System and method for automatically generating malware detection rule recommendations

Information

  • Patent Grant
  • 11003773
  • Patent Number
    11,003,773
  • Date Filed
    Friday, March 30, 2018
    6 years ago
  • Date Issued
    Tuesday, May 11, 2021
    3 years ago
Abstract
A method for generating rule recommendation utilized in a creation of malware detection rules is described. Meta-information associated with a plurality of events collected during a malware detection analysis of an object by a cybersecurity system is received and a first plurality of features is selected from the received meta-information. Machine learning (ML) models are applied to each of the first plurality of features to generate a score that represents a level of maliciousness for the feature and thereby a degree of usefulness of the feature in classifying the object as malicious or benign. Thereafter, a second plurality of features is selected as the salient features, which are used in creation of the malware detection rules in controlling subsequent operations of the cybersecurity system. The second plurality of features being lesser in number that the first plurality of features.
Description
FIELD

Embodiments of the disclosure relate to cybersecurity. More particularly, one embodiment of the disclosure relates to an analytic tool and corresponding method for automatically generating malware detection rule recommendations based on events monitored by a cybersecurity system.


GENERAL BACKGROUND

Network devices provide useful and necessary services that assist individuals in business and in their everyday lives. In recent years, a growing number of cyberattacks are being conducted on all types of network devices. In some cases, these cyberattacks are orchestrated in an attempt to gain access to content stored on one or more network devices. Such access is for illicit (i.e., unauthorized) purposes, such as spying or other malicious or nefarious activities. For protection, cybersecurity appliances may be deployed at a local network in efforts to detect a cyberattack caused by a malicious object being uploaded to a network device.


Currently, some advanced cybersecurity appliances perform a two-phase approach for detecting malware contained in network traffic. This two-phase approach includes a static phase and a dynamic phase. During the dynamic phase, a virtual machine deployed within the cybersecurity appliance executes objects obtained from the network traffic being analyzed and monitors the behaviors of each object during execution. Each behavior, also referred to as an “event,” include meta-information associated with that event.


Conventional cybersecurity appliances rely on malware detection rules in controlling what events are being monitored and subsequently analyzed in efforts to classify the objects under analysis as either malicious (malware) or benign. As a result, the malware detection rules greatly influence the effectiveness of the cybersecurity appliance in determining whether or not an object is associated with malware. Given a constantly changing threat landscape, the malware detection rules are frequently evaluated and updated to maintain their effectiveness.


The generation of malware detection rules is a highly specialized, time intensive task. Currently, in response to an uncovered analytical error committed by a cybersecurity system (e.g., an object misclassification), a human analyst may receive an arcane report listing hundreds or even thousands of detected events that were captured during analysis of the misclassified object at the cybersecurity system. From these detected events, besides attempting to identify trends associated with malware, the analyst is responsible for (i) identifying detected events that are highly suggestive of the object being malicious or benign, and (ii) generating malware detection rule updates to avoid such object misclassifications in the future. Given the subjective nature of the review, the manual generation of these malware detection rule updates is prone to sub-optimal detection rule generation or even (in some cases) error. Also, the slow, arduous review and selection of detected events by an analyst for use as the basis for the malware detection rules greatly delays the release of malware detection rule updates, leaving the analyst with little-to-no time to re-evaluate whether any currently deployed malware detection rules are becoming stale (e.g., less efficient or efficacious). Hence, over time, a good percentage of the malware detection rules become repetitive (e.g., in that they detect the same malware as other malware detection rules), or non-effective (e.g., in that they no longer detect malware that may be modifying its form or functioning to avoid detection), which inadvertently wastes system resources. The waste of system resources may lead to resource over-utilization, namely system detection inefficiencies resulting in an increase of false negative (FN) detections and/or false positive (FP) classifications.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the disclosure are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:



FIG. 1 is an exemplary embodiment of an architecture of an automated, cybersecurity protection service including one or more cybersecurity systems communicatively coupled to a rule generation system.



FIG. 2A is an exemplary embodiment of a logical representation of the automated generation of malware detection rule recommendations to more accurately generate malware detection rules that control operability of the cybersecurity system of FIG. 1.



FIG. 2B is an exemplary embodiment of an Event report received by the rule generation system of FIG. 2A.



FIG. 2C is an exemplary embodiment of rule recommendations generated by the rule generation system of FIG. 2A.



FIG. 3 is an exemplary embodiment of the components deployed within the rule generation system of FIGS. 1-2A.



FIG. 4 is an exemplary embodiment of a logical representation of the rule generation system of FIGS. 1-2A.



FIG. 5 is an illustrative embodiment of an operations performed during training of a rule recommendation subsystem deployed within the rule generation system.



FIG. 6 is an illustrative embodiment of an operations performed by the rule recommendation subsystem of FIG. 4 to automatically filter and generate malware detection rule recommendations pertaining to different event types.



FIG. 7 is an illustrative embodiment of a flowchart outlining the operations conducted by the rule generation system of FIG. 4.





DETAILED DESCRIPTION
I. Overview

In general, one embodiment of the disclosure relates to a malware detection rule generation system that is designed to shorten the time duration currently needed to create efficacious malware detection rules in efforts to address the constantly changing threat landscape. For this embodiment of the disclosure, the rule generation system includes a receiver configured to receive meta-information associated with a plurality of events (e.g., monitored characteristics or behaviors) detected during malware analysis of an object by one or more cybersecurity systems (e.g., cybersecurity appliances and/or detection agents deployed on network devices). The received meta-information may be obtained from a log that maintains detected events based on operations performed by malware detection rules associated with dynamic analysis (e.g., isolated execution) as well as static analysis (object characteristics are analyzed without execution), correlation of detected events, and/or classification of the object (determining whether to classify the object as malicious, benign or any other selected classification to categorizing the object).


Each cybersecurity system is configured to conduct analyses of objects to determine whether any of the objects may be associated with malware. Each analysis may include (i) inspection of the objects as to form or content, (ii) processing an object within one or more virtual machines, and monitoring for selected events or combinations of events of the object and/or the virtual machine produced during such processing, and/or (iii) detecting occurrences of any of these monitored events or combinations of events or an absence of such event(s). Hence, the receiver is configured to receive meta-information associated with monitored events from each cybersecurity system.


As described below, according to one embodiment of the disclosure, the receiver of the rule generation system includes a parser and feature extraction logic. The parser extracts meta-information associated with the monitored events and converts the meta-information into a structured format (if not already in such format) according to event type. The feature extraction logic is configured to access one or more portions of the meta-information associated with each monitored event (hereinafter, “feature”) and provide that feature to the rule recommendation subsystem as described below.


Herein, a “feature” may be categorized as either (1) a portion of the meta-information where an occurrence of such meta-information, which is associated with one or more events of the plurality of events, may assist in determining a level of maliciousness of an object, or (2) repetitive patterns within text of the meta-information discovered using a sliding window (e.g., N-Gram, Skip-Gram, etc.), which may lead to rule candidate patterns. For the first category, the feature may constitute the portion of the meta-information itself in which a single occurrence of that portion of meta-information is a probative factor in determining the maliciousness of an object (e.g., object hash value, path identifying location of the object, Application Programming Interface (API) name, etc.). Alternatively, the “feature” may constitute a number of occurrences (i.e., aggregate) of a particular event within a determined period of time that exceeds a set threshold signifying a malicious activity (e.g., excessive API calls, excessive function calls such as a Sleep function, etc.).


The rule generation system further includes a data store and a rule recommendation subsystem. The data store provides temporary storage for the selected features associated with the events received via the receiver. The rule recommendation subsystem is configured to generate one or more rule recommendations, which are based on the selected features that are analyzed using one or more software machine learning (ML) models trained using supervised learning with malicious events associated with known malware or benign events associated with known goodware (that is, non-malicious software). For instance, a family of these supervised learning models such as Gradient Boosted Tree Ensemble models, Support Vector Machines, Bayesian Graphical Models, Hidden Markov Models, or Deep Neural Networks models for example, may be applied to build a predictive model to identify salient features that lead to rule recommendations. A “salient” feature is a feature that, based on the rule recommendation subsystem, is statistically discriminative in differentiating a “malicious” event from a “benign” event. Hence, a feature may not be “salient” when that feature does not contribute to prediction as some features may operate as a basis or foundation for enabling discovery of certain salient features.


More specifically, according to one embodiment of the disclosure, a plurality of ML models are utilized by the rule recommendation subsystem, where each ML model is configured to analyze features associated with a specific event type or a specific combination of event types. Hence, upon selecting certain features from meta-information of an event or a combination of events (e.g., a first event, a second event, a combination of first and second events, etc.), the feature extraction logic provides such features to a dedicated ML model trained to analyze features associated with that specific event type (e.g., first event type, second event type, combination of first and second event types, etc.). Examples of event types may include, but are not limited or restricted to communication port accesses, various file commands (e.g., open file, close file, etc.), mutex, registry key changes, or the like.


The application of the ML model may result in a predicted classification for the feature as potentially malicious, benign or suspicious (i.e., neither malicious nor benign) based on known malware/goodware. The predicted classification may be represented by a score that conveys a level of maliciousness for the feature and thereby its usefulness in classifying an object as malicious or benign based on this feature. The score assigned to the feature may be further adjusted based on a selected weighting scheme (e.g., increase scores for features with a higher probability of being associated with malware and/or decrease scores for features with a lesser probability of being associated with malware). The ML model result may further include information supporting (or explaining the rationale behind) the assigned score, as described below.


Additionally, while some ML models may correspond to different event types (i.e., an API-based ML model applied to feature(s) associated with the API call), other ML models may be configured to analyze parameters that are based on an aggregate of events occurring within a set time period or an absence of certain events. For these ML models, the aggregate of the events (e.g., number of total API calls within the set period of time), and not the presence of the event (or feature) per se, is considered when generating a score.


For a group of features having a ML prediction score that surpasses a selected threshold and is not concentrated in a specific event type, which may be controlled by limiting number of the features that are considered to be the “salient” features (i.e. limit the number of features associated with any event type to less than a maximum event threshold). The salient features form the basis for the rule recommendations provided to an analytic system. According to one embodiment of the disclosure, the format of the rule recommendations is selected to reduce the amount of meta-information provided to the analytic system (i.e., exclude meta-information associated with events without a salient feature) and highlight the salient features. For example, the salient features may be highlighted by (1) altering the ordering of the meta-information associated with each event including one or more salient features in order to prominently display the salient feature(s); (2) modifying the visual perception of the salient features referenced in the meta-information (e.g. display window or portion of a window, color, size, type, style, and/or effects); (3) extracting the salient features and providing only the salient features to the analytic system; and/or (4) reordering the salient features within the meta-information for placement at a prescribed location within the meta-information. The last two examples may be used for automated rule generation where the extraction and/or ordering allow for parsing of the salient features and automated rule generation by logic implemented within the analytic system (e.g., artificial neural network logic).


Thereafter, one or more provisional malware detection rules (i.e., a Boolean logic representation of the salient features) are generated based on the rule recommendations, and these provisional malware detection rule(s) are tested at one or more cybersecurity systems. After a prescribed period of time, for each provisional malware detection rule, if the malware analysis performance results (telemetry) associated with that provisional malware detection rule conveys a number or rate of false positive (FP) classifications below a first test threshold and/or a number or rate of false negatives (FN) classifications below a prescribed second test threshold, where the first and second test thresholds may differ from each other, the provisional malware detection rule is uploaded to one or more cybersecurity systems as a final malware detection rule for detecting and blocking malware. Otherwise, the features associated with the provisional malware detection rules may undergo additional back testing in which some provisional malware detection rules associated with certain features may be removed and other provisional malware detection rules associated with additional features may be added in efforts to address the FPs and/or FNs.


As an illustrative example, the cybersecurity system, such as a cybersecurity appliance for example, may perform a malware detection analysis on an object and the detected events are collected and provided, directly or indirectly, to a rule generation system. The events may be captured at an operating system (OS) level in the VM or even outside the VM and relate to behaviors of the object. For this embodiment, the plurality of detected events are provided as an indexed aggregate of detected events sometimes referred to as an “Event report,” as shown in FIG. 2B. The rule generation system receives the Event report, selects the features associated with one or more of the detected events (where the features selected vary depending on the event type), and stores meta-information associated with each of the features in a data store accessible by the rule recommendation subsystem. The rule recommendation subsystem includes logic that (i) determines what event type pertains to a particular feature (as the feature may be extracted from meta-information associated with a particular event or a combination of events) and (ii) applies a specific ML (software) model to the feature, where the specific ML model corresponds to the particular event type or combination of event types. Based on the predicted results produced by the ML models, the rule recommendation subsystem generates one or more malware detection rule recommendations, which may be expressed in terms of the meta-information as shown in FIG. 2C (or another format) with the salient features highlighted. The malware detection rules (or provisional malware detection rules) may include a string of Boolean logic that, when processed, more accurately identifying objects associated with malware given the elimination (or at least substantial decrease) of the subjective component in malware detection rule generation.


According to one embodiment of the disclosure, the malware detection rule recommendations may be further altered based on testing and experiential knowledge by an analyst. The alteration of the rule recommendations may involve removal of, or modification or addition to some of these rule recommendations (i.e., selected malicious and/or suspicious features). The alteration of the rule recommendations can be further tested (verified) against known malicious events and known benign events to determine the suitability of finalized malware detection rules to be uploaded to the cybersecurity appliance. Through ML-based formulation of these rule recommendations, the generation of the finalized malware detection rules to address newly uncovered threats may be more quickly developed.


The rule generation system also comprises a pipeline for re-training the ML models, either on demand, or when the key performance indicators (KPI) deteriorates as determined using open source or commercial available tools. For instance, occasionally there may be new malware or threat actors with new TTP (Tactics, Techniques and Procedures) that can evade an existing ML model trained using stale training sets. When the KPI deteriorates, the rule generation system may alert a system administrator to re-train the supervised ML model on the new dataset with malware and goodware, so that the ML model can adapt to the constantly evolving threat landscape.


II. Terminology

In the following description, certain terminology is used to describe various features of the invention. For example, each of the terms “logic,” “system,” and “subsystem” may be representative of hardware, firmware or software that is configured to perform one or more functions. As hardware, the term logic (or engine or component) may include circuitry having data processing and/or storage functionality. Examples of such circuitry may include, but are not limited or restricted to a hardware processor (e.g., microprocessor, one or more processor cores, a digital signal processor, a programmable gate array, a microcontroller, an application specific integrated circuit “ASIC”, etc.), a semiconductor memory, or combinatorial elements.


Additionally, or in the alternative, the logic (or system or subsystem) may include software such as one or more processes, one or more instances, Application Programming Interface(s) (API), subroutine(s), function(s), applet(s), servlet(s), routine(s), source code, object code, shared library/dynamic link library (dll), or even one or more instructions. This software may be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of a non-transitory storage medium may include, but are not limited or restricted to a programmable circuit; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); or persistent storage such as non-volatile memory (e.g., read-only memory “ROM”, power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or a portable memory device. As firmware, the logic (or component) may be stored in persistent storage.


The term “object” generally relates to information having a logical structure or organization for malware analysis. The information may include an executable (e.g., an application, program, code segment, a script, dll or any file in a format that can be directly executed by a computer such as a file with an “.exe” extension, etc.), a non-executable (e.g., a file; any document such as a Portable Document Format “PDF” document; a word processing document such as Word® document; an electronic mail “email” message, web page, etc.), or simply a collection of related data (e.g., packets).


The term “computerized” generally represents that any corresponding operations are conducted by hardware in combination with software and/or firmware. The term “data store” generally refers to a data storage device such as the non-transitory storage medium described above, which provides non-persistent or persistent storage for the information (e.g., events). An “event” may be construed as an activity that is performed by an object during execution and/or the meta-information associated with the activity. The meta-information may include, but is not limited or restricted to event type (e.g., file command, mutex, time query, API call, etc.), object name, object path, hash value of the object, timestamp, process identifier, or the like.


According to one embodiment of the disclosure, the term “malware” may be broadly construed as any code, communication or activity that initiates or furthers a cyberattack. Malware may prompt or cause unauthorized, anomalous, unintended and/or unwanted behaviors or operations constituting a security compromise of information infrastructure. For instance, malware may correspond to a type of malicious computer code that, as an illustrative example, executes an exploit to take advantage of a vulnerability in a network, network device or software, to gain unauthorized access, harm or co-opt operations of the network, the network device or the software, or to misappropriate, modify or delete data. Alternatively, as another illustrative example, malware may correspond to information (e.g., executable code, script(s), data, command(s), etc.) that is designed to cause a network device to experience anomalous (unexpected or undesirable) behaviors. The anomalous behaviors may include a communication-based anomaly or an execution-based anomaly, which, for example, could (1) alter the functionality of a network device executing application software in an unauthorized or malicious manner; (2) alter the functionality of the network device executing that application software without any malicious intent; and/or (3) provide unwanted functionality which may be generally acceptable in another context.


The term “network device” may be construed as any electronic computing system with the capability of processing data and connecting to a network. The network may be a public network such as the Internet and/or a local (private) network such as an enterprise network, a wireless local area network (WLAN), a local area network (LAN), a wide area network (WAN), or the like. Examples of a network device may include, but are not limited or restricted to an endpoint (e.g., a laptop, a mobile phone, a tablet, a computer, a video console, a copier, etc.), a network appliance, a server, a router or other intermediary communication device, a firewall, etc.


The term “transmission medium” may be construed as a physical or logical communication path between two or more network devices or between components within a network device. For instance, as a physical communication path, wired and/or wireless interconnects in the form of electrical wiring, optical fiber, cable, bus trace, or a wireless channel using radio frequency (RF) or infrared (IR), may be used. A logical communication path may simply represent a communication path between two or more network devices or between components within a network device such as one or more Application Programming Interfaces (APIs).


Finally, the terms “or” and “and/or” as used herein are to be interpreted as inclusive or meaning any one or any combination. Therefore, “A, B or C” or “A, B and/or C” mean “any of the following: A; B; C; A and B; A and C; B and C; A, B and C.” An exception to this definition will occur only when a combination of elements, functions, steps or acts are in some way inherently mutually exclusive.


As this invention is susceptible to embodiments of many different forms, it is intended that the present disclosure is to be considered as an example of the principles of the invention and not intended to limit the invention to the specific embodiments shown and described.


III. General Architecture

Referring to FIG. 1, an exemplary block diagram of an embodiment of an architecture of an automated, cybersecurity protection service 100 is shown. Herein, the cybersecurity protection service 100 includes one or more cybersecurity systems 1101-110N (N≥1) communicatively coupled to a malware detection rule generation system (hereinafter, “rule generation system”) 120. Deployed for detecting and protecting a local network of a customer against cyberattacks, each of the cybersecurity systems 1101-110N is configured to analyze incoming objects for malware. Such analyses may include processing (e.g., executing) the objects, monitoring for selected events (e.g., behaviors) or combinations of events performed by the object during such processing, and capturing meta-information associated with any of these monitored events or combinations of events upon detection.


More specifically, each of the cybersecurity systems 1101-110N (e.g., cybersecurity system 1101) may be deployed as a network device, which is communicatively coupled to receive and analyze objects within network traffic (e.g., object of incoming network traffic, objects propagating in network traffic over a local network 130, etc.). As a network device, the cybersecurity system 1101 includes logic being physical components that analyze incoming objects for malware, such as a processor and memory including, in some embodiments, one or more virtual machines, software (e.g., OS(es), application(s), plug-in(s), etc.) to instantiate each of the virtual machines, and monitoring logic to monitor for certain events (e.g., behaviors) conducted by an object running in a virtual machine (VM). Alternatively, the cybersecurity system 1101 may be deployed as a virtual device, namely a software (daemon) agent to detect cyberattacks, which may operate in the foreground or background for a network device (e.g., an endpoint). For both of these deployments, component(s) within the cybersecurity system 1101 monitor for certain events performed by the object and collect meta-information associated with the events, which is provided to the rule generation system 120 for analysis. Stated differently, the collected meta-information may be obtained from a log as described above, such as a behavior log, endpoint dynamic behavior monitor log, or a static PE (portable execution) file that contains API calls, file accesses, etc.


Each of the cybersecurity systems 1101-110N (e.g., cybersecurity system 1101) may be deployed on-premises (e.g., as an edge network device for the local network 130, as a network device within the local network 130) to detect and analyze objects propagating into or through the local network 130 for malware. Alternatively, although not shown, each of the cybersecurity systems 1101-110N may be deployed as a cloud-based solution in which the objects (or a representation thereof) are captured at the local network 130 and submitted to at least one of the cloud-based cybersecurity systems 1101-110N. Additionally, although not shown, at least one of the cybersecurity systems 1101-110N (e.g., cybersecurity system 1101) may be deployed at an endpoint as a software agent operating in the background to analyze and monitor for certain behaviors by the object.


Referring still to FIG. 1, each of the cybersecurity systems 1101-110N is configured to transmit an analysis result 140 to the rule generation system 120. Such transmission may be aperiodic (e.g., upon completion of an analysis of a particular object, system crash, etc.) or periodic (e.g., after prescribed amount of time has elapsed, etc.). According to one embodiment of the disclosure, the analysis result 140 includes events detected during processing of a plurality of objects by the cybersecurity system 1101 and labels identifying classifications (e.g., benign, malicious) of each object of the plurality of objects. This collection of events may include, but is not limited or restricted to, meta-information association with each monitored event performed, for example, by the object during processing within one or more virtual machines (or by a software agent) deployed within the cybersecurity system 1101. The analysis result 140 may be used by the rule generation system 120 as training data for a plurality of machine learning (ML) models deployed within the rule generation system 120, as described below.


As shown in FIG. 1, the rule generation system 120 may be implemented within a dedicated network device, which is located remotely from the cybersecurity systems 1101-110N. As an illustrative embodiment, the rule generation system 120 may be deployed as logic being part of a public cloud computing service or a private cloud computing service (e.g., private cloud, a virtual private cloud or a hybrid cloud). When operating as part of a public cloud computing service, the rule generation system 120 is communicatively coupled to each of the cybersecurity systems 1101-110N via a public network, as public cloud computing services support a multi-tenant environment. In contrast, when operating as part of a private cloud computing service, the rule generation system 120 may be communicatively coupled to a single cybersecurity system (e.g., cybersecurity system 1101) where each of the cybersecurity systems 1101-110N is associated with a different customer, as private cloud computing services support a single-tenant environment.


Besides the analysis results 140, the rule generation system 120 further receives an event summary 150, namely a plurality of events being monitored and detected during processing of a particular object upon which more in-depth analysis is requested. This particular object may correspond to an object upon which a malware detection analysis by the cybersecurity system 1101 has completed. For example, the particular object may correspond to an object that, based on telemetry (e.g., malware analysis performance results), has been incorrectly classified in a prior malware detection analysis by the cybersecurity system 1101 (e.g., FP or FN misclassification). The telemetry may be stored remotely from the rule generation system such as within a private cloud service, public cloud service or other scalable “big data” platform.


According to one embodiment of the disclosure, the event summary 150 may be provided as an indexed aggregate of the detected events for the particular object (hereinafter, “Event report 150”). Based on receipt of the events 152 included in the Event report 150 as shown in FIG. 2B, the rule generation system 120 generates one or more malware detection rule recommendations (hereinafter, “rule recommendations”) 160. The rule recommendations 160 may be represented as a reduced subset of the events included in the Event report. Additionally, each rule recommendation may further include features 164 (i.e. portions the meta-information associated with its corresponding event) being highlighted to identify the salient features from which provisional (and/or final) malware detection rules are generated.


According to one embodiment of the disclosure, as shown in FIG. 1, the rule recommendations 160 may be further altered automatically (and in real-time) by a network device (e.g., analytic system 170) or the rule recommendations 160 may be altered by an analyst relying on experiential knowledge. The alteration of the rule recommendations 160 may involve removal of, modification or addition to the salient features relied upon in the generation of the rule recommendations 160. The removal or addition of salient features may be accomplished by issuance of a rule modification message 180 from the analytic system 170, which may be initiated by an analyst performing an action on a graphic user interface (GUI) that causes an increase or decrease in number of proposed features that may be used in the generation of provisional malware detection rules 190. The action may include altering a sliding bar to change one or more threshold (score) parameters that defines whether a salient feature is malicious or benign or selecting a radio button to increase/decrease the number of events provided.


Herein, the removal or addition of salient features may be accomplished by issuance of the rule modification message 180 from the analytic system 170, which may cause the rule generation system 120 to increase or decrease at least one threshold parameter used in selecting the salient features and reissue new rule recommendations 185. According to one embodiment, removal or addition of a salient feature by the rule generation system 120 may be accomplished by returning the feature to a non-highlighted or highlighted form and the newly added salient features may be highlighted in the same manner or perhaps in a different manner to more easily identify the new salient features from the prior salient features.


As a first illustrative example, the rule modification message 180 may request a decrease/increase in a first score threshold utilized by the rule generation system 120, where the first score threshold identifies whether a scored feature is “malicious” upon exceeding the first score threshold. Hence, an increase or decrease of the first score threshold caused by the rule modification message 180 may decrease or increase the number of salient features selected for rule consideration. Additionally or as an alternative, as a second illustrative example, the rule modification message 180 may request a decrease/increase in a second score threshold utilized by the rule generation system 120, where the second score threshold identifies whether a scored feature is “benign” upon falling below the second score threshold. Hence, an increase or decrease of the second score threshold caused by the rule modification message 180 may increase or decrease the number of salient “benign” features selected for rule consideration.


Once the rule recommendations are finalized at the analytic system 170, provisional malware detection rules 190 are generated from the finalized rule recommendations. The analytic system 170 transmits the provisional malware detection rules 190 via network 195 to one or more of the cybersecurity systems 1101-110N (e.g., cybersecurity system 1101) for initial testing and, generally, verification. Further verification may be conducted by analysis of the operability of the cybersecurity systems 1101-110N and the results of the verification may be reported therefrom or the analytic system 170.


Referring now to FIG. 2A, an exemplary embodiment of a logical representation of the cybersecurity protection service 100 including the rule generation system 120 to expedite generation of malware detection rules that control operation of the cybersecurity system 1101 of FIG. 1 is shown. Herein, as shown, the cybersecurity system 1101 is communicatively coupled to the rule generation system 120 via a transmission medium 200. For instance, at or near completion of a malware analysis of an object 210 received as input, the cybersecurity system 1101 transmits the OS Change report 150 as shown in FIG. 2B for receipt by the rule generation system 120. As shown, the Event report 150 may be sent indirectly to the rule generation system 120 via the analytic system 170, or the Event report 150 may be sent directly to the rule generation system 120.


Upon receipt of the Event report 150 from the cybersecurity system 1101, the rule generation system 120 parses the Event report 150 to identify and extract meta-information associated with the monitored events. The rule generation system 120 further selects features from the extracted meta-information and conducts an analysis of each feature, using machine learning (ML) models (not shown), to predict the salient features, namely the features having a higher likelihood of assisting in the classification of an object. Herein, each of the ML models is specifically configured to analyze features associated with a different event type and a measure of the predicted likelihood may be referred to as a “score.” The ML models are trained, in accordance with supervised learning, using at least the analysis results 140 from the cybersecurity system 1101 as a training set. It is contemplated that other data, besides the analysis results 140 (e.g., third party data, etc.) may be used in training the ML models, as described below.


Based on the scores assigned to the analyzed features, the rule generation system 120 operates as a filter by (i) reducing the number of analyzed features to be considered as salient features (referred to as “potential salient features”) to a first subset of analyzed features, and (ii) further reducing the first subset of analyzed features to a second subset of analyzed features that represent the salient features. According to one embodiment of the disclosure, the potential salient features may be determined by selecting the analyzed features having an assigned score that meets or exceeds a first score threshold (malicious features) and/or analyzed features having an assigned score that meets or falls below a second score threshold (benign features). Thereafter, the salient features may be determined by restricting the number of features associated with an event type from exceeding a maximum event threshold. This may be accomplished by retaining the features for each event type having the highest and/or lowest scores.


According to one embodiment of the disclosure, referring back to FIG. 2A, the analytic system 170 is configured to evaluate and/or alter (e.g., remove, modify, or add) any of the rule recommendations 160 based on experiential knowledge by an analyst at least partially controlling operations of the analytic system 170. Herein, the analyst may be logic coded to determine the salient features based on the assigned score to each feature, which represents the degree of association by the feature with malware or a malicious activity. The logic may be artificial neural network logic (i.e., logic designed and trained to recognize patterns in order to classify incoming data as malicious or benign such as a convolutional neural network “CNN,” recurrent neural network “RNN,” or the like). Thus, the entire process of rule recommendation, verification, and roll-out to the cybersecurity systems is automated. Alternatively, the analyst may be a human analyst.


Thereafter, when finalized, the rule recommendations 160 (or the new rule recommendations 185 in response to alteration of the rule recommendations 160) may be converted into one or more provisional (i.e. recommended) malware detection rules 190. Each provisional malware detection rule 190 may be tested against a searchable data store 220 including meta-information associated with known malware and/or known goodware to determine the suitability of the provisional malware detection rule 190, as shown in FIG. 4. Also, the provisional malware detection rules 190 are provided from the analytic system 170 to the cybersecurity system 1101 via transmission medium 200. The provisional malware detection rules 190 may operate as provisional malware detection rules for the cybersecurity system 1101, where telemetry (e.g., performance results) are collected and verified to determine FP/FN results associated with the provisional malware detection rules 190 over a prescribed period of time. In the event that the number of FP/FN results fall below a prescribed threshold, the provisional malware detection rules 190 may be finalized and provided to the cybersecurity system 1101 for use in malware detection and/or remediation of any uncovered malware (e.g., blocking objects, logging objects for forensic analysis, etc.).


Referring to FIG. 3, an illustrative embodiment of the rule generation system 120 of FIGS. 1-2A is shown. Herein, the rule generation system 120 features a plurality of components 300, including a processor 310, a network interface 320, a memory 330, an administrative interface 340 and an analyst interface 350, which are communicatively coupled together via a transmission medium 360. As shown, when deployed as a physical network device, the components 300 are at least partially encased in a housing 370 made entirely or partially of a rigid material (e.g., hardened plastic, metal, glass, composite, or any combination thereof). The housing 370 protects these components from environmental conditions. As a virtual device, however, the rule generation system 120 is directed to some or all of the logic within the memory 330.


The processor 310 is a multi-purpose, programmable component that accepts digital data as input, processes the input data according to stored instructions, and provides results as output. One example of a processor may include an Intel® x86 central processing unit (CPU) with an instruction set architecture. Alternatively, the processor 310 may include another type of CPU, a digital signal processor (DSP), an Application Specific Integrated Circuit (ASIC), a field-programmable gate array (FPGA), or the like.


As shown in FIG. 3, the processor 310 is communicatively coupled to the memory 330 via the transmission medium 360. According to one embodiment of the disclosure, the memory 330 is adapted to store (i) receiver logic 380 and (ii) rule recommendation subsystem 390. The receiver logic 380 includes a parser 385 that parses the Event report 150 received via the network interface 320 in accordance with event type as well as identifies and extracts meta-information 325 associated with each event. The meta-information 325 associated with the events is stored in data store 335. The rule recommendation subsystem 390 is configured to generate rule recommendations 160, which are output via the network interface 320. The provisional (and final set of) malware detection rules are formulated and verified, as described below in FIGS. 4-6. It is contemplated that the certain components (e.g., reporting logic, testing logic, rule distribution/transmission logic, etc.) may be deployed in the analytic system, separate from the rule generation system 120, to control the dispersion of rule recommendations and/or provisional rules.


The administrative interface 340 is a portal that allows an administrator, after credential exchange and authentication, to access and update logic stored within the memory 330 of the rule generation system 120. For instance, the administrative interface 340 may include authentication logic (not shown) to authenticate an administrator requesting access to stored logic within the rule generation system 120. Upon authentication, the administrator is able to modify (i) the parser 385 of the receiver 380 to change parsing operations as well as the type of events to be parsed from the Event report 150 and (ii) the rule recommendation subsystem 390 to alter one or more of the machine learning models (not shown) corresponding to the event types being parsed by the parser 385 in efforts to more quickly and more accurately generate malware detection rules based on the results produced from the ML models.


As an optional interface, the analyst interface 350 is a portal that allows an analyst, after credential exchange and authentication, to access and update stored meta-information associated with monitored events within the data store 335. For instance, the analyst interface 350 may provide a graphics user interface (GUI) that allows an analyst to conduct search queries for different events based on a variety of search parameters. For instance, the search parameters may be directed to the type of event, a source (upload and/or originating) or time of occurrence as the meta-information for each event provided by the Event report 150 may include, but is not limited or restricted to (i) event type, (ii) time of occurrence (timestamp), (iii) a path for accessing the object under analysis (i.e., file path in memory), (iv) identifier associated with, e.g., hash value of, the object under analysis, and/or (v) process identifier for the process running during detection of the event, or the like. Additionally, the analyst interface 350 allows for adjustment of the score threshold(s) to adjust the throughput of salient features.


Referring now to FIG. 4, an exemplary embodiment of a logical representation of the rule generation system 120 of FIGS. 1-2A is shown. The rule generation system 120 features (i) the receiver logic 380, which includes at least the parser 385 and feature extraction logic 410, (ii) the data store 335, and (iii) the rule recommendation subsystem 390. As shown, the parser 385 is configured to receive the Event report 150 and parse the Event report 150 based on a plurality of event types. These plurality of event types may be permanently set (static) or may be modifiable (dynamic) through a control message 400 uploaded to the parser 385 via the administrative interface 340 or the analyst interface 350 of FIG. 3. As shown, the parser 385 is configured to identify the plurality of event types included in the Event report 150, extract meta-information 325 included in the Event report 150, and organize the meta-information 325 according to event type. Illustrative examples of the event types may include, but are not limited or restricted to (i) registry key changes, (ii) mutex being a program object allowing multiple program threads to share the same resource (e.g., file access); (iii) file command (e.g., Open-( ), Close( ), Create( ), etc.); (iv) API call, or the like.


More specifically, the parser 385 may be configured to extract the meta-information 325 associated with each of the event types. As an illustrative example, where the event pertains to a file operation (e.g., Open( )); file command), the meta-information 325 may identify the type of event (e.g., file Open( )); file path URL, file size, time of occurrence of the Open( ) command (e.g., timestamp value), the name of the file being opened (filename), and/or hash value of the file. Additionally, or in the alternative, the parser 385 may be configured to generate the meta-information 325 associated with a selected event type, such as an aggregation of the number of activities associated with the identified event (e.g., the number API calls directed to a particular API within a prescribed period of time, the number of times that a SLEEP command is called within a prescribed period of time, etc.). The extracted and/or generated meta-information 325 may be placed into a readable format and the formatted meta-information 405 is provided to both the feature extraction logic 410 and a searchable data store 220 of labeled events associated with known malware and known goodware. Alternatively, the extracted and/or generated meta-information may be placed into a format that may be parsed and/or processed automatically without human intervention.


The feature extraction logic 410 extracts features 430 from the formatted meta-information 405, where the features 430 may be categorized as either (1) a portion of the formatted meta-information 405 where an occurrence of the formatted meta-information 405 may represent a useful factor in determine a level of maliciousness of an object, or (2) repetitive patterns within text of the formatted meta-information 405 discovered using a sliding window (e.g., N-Gram, Skip-Gram, etc.), which may lead to rule candidate patterns. For example, one of the features 430 may constitute the portion of the formatted meta-information 405 in which an occurrence of particular meta-information is discovered (e.g., object hash value, path identifying location of the object, API name, or any combination thereof). Additionally, or in the alternative, one or the features 430 may constitute a parameter provided in response to at least a prescribed number of occurrences (aggregate) of a particular event (e.g., API calls, Sleep function calls, etc.) within a determined period of time.


It is contemplated that, for some embodiments, the particular features selected from meta-information 325 associated with an event may depend on the event type. For instance, where the event is directed to behaviors conducted by a file within a virtual machine, the features may be directed to content specific to that file that may be more difficult to change (e.g., hash value of the file, file path, etc.) instead of more easily modified content (e.g., filename). Such features, when used as a basis for malware detection rules, are more dispositive in determining whether such features represent that the object is malware or benign.


Thereafter, according to one embodiment of the disclosure, the features 430 are made available to the rule recommendation subsystem 390. As shown, the feature extraction logic 410 stores the features 430 in the data store 335, which is accessible by the rule recommendation subsystem 390. Alternatively, the feature extraction logic 410 may be configured to provide each extracted feature to a corresponding one of a plurality of machine learning (ML) models 440 specific to that identified event type (or combination of events).


Referring still to FIG. 4, the rule recommendation subsystem 390 includes the plurality of ML models 440 each configured to predict a likelihood (represented by a score) of a feature (and its corresponding event) being associated with malware. Herein, each of the plurality of ML models 440 corresponds to a specific event type or a specific combination of events. As an illustrative example, a first ML model 442 may be applied to one or more features from a first event type (event A) received from the feature extraction logic 410 to determine whether the feature is indicative of a potentially malicious behavior while a second ML model 444 may be applied to one or more features from a second event type (event B) and a third ML model 446 may be applied to features from a combination of events (events A&B) to determine whether certain types of features (or combination of features) are indicative of a potentially malicious behavior. Besides generation of a predicted score for a feature, each of the ML models 440 may produce a description, including alphanumeric characters and/or symbols, identifying the prime factors in generation of the assigned score. The description may be added as part of a rule recommendation 160.


In addition to providing the extracted features 430 to the rule recommendation subsystem 390, the feature extraction logic 410 may be configured to conduct a sliding window analysis on incoming meta-information 405 associated with the features to detect the presence of a particular event pattern within the sliding window over a prescribed period of time. The sliding window analysis may be conducted by analyzing timestamps maintained as part of the features and determining a count value representing the number of occurrences (aggregate) of a particular event that occur during a determined period of time. The count value is provided to one or more of the plurality of machine learning (ML) models (e.g., fourth ML model 448), which determines a score for the repetitive occurrence of a particular event. For the fourth ML model 448, the frequency of the event, not the meta-information of the event, determines the likelihood of the particular events denoting a presence of malware.


As also shown in FIG. 4, the rule recommendation subsystem 390 further includes predictive filtering logic 450 and weighting logic 455. The weighting logic 455 is configured to adjust a score associated with a feature in order to take into account that certain features may tend to be more useful in successfully performing a malware detection analysis than other features. The predictive filtering logic 450 may be configured to analyze the scores associated with each feature analyzed by one of the ML models 440 to discover the most salient features to which malware detection rules should be directed.


According to one embodiment of the disclosure, the predictive filtering logic 450 automatically selects a plurality of features (or a combination of features) that are predicted, based on their score values, to operate as the salient features in the formation of the rule recommendations 160. These salient features may be restricted in number (i) on a per object basis (e.g., maximum number of salient features in total may not exceed a first feature threshold such as 20 salient features) and/or (ii) on a per event type basis (e.g., maximum number of salient features per event type may not exceed a second feature threshold such as 4 features per event type). In many analyses, the rule recommendations 160 will include salient features for some, but not all, of the event types.


In light of the foregoing, the predictive filtering logic 450 is configured to exclude, from the rule recommendations 160, those features that may be less effective for detecting malware. As a result, where the score for a feature (or combination of features) exceeds the first score threshold, the predictive filtering logic 450 may include that feature (or combination of features) as part of the rule recommendations 160, provided the per event type restriction (described above) is maintained. Each rule recommendation 160 may include the same syntax as the feature (e.g., a string of meta-information as shown in FIG. 2C) or may include a different syntax (e.g., Boolean logic representation). The rule recommendations 160 are provided to the analytic system 170 for verification.


According to one embodiment of the disclosure, rule recommendation verification may be accomplished by conducting query searches 460 to evaluate the rule recommendations 160, where the query searches 460 are directed to evaluating each salient feature of the rule recommendations 160 with features are associated with known malicious objects and/or benign objects maintained by the data store 220. The data store 220 may be positioned locally to the analytic system 170 or remotely therefrom (e.g., within a cloud service).


Upon initial verification of their applicability in accurately detecting an object incorrectly classified by a cybersecurity system based on the Event report 150 provided, the rule recommendations 160 are translated into provisional malware detection rules 190, which are uploaded to at least one cybersecurity system 1101 for malware detection and, in some embodiments, for subsequent use in malware blocking as a final set of malware detection rules once the provisional malware detection rules 190 have been confirmed to operate satisfactorily in the field (e.g., the number of detected FP as determined by the telemetry does not exceed corresponding thresholds). According to one embodiment of the disclosure, if the rule recommendations 160 require an additional iteration before the rule translation (i.e., more rule recommendations are requested), the rule recommendations 160 (or a portion thereof) may be returned to the rule recommendation subsystem 390 and the new rule modification 185 may be generated for features that were previously filtered from the rule recommendations 160.


Where the malware detection rules 190 are determined to be operating unsatisfactorily unreliable (e.g., the number of detected FP exceeds the corresponding thresholds), the rule modification message 180 from the analytic system 170 may cause the rule generation system 120 to supplement the recommended rules 190.


Referring now to FIG. 5, an illustrative embodiment of an operations performed during training of the rule recommendation subsystem 390 of FIG. 4 being trained through supervised learning is shown. Herein, the analysis results 140 operating as a training set is provided as input to the rule recommendation subsystem 390 during a training session. The analysis results 140 includes meta-information associated with one or more labeled events 500, where each of the labeled events 500 may correspond to either a known malicious event 510 of a particular event type and/or particular combination of events or a known benign event 520 of the particular event type and/or event combination. A distributed ML training engine 530 is configured to receive the labeled events (e.g., malicious events 510 such as event B 540 and event combination A&B 550 and/or benign events 520 such as event A 560), and in response, to update and verify the plurality of ML models 440 for use in generating the recommended rules that predict a threat level (malicious or benign) of the monitored event.


Referring now to FIG. 6, an illustrative embodiment of an operations performed by the rule recommendation subsystem 390 of FIG. 4 to automatically filter and generate malware detection rule recommendations pertaining to different event types. The rule recommendation subsystem 390 is configured to identify and extract meta-information included in the Event report 150 according to certain event types being monitored (operation 600). In particular, the parser is configured to extract meta-information associated with a first set of events (or combination of events) and/or generate meta-information associated with a second set of event types. The first set of events may be mutually exclusive from the second set of events. Herein, from the first and second sets of events, feature A, feature B and the combination of features A&B are extracted from the first set of events (operation 610). For each event type or event combination, a corresponding ML model is applied to the extracted features for that event type or event combination (operation 620).


More specifically, the plurality of ML models are configured for a corresponding plurality of event types and/or combination or sequences of events. Stated differently, each ML model of the plurality of ML models corresponds to a specific event type or event combination and is applied to features associated with the specific event type or event combination. As an illustrative example, the first ML model 442 may be applied to features associated with a first event type (feature A) to determine whether the feature (and corresponding event type) is indicative of a potentially malicious behavior while the second ML model 444 may be applied to features associated with a second event type (feature B) and the fourth ML model 448 may be applied to features associated with a combination of events (features A&B) to determine whether features associated with certain events (or the combination of events) are indicative of a potentially malicious behavior.


According to one embodiment of the disclosure, upon being applied to features associated with a first event type (feature A), the first ML model 442 generates a score representing a scale (e.g., from highest to lowest or lowest to highest) as to the level of correlation between the feature associated with a first event type (feature A) and a level of maliciousness (e.g., association with malware). The same operations are performed by a second ML model 444, which may be applied to features associated with a second event type (feature B), and/or a third ML model 446 may be applied to features associated with a combination of events (features A&B) to determine whether features associated with a particular event (or a combination of events) are indicative of a finding of maliciousness.


Thereafter, according to one embodiment of the disclosure, predictive filtering logic may be configured to analyze the scores associated with each event type and automatically select a prescribed number of features that are predicted, based on the score values, to achieve a higher likelihood of being associated with malware (operations 630 and 640). The prescribed number of features for each event type (or combination of events) form as rule recommendations. Hence, the predictive filtering logic excludes those features that are less effective features for detecting malware from the rule recommendations. Alternatively, according to another embodiment of the disclosure, the predictive filtering logic may be configured to analyze the scores associated with each event type and display the salient features (and score values) on a graphic user interface (GUI) accessible via the administrator interface 340 and/or the analyst interface 350 of FIG. 3 (operation 650). The salient features exceeding a prescribed threshold may be highlighted, but additional features may be selected as part of the rule recommendations or the recommended features may be substituted for other features selected by the analyst for generating the rule recommendations (operation 660).


Referring now to FIG. 7, an illustrative embodiment of a flowchart outlining the operations conducted by the rule generation system 120 of FIG. 4 is shown. Herein, a plurality of events detected during processing of an object by a cybersecurity system are received (block 700). These events may be provided from the cybersecurity system or retrieved from a data store utilized by the cybersecurity system. One or more features are extracted from the meta-information associated with each of the plurality of events (block 710). The feature(s) may correspond to a particular portion of the meta-information or a repetitive pattern.


Thereafter, a ML model is selected for each feature according to event type (i.e. event type from which the feature was extracted), where the ML models are trained to process features extracted from specific event type (operation 720). A ML model of a plurality of ML models is applied to each feature according to event type or combination of events (i.e., the event type from which the feature was extracted), where the ML models generate predicted scores associated with each feature (operation 730).


After applying the ML models to each feature, the salient features are determined from the totality of analyzed (modeled) features based on the assigned score (with any optional weighting applied) and taking into account a limit on the maximum number of features per event type (operation 740). As an illustrative example, a first subset of analyzed features (potential salient features) are selected for those features having an assigned score that either (i) meets or exceeds a first score threshold (malicious features) or (ii) meets or falls below a second score threshold (benign features). Thereafter, the salient features are determined from the potential salient features by restricting the number of features associated with an event type from exceeding a maximum event threshold (e.g., less than 5 events, less than 3 events, etc.). Therefore, not all of the event types monitored by the rules generation system may be represented by a salient feature.


Based on these salient features, rule recommendations are generated (operation 750). According to one embodiment of the disclosure, the rule recommendation includes the salient features along with meta-information associated with the event from which the features were extracted.


Thereafter, the rule recommendations are verified by comparing the salient features to features associated with known malware and/or known goodware (operation 760). This verification may be conducted within the same network, same public cloud computing service or same private cloud computing service in which the rule generation system is deployed. If the rule recommendations are verified, the salient features are used as a basis for generation of the provisional malware detection rules that control malware detection analyses by one or more cybersecurity appliance, and the provisional malware detection rules are uploaded to the cybersecurity appliance for use (operations 770 & 780). Alternatively, if the rule recommendations are not verified (i.e., local testing results in FP and/or FN exceeding a prescribed threshold), the rule recommendations may be altered by adjusting a threshold parameter (e.g., decrease/increase the first score threshold or increase/decrease the second score threshold) used in selecting the salient features. This adjust may cause reissuance of a new set of rule recommendations (operations 790) for verification and roll-out.


In the foregoing description, the invention is described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims.

Claims
  • 1. A computerized method for generating rule recommendations utilized in a creation of malware detection rules, the method comprising: receiving meta-information associated with a plurality of events collected during a malware detection analysis of an object by a cybersecurity system and stored in a non-transitory storage medium;selecting a first plurality of features from the received meta-information stored in the non-transitory storage medium, each of the first plurality of features being a portion of the meta-information associated with one or more events of the plurality of events;applying a machine learning (ML) model of a plurality of ML models to each of the first plurality of features to generate a score, each score representing a level of maliciousness for each of the first plurality of features;based on the scores generated for each of the first plurality of features, selecting a second plurality of features as salient features, the second plurality of features being a subset of the first plurality of features, the salient features being discriminative in differentiating a malicious event from a benign event; andgenerating the rule recommendations being used to produce the malware detection rules based on the selected salient features and transmitting the malware detection rules to one or more cybersecurity systems.
  • 2. The computerized method of claim 1, wherein the selecting of the first plurality of features includes identifying a plurality of event types associated with the meta-information and selecting one or more features of the first plurality of features associated with each event type, each of the one or more features associated with each event type, being used as the basis for the malware detection rules, are more dispositive in determining a classification for objects analyzed by the cybersecurity system than remaining features associated with each event type.
  • 3. The computerized method of claim 1, wherein the applying of the machine learning model includes identifying a first feature of the first plurality of features being associated with a first event type and applying a first ML model of the plurality of ML models to the first feature to generate a score representing a level of maliciousness for the first feature, the first ML model being a machine learning model specific to the first event type.
  • 4. The computerized method of claim 3, wherein the applying of the machine learning model further includes identifying a second feature of the first plurality of features being associated with a second event type and applying a second ML model of the plurality of ML models to the second feature to generate a score, the second ML model being a machine learning model specific to the second event type.
  • 5. The computerized method of claim 3, wherein the applying of the machine learning model further includes identifying a second feature of the first plurality of features being associated with the first event type and applying the first ML model of the plurality of ML models to the second feature to generate a score representing a level of maliciousness for the second feature.
  • 6. The computerized method of claim 5, wherein the selecting of the second plurality of features as the salient features includes selecting the second feature representative of the first event type based on the score of the second feature exceeding the score of the first feature.
  • 7. The computerized method of claim 1, wherein each of the rule recommendations includes the meta-information for events of the plurality of events that include at least one salient feature of the salient features being highlighted on a graphical user interface accessible via an administrator interface or analyst interface.
  • 8. The computerized method of claim 7, wherein the highlighting of the at least one salient feature includes reordering the at least one salient feature within the meta-information for an event placement at a prescribed location within the meta-information to assist in parsing of the at least one salient feature from the meta-information.
  • 9. The computerized method of claim 1, wherein the applying of the ML model further generates a description identifying prime factors in generation of the score, the description being provided with the rule recommendations.
  • 10. The computerized method of claim 1 further comprising: accessing the rule recommendations and extracting the salient features, the salient features being used as a basis for generating the malware detection rules.
  • 11. The computerized method of claim 1 further comprising: verifying reliability of the rule recommendations by analysis of the salient features being features associated with known malware and known goodware.
  • 12. The computerized method of claim 1, wherein the rule recommendations being based on the plurality of events collected during the malware detection analysis of the object conducted during static analysis of the object in which characteristics of the object are analyzed without execution of the object.
  • 13. The computerized method of claim 1, wherein the rule recommendations being based on the plurality of events collected during the malware detection analysis of the object conducted during execution of the object within a virtual machine.
  • 14. The computerized method of claim 1, wherein the rule recommendations being based on the plurality of events collected during the malware detection analysis of the object conducted during initial classification of the object at the cybersecurity system in determining whether the object is potentially associated with malware or benign.
  • 15. The computerized method of claim 1, wherein an aggregate of a first feature of the first plurality of features is considered when generating a score associated with the first feature.
  • 16. The computerized method of claim 15, wherein an aggregate associated with each feature is considered by a ML model of the one or more ML models of the plurality of ML models when generating the score.
  • 17. The computerized method of claim 1, wherein each of the plurality of ML models comprises executable software.
  • 18. The computerized method of claim 1, wherein a score assigned to a feature of the first plurality of features can be adjusted based on a selected weighting scheme.
  • 19. The computerized method of claim 1, wherein each of the plurality of ML models generating a result including the score and information supporting or explaining a rationale behind the score.
  • 20. The computerized method of claim 1, wherein each of the salient features includes a prediction score that surpasses a selected threshold.
  • 21. The computerized method of claim 1, wherein one or more ML models of the plurality of ML models perform operations on features directed to a different event type.
  • 22. The computerized method of claim 1, wherein one or more ML models of the plurality of ML models are configured to analyze parameters that are based on an aggregate of the first plurality of features occurring within a set time period or an absence of certain features.
  • 23. A rule generation system for generating rule recommendations utilized in a creation of malware detection rules, comprising: a parser, stored in one or more non-transitory storage mediums, configured to extract meta-information associated with a plurality of events received as part of results of a malware detection analysis of an object conducted by a cybersecurity system, each of the plurality of events includes a monitored characteristic or behavior detected during the malware detection analysis of the object;a feature extraction logic communicatively coupled to the parser and stored in the one or more non-transitory storage mediums, the feature extraction logic to select a first plurality of features from the received meta-information, each of the first plurality of features being a portion of the meta-information associated with an one or more events of the plurality of events; anda rule recommendation subsystem communicatively coupled to the feature extraction logic and stored in the one or more non-transitory storage mediums, the rule recommendation subsystem comprises a plurality of machine learning (ML) models each directed to a specific event or a specific group of events of the plurality of events, the rule recommendation subsystem to apply one or more ML models of the plurality of ML models to the first plurality of features and each of the one or more ML models generates a score for each of the first plurality of features to which each is applied, each score representing a level of confidence of maliciousness, anda predictive filtering logic configured to, based on the scores generated for each of the first plurality of features, select a second plurality of features as salient features the second plurality of features being a subset of the first plurality of features, the salient features being discriminative in differentiating a malicious event from a benign event; andwherein the rule recommendation subsystem generating rule recommendations being used to produce the malware detection rules based on the selected salient features.
  • 24. The rule generation system of claim 23, wherein the feature extraction logic being configured to select the first plurality of features and coordinate a supply of (i) a first subset of the first plurality of features associated with a first event type of a plurality of event types to a first ML model of the plurality of ML models and (ii)) a second subset of the first plurality of features associated with a second event type of the plurality of event types to a second ML model of the plurality of ML models.
  • 25. The rule generation system of claim 23, wherein the feature extraction logic to select the first plurality of features by at least identifying a plurality of event types associated with the meta-information and selecting one or more features associated with each event type, each of the one or more features associated with each event type, being used as the basis for the malware detection rules, is more dispositive in determining a classification for objects analyzed by the cybersecurity system than remaining features associated with each event type.
  • 26. The rule generation system of claim 23, wherein the rule recommendation subsystem to apply the one or more ML models by at least identifying a first feature of the first plurality of features being associated with a first event type and applying a first ML model of the plurality of ML models to the first feature to generate a score representing a level of maliciousness for the first feature, the first ML model being a machine learning model specific to the first event type.
  • 27. The rule generation system of claim 26, wherein the rule recommendation subsystem to further apply the ML model by at least identifying a second feature of the first plurality of features being associated with a second event type and applying a second ML model of the plurality of ML models to the second feature to generate a score, the second ML model being a machine learning model specific to the second event type.
  • 28. The rule generation system of claim 26, wherein the rule recommendation subsystem to further apply the one or more ML models by at least identifying a second feature of the first plurality of features being associated with the first event type and applying the first ML model of the plurality of ML models to the second feature to generate a score representing a level of maliciousness for the second feature.
  • 29. The rule generation system of claim 26, wherein the predictive filter logic to select the second plurality of features as the salient features based on scores generated for each of the first plurality of features, the second plurality of features being a subset of the first plurality of features.
  • 30. The rule generation system of claim 23, wherein the predictive filtering logic further generating the rule recommendations, each of the rule recommendations includes the meta-information for events of the plurality of events that include at least one salient feature and the at least one salient feature being highlighted on a graphical user interface accessible via an administrator interface or analyst interface.
  • 31. The rule generation system of claim 30, wherein the highlighting of the at least one salient feature includes reordering the at least one salient feature within the meta-information for an event placement at a prescribed location within the meta-information to assist in parsing of the at least one salient feature from the meta-information.
  • 32. The rule generation system of claim 30, wherein the applying of the ML model by the rule recommendation subsystem further generates a description identifying prime factors in generation of the score, the description being provided with the rule recommendations.
  • 33. The rule generation system of claim 23, wherein one or more ML models of the plurality of ML models perform operations on features directed to a different event type.
  • 34. The rule generation system of claim 23, wherein one or more ML models of the plurality of ML models are configured to analyze parameters that are based on an aggregate of the first plurality of features occurring within a set time period or an absence of certain features.
  • 35. A cloud-based system comprising: a rule generation system for generating rule recommendations utilized in a creation of malware detection rules, the rule generation system includes one or more non-transitory storage mediums that stores logic that comprise (i) a parser configured to extract meta-information associated with a plurality of events received as part of downloaded results of a malware detection analysis of an object conducted by a cybersecurity system, (ii) a feature extraction logic to select a first plurality of features from the received meta-information, each of the first plurality of features being a portion of the meta-information associated with one or more events of the plurality of events, and (iii) a rule recommendation subsystem including (a) a plurality of machine learning (ML) models each directed to a specific event or group of events of the plurality of events, the rule recommendation subsystem to apply one or more ML models to the first plurality of features and the one or more ML models generates a score for each of the first plurality of features to which the one or more ML models is applied representing a level of maliciousness for the feature and thereby usefulness of the feature in classifying the object as malicious or benign based on this feature, (b) a predictive filtering logic configured to (1) select a second plurality of features as salient features, the second plurality of features being a subset of the first plurality of features and the salient features being discriminative in differentiating a malicious event from a benign event, and (2) generate rule recommendations being used to produce the malware detection rules based on the selected salient features and transmitting the malware detection rules to one or more cybersecurity systems; andanalytic system communicatively coupled to the rule recommendation subsystem of the rule generation system, the analytic system to receive the rule recommendations and generate the malware detection rules based on the rule recommendations.
US Referenced Citations (727)
Number Name Date Kind
4292580 Ott et al. Sep 1981 A
5175732 Hendel et al. Dec 1992 A
5319776 Hile et al. Jun 1994 A
5440723 Arnold et al. Aug 1995 A
5490249 Miller Feb 1996 A
5657473 Killean et al. Aug 1997 A
5802277 Cowlard Sep 1998 A
5842002 Schnurer et al. Nov 1998 A
5960170 Chen et al. Sep 1999 A
5978917 Chi Nov 1999 A
5983348 Ji Nov 1999 A
6088803 Tso et al. Jul 2000 A
6092194 Touboul Jul 2000 A
6094677 Capek et al. Jul 2000 A
6108799 Boulay et al. Aug 2000 A
6154844 Touboul et al. Nov 2000 A
6269330 Cidon et al. Jul 2001 B1
6272641 Ji Aug 2001 B1
6279113 Vaidya Aug 2001 B1
6298445 Shostack et al. Oct 2001 B1
6357008 Nachenberg Mar 2002 B1
6424627 Sorhaug et al. Jul 2002 B1
6442696 Wray et al. Aug 2002 B1
6484315 Ziese Nov 2002 B1
6487666 Shanklin et al. Nov 2002 B1
6493756 O'Brien et al. Dec 2002 B1
6550012 Villa et al. Apr 2003 B1
6775657 Baker Aug 2004 B1
6831893 Ben Nun et al. Dec 2004 B1
6832367 Choi et al. Dec 2004 B1
6895550 Kanchirayappa et al. May 2005 B2
6898632 Gordy et al. May 2005 B2
6907396 Muttik et al. Jun 2005 B1
6941348 Petry et al. Sep 2005 B2
6971097 Wallman Nov 2005 B1
6981279 Arnold et al. Dec 2005 B1
7007107 Ivchenko et al. Feb 2006 B1
7028179 Anderson et al. Apr 2006 B2
7043757 Hoefelmeyer et al. May 2006 B2
7058822 Edery et al. Jun 2006 B2
7069316 Gryaznov Jun 2006 B1
7080407 Zhao et al. Jul 2006 B1
7080408 Pak et al. Jul 2006 B1
7093002 Wolff et al. Aug 2006 B2
7093239 van der Made Aug 2006 B1
7096498 Judge Aug 2006 B2
7100201 Izatt Aug 2006 B2
7107617 Hursey et al. Sep 2006 B2
7159149 Spiegel et al. Jan 2007 B2
7213260 Judge May 2007 B2
7231667 Jordan Jun 2007 B2
7240364 Branscomb et al. Jul 2007 B1
7240368 Roesch et al. Jul 2007 B1
7243371 Kasper et al. Jul 2007 B1
7249175 Donaldson Jul 2007 B1
7287278 Liang Oct 2007 B2
7308716 Danford et al. Dec 2007 B2
7328453 Merkle, Jr. et al. Feb 2008 B2
7346486 Ivancic et al. Mar 2008 B2
7356736 Natvig Apr 2008 B2
7386888 Liang et al. Jun 2008 B2
7392542 Bucher Jun 2008 B2
7418729 Szor Aug 2008 B2
7428300 Drew et al. Sep 2008 B1
7441272 Durham et al. Oct 2008 B2
7448084 Apap et al. Nov 2008 B1
7458098 Judge et al. Nov 2008 B2
7464404 Carpenter et al. Dec 2008 B2
7464407 Nakae et al. Dec 2008 B2
7467408 O'Toole, Jr. Dec 2008 B1
7478428 Thomlinson Jan 2009 B1
7480773 Reed Jan 2009 B1
7487543 Arnold et al. Feb 2009 B2
7496960 Chen et al. Feb 2009 B1
7496961 Zimmer et al. Feb 2009 B2
7519990 Xie Apr 2009 B1
7523493 Liang et al. Apr 2009 B2
7530104 Thrower et al. May 2009 B1
7540025 Tzadikario May 2009 B2
7546638 Anderson et al. Jun 2009 B2
7565550 Liang et al. Jul 2009 B2
7568233 Szor et al. Jul 2009 B1
7584455 Ball Sep 2009 B2
7603715 Costa et al. Oct 2009 B2
7607171 Marsden et al. Oct 2009 B1
7639714 Stolfo et al. Dec 2009 B2
7644441 Schmid et al. Jan 2010 B2
7657419 van der Made Feb 2010 B2
7676841 Sobchuk et al. Mar 2010 B2
7698548 Shelest et al. Apr 2010 B2
7707633 Danford et al. Apr 2010 B2
7712136 Sprosts et al. May 2010 B2
7730011 Deninger et al. Jun 2010 B1
7739740 Nachenberg et al. Jun 2010 B1
7779463 Stolfo et al. Aug 2010 B2
7784097 Stolfo et al. Aug 2010 B1
7832008 Kraemer Nov 2010 B1
7836502 Zhao et al. Nov 2010 B1
7849506 Dansey et al. Dec 2010 B1
7854007 Sprosts et al. Dec 2010 B2
7869073 Oshima Jan 2011 B2
7877803 Enstone et al. Jan 2011 B2
7904959 Sidiroglou et al. Mar 2011 B2
7908660 Bahl Mar 2011 B2
7930738 Petersen Apr 2011 B1
7937387 Frazier et al. May 2011 B2
7937761 Bennett May 2011 B1
7949849 Lowe et al. May 2011 B2
7996556 Raghavan et al. Aug 2011 B2
7996836 McCorkendale et al. Aug 2011 B1
7996904 Chiueh et al. Aug 2011 B1
7996905 Arnold et al. Aug 2011 B2
8006305 Aziz Aug 2011 B2
8010667 Zhang et al. Aug 2011 B2
8020206 Hubbard et al. Sep 2011 B2
8028338 Schneider et al. Sep 2011 B1
8042184 Batenin Oct 2011 B1
8045094 Teragawa Oct 2011 B2
8045458 Alperovitch et al. Oct 2011 B2
8069484 McMillan et al. Nov 2011 B2
8087086 Lai et al. Dec 2011 B1
8171553 Aziz et al. May 2012 B2
8176049 Deninger et al. May 2012 B2
8176480 Spertus May 2012 B1
8201246 Wu et al. Jun 2012 B1
8204984 Aziz et al. Jun 2012 B1
8214905 Doukhvalov et al. Jul 2012 B1
8220055 Kennedy Jul 2012 B1
8225288 Miller et al. Jul 2012 B2
8225373 Kraemer Jul 2012 B2
8233882 Rogel Jul 2012 B2
8234640 Fitzgerald et al. Jul 2012 B1
8234709 Viljoen et al. Jul 2012 B2
8239944 Nachenberg et al. Aug 2012 B1
8260914 Ranjan Sep 2012 B1
8266091 Gubin et al. Sep 2012 B1
8286251 Eker et al. Oct 2012 B2
8291499 Aziz et al. Oct 2012 B2
8307435 Mann et al. Nov 2012 B1
8307443 Wang et al. Nov 2012 B2
8312545 Tuvell et al. Nov 2012 B2
8321936 Green et al. Nov 2012 B1
8321941 Tuvell et al. Nov 2012 B2
8332571 Edwards, Sr. Dec 2012 B1
8365286 Poston Jan 2013 B2
8365297 Parshin et al. Jan 2013 B1
8370938 Daswani et al. Feb 2013 B1
8370939 Zaitsev et al. Feb 2013 B2
8375444 Aziz et al. Feb 2013 B2
8381299 Stolfo et al. Feb 2013 B2
8402529 Green et al. Mar 2013 B1
8464340 Ahn et al. Jun 2013 B2
8479174 Chiriac Jul 2013 B2
8479276 Vaystikh et al. Jul 2013 B1
8479291 Bodke Jul 2013 B1
8510827 Leake et al. Aug 2013 B1
8510828 Guo et al. Aug 2013 B1
8510842 Amit et al. Aug 2013 B2
8516478 Edwards et al. Aug 2013 B1
8516590 Ranadive et al. Aug 2013 B1
8516593 Aziz Aug 2013 B2
8522348 Chen et al. Aug 2013 B2
8528086 Aziz Sep 2013 B1
8533824 Hutton et al. Sep 2013 B2
8539582 Aziz et al. Sep 2013 B1
8549638 Aziz Oct 2013 B2
8555385 Bhatkar Oct 2013 B1
8555391 Demir et al. Oct 2013 B1
8561177 Aziz et al. Oct 2013 B1
8566476 Shifter et al. Oct 2013 B2
8566946 Aziz et al. Oct 2013 B1
8584094 Dadhia et al. Nov 2013 B2
8584234 Sobel et al. Nov 2013 B1
8584239 Aziz et al. Nov 2013 B2
8595834 Xie et al. Nov 2013 B2
8627476 Satish et al. Jan 2014 B1
8635696 Aziz Jan 2014 B1
8640245 Zaitsev Jan 2014 B2
8682054 Xue et al. Mar 2014 B2
8682812 Ranjan Mar 2014 B1
8689333 Aziz Apr 2014 B2
8695096 Zhang Apr 2014 B1
8713631 Pavlyushchik Apr 2014 B1
8713681 Silberman et al. Apr 2014 B2
8726392 McCorkendale et al. May 2014 B1
8739280 Chess et al. May 2014 B2
8776229 Aziz Jul 2014 B1
8782792 Bodke Jul 2014 B1
8789172 Stolfo et al. Jul 2014 B2
8789178 Kejriwal et al. Jul 2014 B2
8793278 Frazier et al. Jul 2014 B2
8793787 Ismael et al. Jul 2014 B2
8805947 Kuzkin et al. Aug 2014 B1
8806647 Daswani et al. Aug 2014 B1
8832829 Manni et al. Sep 2014 B2
8850570 Ramzan Sep 2014 B1
8850571 Staniford et al. Sep 2014 B2
8881234 Narasimhan et al. Nov 2014 B2
8881271 Butler, II Nov 2014 B2
8881282 Aziz et al. Nov 2014 B1
8898788 Aziz et al. Nov 2014 B1
8935779 Manni et al. Jan 2015 B2
8949257 Shiffer et al. Feb 2015 B2
8984638 Aziz et al. Mar 2015 B1
8990939 Staniford et al. Mar 2015 B2
8990944 Singh et al. Mar 2015 B1
8997219 Staniford et al. Mar 2015 B2
9009822 Ismael et al. Apr 2015 B1
9009823 Ismael et al. Apr 2015 B1
9027135 Aziz May 2015 B1
9071638 Aziz et al. Jun 2015 B1
9104867 Thioux et al. Aug 2015 B1
9106630 Frazier et al. Aug 2015 B2
9106694 Aziz et al. Aug 2015 B2
9118715 Staniford et al. Aug 2015 B2
9159035 Ismael et al. Oct 2015 B1
9171160 Vincent et al. Oct 2015 B2
9176843 Ismael et al. Nov 2015 B1
9189627 Islam Nov 2015 B1
9195829 Goradia et al. Nov 2015 B1
9197664 Aziz et al. Nov 2015 B1
9223972 Vincent et al. Dec 2015 B1
9225740 Ismael et al. Dec 2015 B1
9241010 Bennett et al. Jan 2016 B1
9251343 Vincent et al. Feb 2016 B1
9262635 Paithane et al. Feb 2016 B2
9268936 Butler Feb 2016 B2
9275229 LeMasters Mar 2016 B2
9282109 Aziz et al. Mar 2016 B1
9288220 Raugas Mar 2016 B2
9292686 Ismael et al. Mar 2016 B2
9294501 Mesdaq et al. Mar 2016 B2
9300686 Pidathala et al. Mar 2016 B2
9306960 Aziz Apr 2016 B1
9306974 Aziz et al. Apr 2016 B1
9311479 Manni et al. Apr 2016 B1
9355247 Thioux et al. May 2016 B1
9356944 Aziz May 2016 B1
9363280 Rivlin et al. Jun 2016 B1
9367681 Ismael et al. Jun 2016 B1
9398028 Karandikar et al. Jul 2016 B1
9413781 Cunningham et al. Aug 2016 B2
9426071 Caldejon et al. Aug 2016 B1
9430646 Mushtaq et al. Aug 2016 B1
9432389 Khalid et al. Aug 2016 B1
9438613 Paithane et al. Sep 2016 B1
9438622 Staniford et al. Sep 2016 B1
9438623 Thioux et al. Sep 2016 B1
9459901 Jung et al. Oct 2016 B2
9467460 Otvagin et al. Oct 2016 B1
9483644 Paithane et al. Nov 2016 B1
9495180 Ismael Nov 2016 B2
9497213 Thompson et al. Nov 2016 B2
9507935 Ismael et al. Nov 2016 B2
9516057 Aziz Dec 2016 B2
9519782 Aziz et al. Dec 2016 B2
9536091 Paithane et al. Jan 2017 B2
9537972 Edwards et al. Jan 2017 B1
9560059 Islam Jan 2017 B1
9565202 Kindlund et al. Feb 2017 B1
9591015 Amin et al. Mar 2017 B1
9591020 Aziz Mar 2017 B1
9594904 Jain et al. Mar 2017 B1
9594905 Ismael et al. Mar 2017 B1
9594912 Thioux et al. Mar 2017 B1
9609007 Rivlin et al. Mar 2017 B1
9626509 Khalid et al. Apr 2017 B1
9628498 Aziz et al. Apr 2017 B1
9628507 Haq et al. Apr 2017 B2
9633134 Ross Apr 2017 B2
9635039 Islam et al. Apr 2017 B1
9641546 Manni et al. May 2017 B1
9654485 Neumann May 2017 B1
9661009 Karandikar et al. May 2017 B1
9661018 Aziz May 2017 B1
9674298 Edwards et al. Jun 2017 B1
9680862 Ismael et al. Jun 2017 B2
9690606 Ha et al. Jun 2017 B1
9690933 Singh et al. Jun 2017 B1
9690935 Shiffer et al. Jun 2017 B2
9690936 Malik et al. Jun 2017 B1
9690937 Duchin Jun 2017 B1
9690938 Saxe Jun 2017 B1
9736179 Ismael Aug 2017 B2
9740857 Ismael et al. Aug 2017 B2
9747446 Pidathala et al. Aug 2017 B1
9756074 Aziz et al. Sep 2017 B2
9773112 Rathor et al. Sep 2017 B1
9781144 Otvagin et al. Oct 2017 B1
9787700 Amin et al. Oct 2017 B1
9787706 Otvagin et al. Oct 2017 B1
9792196 Ismael et al. Oct 2017 B1
9824209 Ismael et al. Nov 2017 B1
9824211 Wilson Nov 2017 B2
9824216 Khalid et al. Nov 2017 B1
9825976 Gomez et al. Nov 2017 B1
9825989 Mehra et al. Nov 2017 B1
9838408 Karandikar et al. Dec 2017 B1
9838411 Aziz Dec 2017 B1
9838416 Aziz Dec 2017 B1
9838417 Khalid et al. Dec 2017 B1
9846776 Paithane et al. Dec 2017 B1
9876701 Caldejon et al. Jan 2018 B1
9888016 Amin et al. Feb 2018 B1
9888019 Pidathala et al. Feb 2018 B1
9910988 Vincent et al. Mar 2018 B1
9912644 Cunningham Mar 2018 B2
9912681 Ismael et al. Mar 2018 B1
9912684 Aziz et al. Mar 2018 B1
9912691 Mesdaq et al. Mar 2018 B2
9912698 Thioux et al. Mar 2018 B1
9916440 Paithane et al. Mar 2018 B1
9921978 Chan et al. Mar 2018 B1
9934376 Ismael Apr 2018 B1
9934381 Kindlund et al. Apr 2018 B1
9946568 Ismael et al. Apr 2018 B1
9954890 Staniford et al. Apr 2018 B1
9973531 Thioux May 2018 B1
10002252 Ismael et al. Jun 2018 B2
10019338 Goradia et al. Jul 2018 B1
10019573 Silberman et al. Jul 2018 B2
10025691 Ismael et al. Jul 2018 B1
10025927 Khalid et al. Jul 2018 B1
10027689 Rathor et al. Jul 2018 B1
10027690 Aziz et al. Jul 2018 B2
10027696 Rivlin et al. Jul 2018 B1
10033747 Paithane et al. Jul 2018 B1
10033748 Cunningham et al. Jul 2018 B1
10033753 Islam et al. Jul 2018 B1
10033759 Kabra et al. Jul 2018 B1
10050998 Singh Aug 2018 B1
10068091 Aziz et al. Sep 2018 B1
10075455 Zafar et al. Sep 2018 B2
10083302 Paithane et al. Sep 2018 B1
10084813 Eyada Sep 2018 B2
10089461 Ha et al. Oct 2018 B1
10097573 Aziz Oct 2018 B1
10104102 Neumann Oct 2018 B1
10108446 Steinberg et al. Oct 2018 B1
10121000 Rivlin et al. Nov 2018 B1
10122746 Manni et al. Nov 2018 B1
10133863 Bu et al. Nov 2018 B2
10133866 Kumar et al. Nov 2018 B1
10146810 Shiffer et al. Dec 2018 B2
10148693 Singh et al. Dec 2018 B2
10165000 Aziz et al. Dec 2018 B1
10169585 Pilipenko et al. Jan 2019 B1
10176321 Abbasi et al. Jan 2019 B2
10181029 Ismael et al. Jan 2019 B1
10187401 Machlica Jan 2019 B2
10191861 Steinberg et al. Jan 2019 B1
10192052 Singh et al. Jan 2019 B1
10198574 Thioux et al. Feb 2019 B1
10200384 Mushtaq et al. Feb 2019 B1
10210329 Malik et al. Feb 2019 B1
10216927 Steinberg Feb 2019 B1
10218740 Mesdaq et al. Feb 2019 B1
10230749 Rostami-Hesarsorkh Mar 2019 B1
10242185 Goradia Mar 2019 B1
10313379 Han Jun 2019 B1
20010005889 Albrecht Jun 2001 A1
20010047326 Broadbent et al. Nov 2001 A1
20020018903 Kokubo et al. Feb 2002 A1
20020038430 Edwards et al. Mar 2002 A1
20020091819 Melchione et al. Jul 2002 A1
20020095607 Lin-Hendel Jul 2002 A1
20020116627 Tarbotton et al. Aug 2002 A1
20020144156 Copeland Oct 2002 A1
20020162015 Tang Oct 2002 A1
20020166063 Lachman et al. Nov 2002 A1
20020169952 DiSanto et al. Nov 2002 A1
20020184528 Shevenell et al. Dec 2002 A1
20020188887 Largman et al. Dec 2002 A1
20020194490 Halperin et al. Dec 2002 A1
20030021728 Sharpe et al. Jan 2003 A1
20030074578 Ford et al. Apr 2003 A1
20030084318 Schertz May 2003 A1
20030101381 Mateev et al. May 2003 A1
20030115483 Liang Jun 2003 A1
20030188190 Aaron et al. Oct 2003 A1
20030191957 Hypponen et al. Oct 2003 A1
20030200460 Morota et al. Oct 2003 A1
20030212902 van der Made Nov 2003 A1
20030229801 Kouznetsov et al. Dec 2003 A1
20030237000 Denton et al. Dec 2003 A1
20040003323 Bennett et al. Jan 2004 A1
20040006473 Mills et al. Jan 2004 A1
20040015712 Szor Jan 2004 A1
20040019832 Arnold et al. Jan 2004 A1
20040047356 Bauer Mar 2004 A1
20040083408 Spiegel et al. Apr 2004 A1
20040088581 Brawn et al. May 2004 A1
20040093513 Cantrell et al. May 2004 A1
20040111531 Staniford et al. Jun 2004 A1
20040117478 Triulzi et al. Jun 2004 A1
20040117624 Brandt et al. Jun 2004 A1
20040128355 Chao et al. Jul 2004 A1
20040165588 Pandya Aug 2004 A1
20040236963 Danford et al. Nov 2004 A1
20040243349 Greifeneder et al. Dec 2004 A1
20040249911 Alkhatib et al. Dec 2004 A1
20040255161 Cavanaugh Dec 2004 A1
20040268147 Wiederin et al. Dec 2004 A1
20050005159 Oliphant Jan 2005 A1
20050021740 Bar et al. Jan 2005 A1
20050033960 Vialen et al. Feb 2005 A1
20050033989 Poletto et al. Feb 2005 A1
20050050148 Mohammadioun et al. Mar 2005 A1
20050086523 Zimmer et al. Apr 2005 A1
20050091513 Mitomo et al. Apr 2005 A1
20050091533 Omote et al. Apr 2005 A1
20050091652 Ross et al. Apr 2005 A1
20050108562 Khazan et al. May 2005 A1
20050114663 Cornell et al. May 2005 A1
20050125195 Brendel Jun 2005 A1
20050149726 Joshi et al. Jul 2005 A1
20050157662 Bingham et al. Jul 2005 A1
20050183143 Anderholm et al. Aug 2005 A1
20050201297 Peikari Sep 2005 A1
20050210533 Copeland et al. Sep 2005 A1
20050238005 Chen et al. Oct 2005 A1
20050240781 Gassoway Oct 2005 A1
20050262562 Gassoway Nov 2005 A1
20050265331 Stolfo Dec 2005 A1
20050283839 Cowburn Dec 2005 A1
20060010495 Cohen et al. Jan 2006 A1
20060015416 Hoffman et al. Jan 2006 A1
20060015715 Anderson Jan 2006 A1
20060015747 Van de Ven Jan 2006 A1
20060021029 Brickell et al. Jan 2006 A1
20060021054 Costa et al. Jan 2006 A1
20060031476 Mathes et al. Feb 2006 A1
20060047665 Neil Mar 2006 A1
20060070130 Costea et al. Mar 2006 A1
20060075496 Carpenter et al. Apr 2006 A1
20060095968 Portolani et al. May 2006 A1
20060101516 Sudaharan et al. May 2006 A1
20060101517 Banzhof et al. May 2006 A1
20060117385 Mester et al. Jun 2006 A1
20060123477 Raghavan et al. Jun 2006 A1
20060143709 Brooks et al. Jun 2006 A1
20060150249 Gassen et al. Jul 2006 A1
20060161983 Cothrell et al. Jul 2006 A1
20060161987 Levy-Yurista Jul 2006 A1
20060161989 Reshef et al. Jul 2006 A1
20060164199 Glide et al. Jul 2006 A1
20060173992 Weber et al. Aug 2006 A1
20060179147 Tran et al. Aug 2006 A1
20060184632 Marino et al. Aug 2006 A1
20060191010 Benjamin Aug 2006 A1
20060221956 Narayan et al. Oct 2006 A1
20060236393 Kramer et al. Oct 2006 A1
20060242709 Seinfeld et al. Oct 2006 A1
20060248519 Jaeger et al. Nov 2006 A1
20060248582 Panjwani et al. Nov 2006 A1
20060251104 Koga Nov 2006 A1
20060288417 Bookbinder et al. Dec 2006 A1
20070006288 Mayfield et al. Jan 2007 A1
20070006313 Porras et al. Jan 2007 A1
20070011174 Takaragi et al. Jan 2007 A1
20070016951 Piccard et al. Jan 2007 A1
20070019286 Kikuchi Jan 2007 A1
20070033645 Jones Feb 2007 A1
20070038943 FitzGerald et al. Feb 2007 A1
20070064689 Shin et al. Mar 2007 A1
20070074169 Chess et al. Mar 2007 A1
20070094730 Bhikkaji et al. Apr 2007 A1
20070101435 Konanka et al. May 2007 A1
20070128855 Cho et al. Jun 2007 A1
20070142030 Sinha et al. Jun 2007 A1
20070143827 Nicodemus et al. Jun 2007 A1
20070156895 Vuong Jul 2007 A1
20070157180 Tillmann et al. Jul 2007 A1
20070157306 Elrod et al. Jul 2007 A1
20070168988 Eisner et al. Jul 2007 A1
20070171824 Ruello et al. Jul 2007 A1
20070174915 Gribble et al. Jul 2007 A1
20070192500 Lum Aug 2007 A1
20070192858 Lum Aug 2007 A1
20070198275 Malden et al. Aug 2007 A1
20070208822 Wang et al. Sep 2007 A1
20070220607 Sprosts et al. Sep 2007 A1
20070240218 Tuvell et al. Oct 2007 A1
20070240219 Tuvell et al. Oct 2007 A1
20070240220 Tuvell et al. Oct 2007 A1
20070240222 Tuvell et al. Oct 2007 A1
20070250930 Aziz et al. Oct 2007 A1
20070256132 Oliphant Nov 2007 A2
20070271446 Nakamura Nov 2007 A1
20080005782 Aziz Jan 2008 A1
20080018122 Zierler et al. Jan 2008 A1
20080028463 Dagon et al. Jan 2008 A1
20080040710 Chiriac Feb 2008 A1
20080046781 Childs et al. Feb 2008 A1
20080066179 Liu Mar 2008 A1
20080072326 Danford et al. Mar 2008 A1
20080077793 Tan et al. Mar 2008 A1
20080080518 Hoeflin et al. Apr 2008 A1
20080086720 Lekel Apr 2008 A1
20080098476 Syversen Apr 2008 A1
20080120722 Sima et al. May 2008 A1
20080134178 Fitzgerald et al. Jun 2008 A1
20080134334 Kim et al. Jun 2008 A1
20080141376 Clausen et al. Jun 2008 A1
20080184367 McMillan et al. Jul 2008 A1
20080184373 Traut et al. Jul 2008 A1
20080189787 Arnold et al. Aug 2008 A1
20080201778 Guo et al. Aug 2008 A1
20080209557 Herley et al. Aug 2008 A1
20080215742 Goldszmidt et al. Sep 2008 A1
20080222729 Chen et al. Sep 2008 A1
20080263665 Ma et al. Oct 2008 A1
20080295172 Bohacek Nov 2008 A1
20080301810 Lehane et al. Dec 2008 A1
20080307524 Singh et al. Dec 2008 A1
20080313738 Enderby Dec 2008 A1
20080320594 Jiang Dec 2008 A1
20090003317 Kasralikar et al. Jan 2009 A1
20090007100 Field et al. Jan 2009 A1
20090013408 Schipka Jan 2009 A1
20090031423 Liu et al. Jan 2009 A1
20090036111 Danford et al. Feb 2009 A1
20090037835 Goldman Feb 2009 A1
20090044024 Oberheide et al. Feb 2009 A1
20090044274 Budko et al. Feb 2009 A1
20090064332 Porras et al. Mar 2009 A1
20090077666 Chen et al. Mar 2009 A1
20090083369 Marmor Mar 2009 A1
20090083855 Apap et al. Mar 2009 A1
20090089879 Wang et al. Apr 2009 A1
20090094697 Provos et al. Apr 2009 A1
20090113425 Ports et al. Apr 2009 A1
20090125976 Wassermann et al. May 2009 A1
20090126015 Monastyrsky et al. May 2009 A1
20090126016 Sobko et al. May 2009 A1
20090133125 Choi et al. May 2009 A1
20090144823 Lamastra et al. Jun 2009 A1
20090158430 Borders Jun 2009 A1
20090172815 Gu et al. Jul 2009 A1
20090187992 Poston Jul 2009 A1
20090193293 Stolfo et al. Jul 2009 A1
20090198651 Shiffer et al. Aug 2009 A1
20090198670 Shiffer et al. Aug 2009 A1
20090198689 Frazier et al. Aug 2009 A1
20090199274 Frazier et al. Aug 2009 A1
20090199296 Xie et al. Aug 2009 A1
20090228233 Anderson et al. Sep 2009 A1
20090241187 Troyansky Sep 2009 A1
20090241190 Todd et al. Sep 2009 A1
20090265692 Godefroid et al. Oct 2009 A1
20090271867 Zhang Oct 2009 A1
20090300415 Zhang et al. Dec 2009 A1
20090300761 Park et al. Dec 2009 A1
20090328185 Berg et al. Dec 2009 A1
20090328221 Blumfield et al. Dec 2009 A1
20100005146 Drako et al. Jan 2010 A1
20100011205 McKenna Jan 2010 A1
20100017546 Poo et al. Jan 2010 A1
20100030996 Butler, II Feb 2010 A1
20100031353 Thomas et al. Feb 2010 A1
20100037314 Perdisci et al. Feb 2010 A1
20100043073 Kuwamura Feb 2010 A1
20100054278 Stolfo et al. Mar 2010 A1
20100058474 Hicks Mar 2010 A1
20100064044 Nonoyama Mar 2010 A1
20100077481 Polyakov et al. Mar 2010 A1
20100083376 Pereira et al. Apr 2010 A1
20100115621 Staniford et al. May 2010 A1
20100132038 Zaitsev May 2010 A1
20100154056 Smith et al. Jun 2010 A1
20100180344 Malyshev et al. Jul 2010 A1
20100192223 Ismael et al. Jul 2010 A1
20100220863 Dupaquis et al. Sep 2010 A1
20100235831 Dittmer Sep 2010 A1
20100251104 Massand Sep 2010 A1
20100281102 Chinta et al. Nov 2010 A1
20100281541 Stolfo et al. Nov 2010 A1
20100281542 Stolfo et al. Nov 2010 A1
20100287260 Peterson et al. Nov 2010 A1
20100299754 Amit et al. Nov 2010 A1
20100306173 Frank Dec 2010 A1
20110004737 Greenebaum Jan 2011 A1
20110025504 Lyon et al. Feb 2011 A1
20110041179 St Hlberg Feb 2011 A1
20110047594 Mahaffey et al. Feb 2011 A1
20110047620 Mahaffey et al. Feb 2011 A1
20110055907 Narasimhan et al. Mar 2011 A1
20110078794 Manni et al. Mar 2011 A1
20110093951 Aziz Apr 2011 A1
20110099620 Stavrou et al. Apr 2011 A1
20110099633 Aziz Apr 2011 A1
20110099635 Silberman et al. Apr 2011 A1
20110113231 Kaminsky May 2011 A1
20110145918 Jung et al. Jun 2011 A1
20110145920 Mahaffey et al. Jun 2011 A1
20110145934 Abramovici et al. Jun 2011 A1
20110167493 Song et al. Jul 2011 A1
20110167494 Bowen et al. Jul 2011 A1
20110173213 Frazier et al. Jul 2011 A1
20110173460 Ito et al. Jul 2011 A1
20110219449 St. Neitzel et al. Sep 2011 A1
20110219450 McDougal et al. Sep 2011 A1
20110225624 Sawhney et al. Sep 2011 A1
20110225655 Niemela et al. Sep 2011 A1
20110247072 Staniford et al. Oct 2011 A1
20110265182 Peinado et al. Oct 2011 A1
20110289582 Kejriwal et al. Nov 2011 A1
20110302587 Nishikawa et al. Dec 2011 A1
20110307954 Melnik et al. Dec 2011 A1
20110307955 Kaplan et al. Dec 2011 A1
20110307956 Yermakov et al. Dec 2011 A1
20110314546 Aziz et al. Dec 2011 A1
20120023593 Puder et al. Jan 2012 A1
20120054869 Yen et al. Mar 2012 A1
20120066698 Yanoo Mar 2012 A1
20120079596 Thomas et al. Mar 2012 A1
20120084859 Radinsky et al. Apr 2012 A1
20120096553 Srivastava et al. Apr 2012 A1
20120110667 Zubrilin et al. May 2012 A1
20120117652 Manni et al. May 2012 A1
20120121154 Xue et al. May 2012 A1
20120124426 Maybee et al. May 2012 A1
20120174186 Aziz et al. Jul 2012 A1
20120174196 Bhogavilli et al. Jul 2012 A1
20120174218 McCoy et al. Jul 2012 A1
20120198279 Schroeder Aug 2012 A1
20120210423 Friedrichs et al. Aug 2012 A1
20120222121 Staniford et al. Aug 2012 A1
20120255015 Sahita et al. Oct 2012 A1
20120255017 Sallam Oct 2012 A1
20120260342 Dube et al. Oct 2012 A1
20120266244 Green et al. Oct 2012 A1
20120278886 Luna Nov 2012 A1
20120297489 Dequevy Nov 2012 A1
20120304244 Xie Nov 2012 A1
20120330801 McDougal et al. Dec 2012 A1
20120331553 Aziz et al. Dec 2012 A1
20130014259 Gribble et al. Jan 2013 A1
20130036472 Aziz Feb 2013 A1
20130047257 Aziz Feb 2013 A1
20130074185 McDougal et al. Mar 2013 A1
20130086684 Mohler Apr 2013 A1
20130097699 Balupari et al. Apr 2013 A1
20130097706 Titonis et al. Apr 2013 A1
20130111587 Goel et al. May 2013 A1
20130117852 Stute May 2013 A1
20130117855 Kim et al. May 2013 A1
20130139264 Brinkley et al. May 2013 A1
20130160125 Likhachev et al. Jun 2013 A1
20130160127 Jeong et al. Jun 2013 A1
20130160130 Mendelev et al. Jun 2013 A1
20130160131 Madou et al. Jun 2013 A1
20130167236 Sick Jun 2013 A1
20130174214 Duncan Jul 2013 A1
20130185789 Hagiwara et al. Jul 2013 A1
20130185795 Winn et al. Jul 2013 A1
20130185798 Saunders et al. Jul 2013 A1
20130191915 Antonakakis et al. Jul 2013 A1
20130196649 Paddon et al. Aug 2013 A1
20130227691 Aziz et al. Aug 2013 A1
20130246370 Bartram et al. Sep 2013 A1
20130247186 LeMasters Sep 2013 A1
20130263260 Mahaffey et al. Oct 2013 A1
20130291109 Staniford et al. Oct 2013 A1
20130298243 Kumar et al. Nov 2013 A1
20130318038 Shiffer et al. Nov 2013 A1
20130318073 Shiffer et al. Nov 2013 A1
20130325791 Shiffer et al. Dec 2013 A1
20130325792 Shiffer et al. Dec 2013 A1
20130325871 Shiffer et al. Dec 2013 A1
20130325872 Shiffer et al. Dec 2013 A1
20140032875 Butler Jan 2014 A1
20140053260 Gupta et al. Feb 2014 A1
20140053261 Gupta et al. Feb 2014 A1
20140130158 Wang et al. May 2014 A1
20140137180 Lukacs et al. May 2014 A1
20140169762 Ryu Jun 2014 A1
20140179360 Jackson et al. Jun 2014 A1
20140181131 Ross Jun 2014 A1
20140189687 Jung et al. Jul 2014 A1
20140189866 Shiffer et al. Jul 2014 A1
20140189882 Jung et al. Jul 2014 A1
20140237600 Silberman et al. Aug 2014 A1
20140280245 Wilson Sep 2014 A1
20140283037 Sikorski et al. Sep 2014 A1
20140283063 Thompson et al. Sep 2014 A1
20140328204 Klotsche et al. Nov 2014 A1
20140337836 Ismael Nov 2014 A1
20140344926 Cunningham et al. Nov 2014 A1
20140351935 Shao et al. Nov 2014 A1
20140380473 Bu et al. Dec 2014 A1
20140380474 Paithane et al. Dec 2014 A1
20150007312 Pidathala et al. Jan 2015 A1
20150096022 Vincent et al. Apr 2015 A1
20150096023 Mesdaq et al. Apr 2015 A1
20150096024 Haq et al. Apr 2015 A1
20150096025 Ismael Apr 2015 A1
20150180883 Aktas Jun 2015 A1
20150180886 Staniford et al. Jun 2015 A1
20150186645 Aziz et al. Jul 2015 A1
20150199513 Ismael et al. Jul 2015 A1
20150199531 Ismael et al. Jul 2015 A1
20150199532 Ismael Jul 2015 A1
20150220735 Paithane et al. Aug 2015 A1
20150372980 Eyada Dec 2015 A1
20160004869 Ismael et al. Jan 2016 A1
20160006756 Ismael et al. Jan 2016 A1
20160044000 Cunningham Feb 2016 A1
20160127393 Aziz et al. May 2016 A1
20160191547 Zafar et al. Jun 2016 A1
20160191550 Ismael et al. Jun 2016 A1
20160261612 Mesdaq et al. Sep 2016 A1
20160277423 Apostolescu Sep 2016 A1
20160285914 Singh et al. Sep 2016 A1
20160301703 Aziz Oct 2016 A1
20160335110 Paithane et al. Nov 2016 A1
20170083703 Abbasi et al. Mar 2017 A1
20170099304 Anderson Apr 2017 A1
20180013770 Ismael Jan 2018 A1
20180048660 Paithane et al. Feb 2018 A1
20180060738 Achin Mar 2018 A1
20180121316 Ismael et al. May 2018 A1
20180276560 Hu Sep 2018 A1
20180288077 Siddiqui et al. Oct 2018 A1
20190132334 Johns May 2019 A1
20190199736 Howard Jun 2019 A1
20190260779 Bazalgette Aug 2019 A1
Foreign Referenced Citations (11)
Number Date Country
2439806 Jan 2008 GB
2490431 Oct 2012 GB
0206928 Jan 2002 WO
0223805 Mar 2002 WO
2007117636 Oct 2007 WO
2008041950 Apr 2008 WO
2011084431 Jul 2011 WO
2011112348 Sep 2011 WO
2012075336 Jun 2012 WO
2012145066 Oct 2012 WO
2013067505 May 2013 WO
Non-Patent Literature Citations (57)
Entry
“Mining Specification of Malicious Behavior”—Jha et al, UCSB, Sep. 2007 https://www.cs.ucsb.edu/.about.chris/research/doc/esec07.sub.--mining.pdf-.
“Network Security: NetDetector—Network Intrusion Forensic System (NIFS) Whitepaper”, (“NetDetector Whitepaper”), (2003).
“When Virtual is Better Than Real”, IEEEXplore Digital Library, available at, http://ieeexplore.ieee.org/xpl/articleDetails.isp?reload=true&amumbe- r=990073, (Dec. 7, 2013).
Abdullah, et al., Visualizing Network Data for Intrusion Detection, 2005 IEEE Workshop on Information Assurance and Security, pp. 100-108.
Adetoye, Adedayo , et al., “Network Intrusion Detection & Response System”, (“Adetoye”), (Sep. 2003).
Apostolopoulos, George; hassapis, Constantinos; “V-eM: A cluster of Virtual Machines for Robust, Detailed, and High-Performance Network Emulation”, 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Sep. 11-14, 2006, pp. 117-126.
Aura, Tuomas, “Scanning electronic documents for personally identifiable information”, Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM, 2006.
Baecher, “The Nepenthes Platform: An Efficient Approach to collect Malware”, Springer-verlag Berlin Heidelberg, (2006), pp. 165-184.
Bayer, et al., “Dynamic Analysis of Malicious Code”, J Comput Virol, Springer-Verlag, France., (2006), pp. 67-77.
Boubalos, Chris , “extracting syslog data out of raw pcap dumps, seclists_org, Honeypots mailing list archives”, available at http://seclists.org/honeypots/2003/q2/319 (“Boubalos”), (Jun. 5, 2003).
Chaudet, C. , et al., “Optimal Positioning of Active and Passive Monitoring Devices”, International Conference on Emerging Networking Experiments and Technologies, Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, CoNEXT '05, Toulousse, France, (Oct. 2005), pp. 71-82.
Chen, P. M. and Noble, B. D., “When Virtual is Better Than Real, Department of Electrical Engineering and Computer Science”, University of Michigan (“Chen”) (2001).
Cisco “Intrusion Prevention for the Cisco ASA 5500-x Series” Data Sheet (2012).
Cohen, M.I. , “PyFlag—An advanced network forensic framework”, Digital investigation 5, Elsevier, (2008), pp. S112-S120.
Costa, M. , et al., “Vigilante: End-to-End Containment of Internet Worms”, SOSP '05, Association for Computing Machinery, Inc., Brighton U.K., (Oct. 23-26, 2005).
Didier Stevens, “Malicious PDF Documents Explained”, Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 9, No. 1, Jan. 1, 2011, pp. 80-82, XP011329453, ISSN: 1540-7993, DOI: 10.1109/MSP.2011.14.
Distler, “Malware Analysis: An Introduction”, SANS Institute InfoSec Reading Room, SANS Institute, (2007).
Dunlap, George W. , et al., “ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay”, Proceeding of the 5th Symposium on Operating Systems Design and Implementation, USENIX Association, (“Dunlap”), (Dec. 9, 2002).
FireEye Malware Analysis & Exchange Network, Malware Protection System, FireEye Inc., 2010.
FireEye Malware Analysis, Modern Malware Forensics, FireEye Inc., 2010.
FireEye v.6.0 Security Target, pp. 1-35, Version 1.1, FireEye Inc., May 2011.
Goel, et al., Reconstructing System State for Intrusion Analysis, Apr. 2008 SIGOPS Operating Systems Review, vol. 42 Issue 3, pp. 21-28.
Gregg Keizer: “Microsoft's HoneyMonkeys Show Patching Windows Works”, Aug. 8, 2005, XP055143386, Retrieved from the Internet: URL:http://www.informationweek.com/microsofts-honeymonkeys-show-patching-windows-works/d/d-id/1035069? [retrieved on Jun. 1, 2016].
Heng Yin et al, Panorama: Capturing System-Wide Information Flow for Malware Detection and Analysis, Research Showcase @ CMU, Carnegie Mellon University, 2007.
Hiroshi Shinotsuka, Malware Authors Using New Techniques to Evade Automated Threat Analysis Systems, Oct. 26, 2012, http://www.symantec.com/connect/blogs/, pp. 1-4.
Idika et al., A-Survey-of-Malware-Detection-Techniques, Feb. 2, 2007, Department of Computer Science, Purdue University.
Isohara, Takamasa, Keisuke Takemori, and Ayumu Kubota. “Kernel-based behavior analysis for android malware detection.” Computational intelligence and Security (CIS), 2011 Seventh International Conference on. IEEE, 2011.
Kaeo, Merike , “Designing Network Security”, (“Kaeo”), (Nov. 2003).
Kevin A Roundy et al: “Hybrid Analysis and Control of Malware”, Sep. 15, 2010, Recent Advances in Intrusion Detection, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 317-338, XP019150454 ISBN:978-3-642-15511-6.
Khaled Salah et al: “Using Cloud Computing to Implement a Security Overlay Network”, Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 11, No. 1, Jan. 1, 2013 (Jan. 1, 2013).
Kim, H. , et al., “Autograph: Toward Automated, Distributed Worm Signature Detection”, Proceedings of the 13th Usenix Security Symposium (Security 2004), San Diego, (Aug. 2004), pp. 271-286.
King, Samuel T., et al., “Operating System Support for Virtual Machines”, (“King”), (2003).
Kreibich, C. , et al., “Honeycomb-Creating Intrusion Detection Signatures Using Honeypots”, 2nd Workshop on Hot Topics in Networks (HotNets-11), Boston, USA, (2003).
Kristoff, J. , “Botnets, Detection and Mitigation: DNS-Based Techniques”, NU Security Day, (2005), 23 pages.
Lastline Labs, The Threat of Evasive Malware, Feb. 25, 2013, Lastline Labs, pp. 1-8.
Li et al., A VMM-Based System Call Interposition Framework for Program Monitoring, Dec. 2010, IEEE 16th International Conference on Parallel and Distributed Systems, pp. 706-711.
Lindorfer, Martina, Clemens Kolbitsch, and Paolo Milani Comparetti. “Detecting environment-sensitive malware.” Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, 2011.
Marchette, David J., “Computer Intrusion Detection and Network Monitoring: A Statistical Viewpoint”, (“Marchette”), (2001).
Moore, D. , et al., “Internet Quarantine: Requirements for Containing Self-Propagating Code”, INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003), pp. 1901-1910.
Morales, Jose A., et al., ““Analyzing and exploiting network behaviors of malware.””, Security and Privacy in Communication Networks. Springer Berlin Heidelberg, 2010. 20-34.
Mori, Detecting Unknown Computer Viruses, 2004, Springer-Verlag Berlin Heidelberg.
Natvig, Kurt , “SANDBOXII: Internet”, Virus Bulletin Conference, (“Natvig”), (Sep. 2002).
NetBIOS Working Group. Protocol Standard for a NetBIOS Service on a TCP/UDP transport: Concepts and Methods. STD 19, RFC 1001, Mar. 1987.
Newsome, J. , et al., “Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software”, In Proceedings of the 12th Annual Network and Distributed System Security, Symposium NDSS '05), (Feb. 2005).
Nojiri, D. , et al., “Cooperation Response Strategies for Large Scale Attack Mitigation”, DARPA Information Survivability Conference and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302.
Oberheide et al., CloudAV.sub.--N-Version Antivirus in the Network Cloud, 17th USENIX Security Symposium USENIX Security '08 Jul. 28-Aug. 1, 2008 San Jose, CA.
Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Roonald Perez, Leendert van Doom, John Linwood Griffin, Stefan Berger., sHype: Secure Hypervisor Appraoch to Trusted Virtualized Systems (Feb. 2, 2005) (“Sailer”).
Silicon Defense, “Worm Containment in the Internal Network”, (Mar. 2003), pp. 1-25.
Singh, S. , et al., “Automated Worm Fingerprinting”, Proceedings of the ACM/USENIX Symposium on Operating System Design and Implementation, San Francisco, California, (Dec. 2004).
Thomas H. Ptacek, and Timothy N. Newsham , “Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection”, Secure Networks, (“Ptacek”), (Jan. 1998).
Venezia, Paul , “NetDetector Captures Intrusions”, InfoWorld Issue 27, (“Venezia”), (Jul. 14, 2003).
Vladimir Getov: “Security as a Service in Smart Clouds—Opportunities and Concerns”, Computer Software and Applications Conference (COMPSAC), 2012 IEEE 36th Annual, IEEE, Jul. 16, 2012 (Jul. 16, 2012).
Wahid et al., Characterising the Evolution in Scanning Activity of Suspicious Hosts, Oct. 2009, Third International Conference on Network and System Security, pp. 344-350.
Whyte, et al., “DNS-Based Detection of Scanning Works in an Enterprise Network”, Proceedings of the 12th Annual Network and Distributed System Security Symposium, (Feb. 2005), 15 pages.
Williamson, Matthew M., “Throttling Viruses: Restricting Propagation to Defeat Malicious Mobile Code”, ACSAC Conference, Las Vegas, NV, USA, (Dec. 2002), pp. 1-9.
Yuhei Kawakoya et al: “Memory behavior-based automatic malware unpacking in stealth debugging environment”, Malicious and Unwanted Software (Malware), 2010 5th International Conference on, IEEE, Piscataway, NJ, USA, Oct. 19, 2010, pp. 39-46, XP031833827, ISBN:978-1-4244-8-9353-1.
Zhang et al., The Effects of Threading, Infection Time, and Multiple-Attacker Collaboration on Malware Propagation, Sep. 2009, IEEE 28th International Symposium on Reliable Distributed Systems, pp. 73-82.