jth element of Si was generated for quantitative evaluation by adding a uniformly distributed random noise ηε[−ηmaxmax] to the ground truth value Ŝi,j as follows,










S

i
,
j


=



S
^


i
,
j


+


η






ρ
i


ρ






(
8
)








where ρi is the eye-to-eye pixel distance of Ii, and ρ is the average of pi for all unlabeled images. By doing so, the level of deviation in the initialization is relative to face size. In practical applications, the initial landmark positions can be obtained from the approximate face location. A 6-parameter affine transformation was employed in the congealing process, and a 72×72 square region, which encloses all the target landmarks, was used as the common mean shape. The warped face region was normalized by subtracting its mean intensity value and then divided by its standard deviation to accommodate illumination changes.


The effectiveness was evaluated using two criteria: (1) Normalized Root Mean Squared Error (NRMSE) of landmarks defined as the RMSE with respect to the ground truth divided by the eye-to-eye distance ρi, and expressed as a percentage; and (2) the Sample “Outliers” Fraction (SOF) defined as the number of images, of which the NRMSE exceeds a threshold (10%), versus the number of unlabeled images. A smaller NRMSE indicates a higher labeling accuracy, and a smaller SOF represents greater robustness.


The effectiveness of using a shape-constrained SLSC is first compared with using SLSC under the effects of varying number of labeled images {tilde over (K)} ε{1, 5, 10, 20, 40, 80, 160} and different noise levels ηmax ε{10, 30, 50}. FIG. 4 illustrates the performance comparison in terms of NRMSE and SOF in which SLSC is represented by the dashed line, SSLSC is represented by the line with circles, and SSLSC is represented by the line with crosses. The left side graphs are in terms of NRMSE of landmarks excluding outliers (%). The right side graphs are in terms of SOF (%). The results in each row correspond to a noise level (ηmax=10, 30, 50) respectively. Note that, for this result, outliers were excluded from the computation of NRMSE. The results were computed from an average of 5 trials, where {tilde over (K)} images were randomly selected as the labeled set for each trial. Both algorithms were compared under the same conditions. Both algorithms used, the example, the same randomly selected labeled set and the same initialization.


Comparing the results of SLSC and SSLSC in FIG. 4, the shape constraints are effective in reducing the outliers significantly, even when the congealing performance of SLSC is poor due to a high initialization noise level and a small number of labeled images. For example, the SOF decreases from 32% (SLSC) to 23.4% (SSLSC) with {tilde over (K)}=1 and ηmax=50, which is equivalent to removing 26 outliers. Furthermore, an average of 5.2% reduction of SOF is obtained when ηmax=50. Since the shape constraints are not applied on those low-error estimations, there is no improvement in the NRMSE excluding outliers.



FIG. 4 also illustrates the improvement of labeling accuracy by partition-based SSLSC. Similar to the previous results for SSLSC, the performance was evaluated under varying {tilde over (K)} and ηmax values from an average of 5 random trials, as shown in FIG. 4. Comparing the results of SSLSC and partition-based SSLSC in FIG. 4, it is obvious that the partition-based approach further improves both precision and robustness in terms of reducing the NRMSE and SOF. The SOF for example, decreases from 23.4% (SSLSC) to 20.3% (partition-based SSLSC), and the NRMSE decreases from 9.92% (SSLSC) to 9.06% (partition-based SSLSC) with {tilde over (K)}=1 and ηmax=50. In summary, an average of 1% reduction of NRMSE is achieved for all noise levels, and an average of 2% decrease of SOF is obtained for high noise levels (ηmax=30, 50). FIG. 4 illustrates there is no remarkable improvement when {tilde over (K)}>=10, which means that only using 3% ( 10/300) labeled data, the landmarks can be estimated accurately and robustly.



FIG. 5 illustrates the performance improvement across different partition levels when {tilde over (K)}=5 and ηmax=30. The results of level-0 correspond to the initialization, and those of level-1 represent the congealing results on the whole mean shape space by SSLSC. Increasing levels of partition, both the NRMSE and SOF decrease and converge at the last paration level as illustrated in FIG. 5.


In summary explanation, shape deformation of images of a real-world object is often non-rigid due to inter-subject variability, object motion, and camera view point. Automatically estimating non-rigid deformations for an object class is a critical step in characterizing the object and learning statistical models. The system and method embodiments described herein facilitate such a task by automatically producing labeled data sets. Extensive experiments have demonstrated these methods achieve impressive labeling results on facial images with nearly frontal view and moderate changes in expression, useful for many current applications. The invention is not so limited however as these embodiments can be immediately applied to the task of labeling landmarks in images of other classes of objects such as vehicles or pedestrians using the principles described herein.


While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.

Claims
  • 1. A method comprising: via a computer processor:identifying a whole warped image as a first level patch;obtaining initial landmark locations from the first level patch;iteratively partitioning the whole warped image region into smaller child patches; andrefining landmark estimations from the initial landmark locations to establish accurate landmark labeling based on resultant patch appearance.
  • 2. The method of claim 1, wherein obtaining the initial landmark locations comprises importing the initial landmark locations into a computer in response to algorithmic software.
  • 3. The method of claim 2, comprising manually labeling the initial landmark locations.
  • 4. The method of claim 1, comprising propagating the initial landmark locations from a first set of images to a second set of images that is larger than the first set of images using a computer in response to algorithmic software.
  • 5. The method of claim 4, wherein the first set of images is within an object class and the second sets of images is within the object class.
  • 6. The method of claim 4, wherein the first set of images comprises from about 1% to about 3% of the second set of images.
  • 7. The method of claim 1, comprising performing landmark estimations including minimizing an objective function defined as a summation of pairwise L2 distances between warped images.
  • 8. The method of claim 7, wherein the pairwise L2 distances are selected from the distance between labeled and unlabeled images and the distance between unlabeled images.
  • 9. The method of claim 7, wherein minimizing the objective function comprises iteratively minimizing the objective function via inverse warping.
  • 10. The method of claim 7, comprising processing the objective function based on semi-supervised least squares congealing.
  • 11. The method of claim 1, comprising generating output data including a set of images.
  • 12. A method comprising: via a computer processor:performing a semi-supervised least-squares-based alignment of an image ensemble using an inverse warping technique;determining estimated warping parameters of unlabeled images in the image ensemble based on known warping parameters of labeled images of the image ensemble using results of the semi-supervised least-squares-based alignment;reducing outliers of the estimated warping parameters by partitioning a mean shape space of the semi-supervised least-squares-based alignment, wherein partitioning the means shape space includes iteratively partitioning an initially identified patch corresponding to an image of the image ensemble into child patches; andrefining landmark estimations based on resultant patch appearance.
  • 13. The method of claim 12, comprising estimating landmark point locations including minimizing an objective function defined as a summation of pairwise L2 distances between warped images.
  • 14. The method of claim 12, comprising propagating the initially identified patch to a set of images using a computer in response to algorithmic software.
  • 15. The method of claim 12, comprising generating output data including a set of images.
  • 16. The method of claim 12, comprising importing the labeled images into a computer in response on algorithmic software, wherein the labeled images are manually labeled.
  • 17. A tangible, non-transitory, computer readable medium comprising machine-readable instructions to: perform a semi-supervised least-squares-based alignment of an image ensemble using an inverse warping technique;determine estimated warping parameters of unlabeled images in the image ensemble based on known warping parameters of labeled images of the image ensemble using results of the semi-supervised least-squares-based alignment;reduce outliers of the estimated warping parameters by partitioning a mean shape space of the semi-supervised least-squares-based alignment, wherein partitioning the means shape space includes iteratively partitioning an initially identified patch corresponding to an image of the image ensemble into child patches; andrefine landmark estimations based on resultant patch appearance.
  • 18. The computer readable medium of claim 17, wherein the instructions instruct a computer to import the initial landmark locations into the computer system.
  • 19. The computer readable medium of claim 17, wherein the instructions generate output data including an output set of images.
  • 20. The computer readable medium of claim 19, wherein the initial landmark locations are based on an input set of images and the output set of images are larger in number than the input set of images.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 12/533,066 filed on Jul. 31, 2009, which claims priority under 35 U.S.C. §119(e)(1) of U.S. Provisional Application No. 61/165,257, filed Mar. 31, 2009, the full disclosure of which are incorporated herein by reference.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH & DEVELOPMENT

This invention was made with U.S. Government support under contract numbers 2007-DE-BX-K191 and 2007-MU-CX-K001. The Government may have certain rights in the invention.

US Referenced Citations (27)
Number Name Date Kind
6084989 Eppler Jul 2000 A
6580811 Maurer et al. Jun 2003 B2
6876755 Taylor et al. Apr 2005 B1
7054468 Yang May 2006 B2
7412425 Rifkin et al. Aug 2008 B2
7454039 Tu et al. Nov 2008 B2
7693299 Vasilescu et al. Apr 2010 B2
7751599 Chen et al. Jul 2010 B2
7756325 Vetter et al. Jul 2010 B2
7804990 Kiraly et al. Sep 2010 B2
8064712 Wheeler et al. Nov 2011 B2
8155399 Liu et al. Apr 2012 B2
8160332 Von Berg et al. Apr 2012 B2
8218862 Demirli et al. Jul 2012 B2
8260039 Shiell et al. Sep 2012 B2
20030007666 Stewartson et al. Jan 2003 A1
20050018890 McDonald et al. Jan 2005 A1
20060080035 Daubert et al. Apr 2006 A1
20060115145 Bishop et al. Jun 2006 A1
20070127787 Castleman et al. Jun 2007 A1
20070237373 Kiraly et al. Oct 2007 A1
20090066700 Harding et al. Mar 2009 A1
20090116749 Cristinacce et al. May 2009 A1
20100246980 Tong et al. Sep 2010 A1
20110058720 Lu et al. Mar 2011 A1
20110064302 Ma et al. Mar 2011 A1
20130243309 Tong et al. Sep 2013 A1
Non-Patent Literature Citations (1)
Entry
Cox, Mark, “Least Squares Congealing for Unsupervised Alignment of Images,” IEEE International Conference on Computer Vision and Pattern Recognition, Jun. 2008.
Related Publications (1)
Number Date Country
20130243309 A1 Sep 2013 US
Provisional Applications (1)
Number Date Country
61165257 Mar 2009 US
Continuations (1)
Number Date Country
Parent 12533066 Jul 2009 US
Child 13892102 US