System and method for automatically prioritizing rules for cyber-threat detection and mitigation

Information

  • Patent Grant
  • 11316900
  • Patent Number
    11,316,900
  • Date Filed
    Thursday, March 14, 2019
    5 years ago
  • Date Issued
    Tuesday, April 26, 2022
    2 years ago
Abstract
A system and computerized method for generating an improved cyber-security rule ordering for cyber-security threat detection or post-processing activities conducted by a rules-based cyber-security engine deployed within a network device is described. Herein, historical metadata associated with analytics conducted on incoming data by a rule-based cyber-security engine and in accordance with a plurality of rules is described. These rules are arranged in a first ordered rule sequence. The historical metadata is analyzed to determine one or more salient rules from the plurality of rules. The plurality of rules are reprioritized by at least rearranging an order to a second ordered rule sequence with the one or more salient rules being positioned toward a start of the second ordered rule sequence. Thereafter, the rule-based cyber-security engine operates in accordance with the reprioritized rule set that is arranged in the second ordered rule sequence to achieve improved performance.
Description
GENERAL BACKGROUND

Network and networked devices provide useful and necessary services that assist individuals in business and in their everyday lives. Given the growing dependence on these services, increased measures have been undertaken to protect the network devices against cyberattacks. In some cases, these cyberattacks are orchestrated in an attempt to gain access to content stored on one or more network devices. Such access is for illicit (i.e., unauthorized) purposes, such as spying or other malicious or nefarious activities that may be achieved through the uploading of malicious software. Other cyberattacks may be directed to adversely influence the operability of a network device such as precluding functionality of the network device or precluding access to certain stored files unless payment is made (ransomware), a forced loading of an unwanted, non-malicious software that utilizes resources within the network device, a loading of spyware in efforts to exfiltrate data (e.g., intellectual property, etc.), or the like.


For protection, network devices (e.g., computer, Internet of Things “IoT” devices, point-of-sale consoles, ATMs, and similar networked and network devices) may be deployed with rule-based cyber-security software that, under control of installed threat detection rules, attempts to detect cyberattacks caused by malicious objects being uploaded. The cyber-security software is coded to perform analytics on received objects, where the order of such analytics is precisely controlled and coincides with the processing order of the threat detection rules. Unfortunately, many conventional rule-based cyber-security software such as a software (e.g., process or daemon) agent operating in the background of a computer for example, the software agent analyzes incoming objects in accordance with a prescribed order of analysis, which is set by the threat detection rules at the time of manufacture and reset during a security content update (e.g., security software update, etc.) Thereafter, the order of analysis is changed infrequently, normally the threat detection rules remain unchanged until a software update is provided to the computer. As a result, some threat detection analyses may not account for recent, real-time findings encountered during cyberattack detection analyses performed to monitor an ever-changing threat landscape.


Currently, this lack of a timely reordering of the detection rules has resulted in inefficient use of analysis resources and concomitant delays in uncovering threats, which is especially true for highly targeted scenarios, wherein a threat actor specifically targets and uses company-specific (rather than generic) software or exploits in software to accomplish the criminals intent against a specific company. In computers, where threat detection must occur during normal operation, any delayed threat detection attributable to legacy rule processing ordering may result in a failure to detect a cyberattack. The failure or delay (even for seconds or less) in detecting a cyberattack may cause irreparable harm to the compromised computer or to the network deploying the computer as the cyberattack may spread to other network devices and resources. For example, once a company's server is effectively infected and controlled by ransomware, then the company's server may have irreparable damage to processes and transactions which were not captured within a backup or other fault tolerance device(s) for the company.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the disclosure are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:



FIG. 1 is an exemplary block diagram of an embodiment of an automated, cyber-security protection service.



FIG. 2A is an exemplary embodiment of a logical representation of the management system deployed as part of the cyber-security protection service of FIG. 1.



FIG. 2B is an exemplary embodiment of a data structure of a rule priorities data store implemented within the management system of FIG. 2A.



FIG. 2C is an exemplary embodiment of a data structure of the rule priorities data store with a rule group further organized into two or more rule subgroups.



FIG. 3 is an exemplary embodiment of a logical representation of a network device implemented as an endpoint including a cyber-security engine operating as a software agent that performs cyber-security operations on incoming objects and communicates the results of such operations to the management system of FIG. 1.



FIG. 4 is an exemplary embodiment of a logical representation of a network device implemented as a cyber-security appliance including multiple cyber-security engines that perform cyber-security operations on incoming objects and communicate the results of such operations to the management system of FIG. 1.



FIG. 5 is an exemplary embodiment of a logical representation of a network device implemented as a sensor including at least one cyber-security engine that performs cyber-security operations on incoming objects and communicates the results of such operations to the management system of FIG. 1.



FIG. 6A is an illustrative embodiment of a registration process for a customer to subscribe to the cyber-security protection service of FIG. 1.



FIG. 6B is an illustrative embodiment of a portal-based interface provided to a customer for web-based registration to the cyber-security protection service of FIG. 1 and formation of a software profile for this new subscriber.



FIG. 6C is an illustrative embodiment of an interactive interface provided to the new subscriber to allow for membership of the subscriber to one or more rule subgroups for further granularity in subsequent reprioritization of analytic rules.



FIG. 6D is an illustrative embodiment of an interactive interface provided to the new subscriber to allow for semi-automated rule updating that requires administrative confirmation before proceeding with the rule update.



FIG. 7 is an illustrative embodiment an operational flow performed by the management system of FIG. 1 in reprioritizing rules controlling operations of a particular cyber-security engine (e.g., software agent) deployed within each of a plurality of network devices.





DETAILED DESCRIPTION
I. Overview

A cyber-security system to dynamically reprioritize the utilization of analytic rules forming a rule set with improved efficacy in identifying malicious or non-malicious content and/or improved efficiency in identifying or classifying malicious or non-malicious content is described. Herein, the analytic rules may include detection rules that control operability of threat analysis logic, represented by various types of rule-based cyber-security engines, in (i) detecting one or more indicators of compromise (IOCs) and/or (ii) classifying an object under analysis as malicious (e.g., the likelihood of the object being part of a cyberattack exceeds a first threshold such as a first probability or initial behavioral trigger) or non-malicious (e.g., the likelihood of the object being part of a cyberattack is less than a second threshold such as a second probability that is less than the first probability). The detection rules may be utilized by rule-based cyber-security engines such as a static analysis engine, a dynamic (or behavioral) analysis engine, a correlation/classification engine, a software agent, or the like. Hence, the detection rules may include, but are not restricted or limited to: monitoring rules for targeting certain content within an object for static analysis, static analyzing rules to evaluate maliciousness of an object without its execution, monitoring rules for targeting certain behaviors for behavioral analysis, behavioral analyzing rules to evaluate maliciousness of an object during execution, and/or correlation/classification rules to render a verdict as to whether the object is malicious or non-malicious based on the results provided by the static analysis and/or dynamic analysis.


For illustrative purposes only, one embodiment of the cyber-security system may include logic that analyzes unique binaries executing within an specific customer enterprise and utilizes detection rules and detection rule modification. Another embodiment may involve the evaluation of a binary to other known ‘goodware’ or ‘badware,’ while another embodiment could be an application, which is not commonly used to generate a behavior identified as suspicious, each may trigger an evaluation across dimensions which create a unique category of artifact which could be identified as potentially a ‘class’ of issue which is evaluated for evil (e.g., malicious) or (e.g., non-malicious) intent in an enterprise or specific customer segment, or geography or other segmentation.


Additionally, besides the detection rules described above, the analytic rules may include post-processing rules that control post-processing activities such as (i) controlling the reporting/alerting based on results produced by the rule-based cyber-security engines and/or (ii) performing remediation activities. The post-processing rules may be utilized by rule-based cyber-security engines such as reporting engines, or the like. Hence, the post-processing rules may include, but are not restricted or limited to alert and reporting rules, remediation rules, or the like.


As described herein, a “rule” may be broadly construed as software or data that is used in detection of cyberattacks. According to one embodiment of the disclosure, each rule is configured to specify a conditional logic statement or programmatic entity used in the cyber-security system during operation in detecting and classifying cyberattacks. Rules may be received and maintained by the cyber-security system in files, libraries, directories, or other modular programmatic structures, or may be integrated into logic running within the cyber-security systems for example such as in their operating software. Importantly, in embodiments of the disclosure, these cyber-security rules may be individually modified or a set of rules may be selected and/or modified (reordered, etc.) for use in the cyber-security engine during runtime to adjust operability of the cyber-security engine and influence cyber-security verdicts.


For instance, as one illustrative example, some detection rules may be logic for use in detecting a cyberattack, each capable of being represented as a logical expression for example, an “if this, then that” conditional statement, where “this” represents a condition and “that” represents the conclusion (e.g., an observed characteristic, an observed behavior, a determined classification as malicious or not malicious, etc.). The condition may encompass, for example, a signature, heuristic, pattern, string or value. The conclusion is applied when the condition is satisfied. As another illustrative example, some detection rules may provide configuration information containing parameter values for configuring the operating software of the cyber-security system, such as, for example, threshold values used in detection (e.g., specifying the threshold for suspiciousness and maliciousness).


Different types of analyses may be configured to utilize different types of rule sets. For instance, signature-based rule sets may be used by a static analysis engine to determine whether a hash (or other signature of an event) matches a stored library of signatures (e.g., exploit, vulnerability or fingerprint-type signatures). Likewise, execution anomaly rule sets may be used by a dynamic analysis engine to determine whether, during execution of an object, observed activities and behaviors are expected or anomalous. Also, classification rule sets may be used by a correlation/classification engine to determine verdicts, for example, based on weightings or scores for identified characteristics and behaviors. In addition, post-processing rule sets may include responsive activities that are designed to report/alert a security administrator of a potential cyberattack and/or perform necessary remediation of the object (e.g., quarantine, delete from storage, etc.).


Herein, rule sets may be stored in a rules store (e.g., a repository) in a memory of the cyber-security system (e.g., persistent memory) and the ordering of the rules within the rule sets may be updated (periodically or ad hoc aperiodically) in light of the prevailing threat landscape. The rule reordering may be distributed to the cyber-security systems in security content files or libraries, originating from, for example, a management system charged with optimize analytic rules used by the cyber-security systems. Such rule reordering is different from rule content updates where the content of the rules may change without regard to considering as to how the ordering of the rules effects efficacy and efficiency of the rule set, as described herein with regard to embodiments of the invention.


A “salient” rule denotes a rule that is statistically determinative in (i) effectively identifying or classifying malicious or non-malicious content (efficacy), and/or (ii) improving the effectiveness of the cyber-security engine in identifying or classifying the malicious or non-malicious content relative to the amount of resources expended to achieve that outcome. Hence, this “efficiency” has an inverse relationship with the amount of processing needed to identify or classify content as malicious or non-malicious (e.g., the number of rule analyses, amount of time needed, etc.). A rule is not considered “salient” when it provides minor (little to no) contributions in determining whether content is malicious or non-malicious.


Herein, the above-described dynamic rule reprioritization may involve the re-ordering of analytic rules based on cyber-security intelligence provided from (i) one or more network devices that detected a cyber-security threat (e.g., infected network device that experienced a recent cyberattack, a network device that successfully defended against a cyberattack, etc.), and/or (ii) a network administrator seeking to protect an enterprise against certain cyber-security threats that may be perpetrated against, for example, other companies or other industries. Reprioritization of the analytic rules, especially detection rules for example, may alter the weighting applied to the reordered detection rules within the rule set. Additionally, reprioritization of the analytic rules may be based, at least in part, on cyber-security intelligence pertaining to the frequency and persistence of analytic rules being stored and maintained within a rules priorities data store, as analytic rules relied upon with greater frequency and longevity tend to warrant “salient” designation. Various performance advantages, including resource-use efficiency, detection efficacy and efficiency (speed) in reaching a determination as to whether an object is malicious or non-malicious, may be achieved through the dynamic rule reprioritization scheme described below.


During operation, a cyber-security engine may locally store on its network device (e.g., an endpoint, a cyber-security appliance, a cyber-security sensor, etc.) metadata regarding rules implicated in prior cyber-security threats detected by the cyber-security engine (e.g., historical metadata and/or real-time metadata). In response to a triggering event, the network device may provide the metadata to a remote, centrally located management system containing rule prioritization logic that utilizes the metadata received from such network devices to dynamically reprioritize (e.g., re-order) analytic rules utilized by cyber-security engines similar in type to the cyber-security engine (e.g., software agents, dynamic analysis engine, etc.).


According to one embodiment of the disclosure, the rule prioritization logic is configured to (i) aggregate the (historical) metadata associated with analytics (e.g., results of analyses) conducted by one or more rule-based cyber-security engines of similar type (e.g., software agents, static analysis engines, dynamic analysis engines, or correlation/classification engines, etc.), (ii) analyze the (historical) metadata in light of the current threat landscape (e.g., determine the determinative rules used to correctly reach a genuine verdict being a “true” positive or a “true” negative) to assist in identifying the “salient” analytic rules, and (iii) specify a reprioritization of the analytic rules (e.g., change rule ordering from a first rule sequence to a second rule sequence different than the first rule sequence) for use by the cyber-security engine(s) to optimize future threat analyses (e.g., resource-use efficiency such as a lesser number of rules are needed before a correct, definitive outcome is determined such as whether an object under analysis is malicious or non-malicious, detection efficacy, speed of analysis, etc.). For reprioritization, the salient analytic rules may be re-ordered earlier in the analysis cycle than their previous ordering (e.g., considered at or near the start of each analysis of an object), where the re-ordering of the analytic rules may alter the weighting of such rules (e.g., cause re-weighting). This alteration of the weighting (re-weighting) of the analytic rules, which is caused by the re-ordering of the analytic rules, may have more effect on the determination of whether an incoming object is a cyber-security threat or not. This reprioritization may take into account the probability of a particular threat associated with a rule occurring and the severity of that threat. For illustrative purposes, the analytic rules could come in many forms such as based on a customer's enterprise, or a geography, or an industry vertical; and if the analysis of the binary was determined to be good (e.g., non-malicious) or evil (e.g., malicious) as an artifact, the rules prioritization logic could use any or all of those as inputs to further produce weighting on an ultimate determination of good (e.g., non-malicious) or evil (e.g., malicious).


More specifically, as described below, a system is proposed to improve the efficiency of threat detection based on reprioritizing analytic rules utilized by rule-based cyber-security engines configured to detect and protect against a cyberattack. The system includes a management system communicatively coupled to receive metadata associated with analytic rules utilized by the rule-based cyber-security engines, which may be located within the same network device or different network devices. A rule-based cyber-security engine may be configured to process received analytic rules in efforts to detect indicators of compromise (e.g., suspicious or malicious characteristics or malicious behaviors) or classify analyzed content (e.g., content associated with an object) as malicious or non-malicious. Each rule-based cyber-security engine may include or communicate with scheduling logic, which specifies a prioritization in applying one or more rule sets in an analysis of content based on rule priority messages from the management system.


According to one embodiment of the disclosure, as briefly described above, each rule-based cyber-security engine may be configured to (i) determine what content of an object is to be analyzed, (ii) analyze the content of the object with or without its execution, (iii) determine what behavior or pattern of behaviors of the object are to be analyzed, (iv) analyze the behavior or pattern of behaviors of the object during execution, and/or (v) include also static analysis as an additional layer, and (vi) analyze results of the analyses on the content of the object and/or analyses of the monitored behavior or pattern of behaviors to reach a verdict. These operations are applied in accordance with one or more detection rule sets generated for each cyber-security engine type in efforts to assist the threat analysis logic in reaching a verdict quicker (e.g., less time, lesser number of rules analyzed, etc.). Additionally, one or more of the rule-based cyber-security engine may be configured with post-processing rule sets to determining a reporting procedure and/or types of alerts based on results produced by one of the rule-based cyber-security engines and/or perform remediation activities such as quarantine or delete content determined to be malicious. In general, these rule sets are directed to cyber-security threat analyses.


As described below, one type of network device, referred to as “endpoint,” includes threat analysis logic implemented as a cyber-security engine configured as a software agent that, upon execution on the endpoint, may be adapted to identify malicious (or non-malicious content) and/or reach a verdict as to whether the object is a cyber-security threat. The network device may include The software agent further provides metadata, namely the results of its analyses conducted in accordance with current analytic rules, to the rule prioritization logic deployed within the management system. The rule prioritization logic analyzes the metadata (and metadata from any other cyber-security engines of similar type) and returns information identifying changes in prioritization of the current analytic rules.


Herein, the information identifying changes in prioritization of the current analytic rules is returned to the endpoint (and potentially other endpoints) as multicast or unicast messaging. Upon receipt of such information, scheduling logic within the endpoint effects reprioritization of the analytic rules (e.g., re-ordering into a different ordered sequence and/or re-weighting) for subsequent analyses. The reprioritization of the analytic rules utilized by the cyber-security engine(s) enables the more efficient analysis of content associated with an object by reducing the number of analysis cycles (e.g., number of rules being analyzed, amount of analysis time. etc.) necessary in identifying the content as malicious or non-malicious.


Different from an endpoint deployment, a cyber-security appliance may include threat analysis logic represented as multiple rule-based cyber-security engines. One type of rule-based cyber-security engine operates as a static analysis engine that, upon execution on the appliance, performs light-weight examinations of each incoming object to determine whether the incoming object is suspicious and/or malicious. These examinations may include a variety of different static analyses, where order of the analyses is controlled by the rule ordering that may be dependent on the type of object analyzed, such as a PDF document, Microsoft® WORD® document, an electronic mail (email) message, or the like. Additionally, or in the alternative, the static analysis engine may employ analysis techniques, including the use of application of heuristics or pattern matching, in order to detect and subsequently report or remediate unrecognizable (e.g., unknown) or known, malicious characteristics with or without execution of the object.


Herein, a change in prioritization of the analytic rules utilized by a static analysis engine may involve a change in the order of operations conducted during heuristics or the order of the patterns evaluated by the static analysis engine. The static analysis engine may include or cooperate with a correlation/classification engine, which may operate to reach a verdict as to whether the object is suspicious (e.g., a potential cyber-security threat) or benign based on results of the examination/detection. Suspicious objects may be provided for further analysis. In some embodiments, the correlation/classification engine may also determine whether the object is malicious, and, if so determined, may initiate an alert to a security administrator and discontinue further analysis or, in another embodiment (or pursuant to applicable analytic rules) proceed with further analysis. In some embodiments, when the correlation/classification engine classifies an object as benign, the object is subjected to no further analysis and thus “filtered” from further analysis, while in other embodiments all objects undergo the further analysis with all results of the plural analyses factored into an overall maliciousness determination, as further determined below. The operability of the static analysis engine as well as the correlation/classification engine are controlled by corresponding rule sets.


Another type of rule-based cyber-security engine operates as a dynamic analysis engine that, upon execution on the appliance, observes and examines behavior(s) of the object during run-time of a network device. A change in prioritization of the analytic rules may involve a change in the order of the monitoring and/or processing activities conducted on incoming objects being evaluated by the dynamic analysis engine. According to one embodiment of the disclosure, the dynamic analysis engine may not generally wait for results from the static analysis engine. However, in another embodiment, results of previously performed static analysis may be used to determine whether the dynamic analysis is performed. The processing activities of the object may be observed (e.g., captured) by monitors having access to a run-time environment (e.g., virtual machine) within the network device and another cyber-security engine, referred to as a correlation/classification engine, may operate to reach a verdict as to whether the object is a cyber-security threat based on results provided by the static analysis engine and the dynamic analysis engine. The operability of the static analysis engine, the dynamic analysis engine and/or monitors (all different types of cyber-security engines) are controlled by corresponding rule sets.


According to one embodiment of the disclosure, each network device, on behalf of a corresponding cyber-security engine (e.g., static analysis engine, the dynamic analysis engine, correlation/classification engine, and/or monitors) provides results of the analyses in accordance with the current analytic rules (e.g., the metadata) to the rule prioritization logic deployed within the management system. The rule prioritization logic analyzes the metadata (and metadata from any other similar cyber-security engines) and, when applicable, determines a reprioritization of the analytic rules specifying a new rule order of processing to improve performance of the cyber-security engine. This reprioritization is conveyed by one or more rule priority messages communicated to the network devices, where the priority messages may operate as an entire rule replacement of the current analytic rules provided in or specifying a new rule order of processing, or may identify changes to the current analytic rules (or their priority (order)) utilized by the corresponding cyber-security engine.


In lieu of returning the rule priority messages as a multicast transmission to all similarly situated cyber-security engines, the management system may be configured to receive metadata relating to the processing of the detection rules by a group of cyber-security engines operating on different network devices, and, after analysis of the metadata, generates and distributes a priority message (containing the proposed rule reprioritization) to each cyber-security engine of a subgroup of cyber-security engines (i.e., a subgroup being lesser in number than the group of cyber-security engines) for testing. In some embodiments, different subgroups may be assigned based on the characteristics of the customer (different types of customers may be subject to different threats). Initially, different subgroups may be assigned different rule orderings; however, the rules may be consistent across subgroups though the order in which they are processed may vary. During processing of an object by one or more rule-based cyber-security engines, data associated with the efficacy of the various rule orderings is collected and provided to the management system.


The management system assesses the data, and based on the assessment, generates a proposed optimal ordering. In some embodiments, the optimal orderings may be generated and distributed to either the same subgroup or newly generated subgroup. According to one embodiment, the cyber-security engine (e.g., software agent) would apply both the then current rule ordering and a proposed optimal ordering, and generate meta-information associated with their processing. The meta-information would be communicated to the management system and, if determined to be an improvement over the then current rule ordering, the proposed optimal ordering may replace current rule ordering. Similarly, the results may be used to generate a new proposed optimal ordering responsive to this additional information.


In particular, if the rule reprioritization is effective (e.g., achieves enhance resource-use efficiency, detection efficacy, and/or increased analysis speed in reaching a verdict), the management system sends the priority messages to the entire group of cyber-security engines (or remaining cyber-security engines of the group of cyber-security engine). Otherwise, if further adjustments in the order are needed, one or more iterations of the transmission of priority message and subsequent testing may be performed.


The rule prioritization logic of the management system can be invoked periodically or aperiodically to adjust the order of processing of the rules by one or more cyber-security engines. For example, this update process may commence in response to a timed triggering event to occur daily, or based on “time-since-last” update and/or other factors. Another factor may be “time to verdict” information, as monitored by the endpoint and included in the metadata. “Time to verdict” may be expressed in various ways, including length of time the detection needed prior to reaching a definitive verdict, or the number of rules required to be processed before reaching a definitive verdict, or other statistical methods such as average number of rules required to be applied to reach verdicts over a prescribed number of detections. The verdict may indicate whether or not the cyber-security system has detected indicators of compromise signaling a potential cyberattack or, in other words, malicious or benign activities. Alternatively, the update process may commence in response to the size of the metadata gathered by the cyber-security engine.


II. Terminology

In the following description, certain terminology is used to describe various features of the invention. For example, each of the terms “logic,” “engine,” “system,” and “component” may be representative of hardware, firmware or software that is configured to perform one or more functions. As hardware, the term “logic” (or engine or system or component) may include circuitry having data processing and/or storage functionality. Examples of such circuitry may include, but are not limited or restricted to a hardware processor (e.g., microprocessor, one or more processor cores, a digital signal processor, a programmable gate array, a microcontroller, an application specific integrated circuit “ASIC”, etc.), a semiconductor memory, or combinatorial elements.


Additionally, or in the alternative, the logic (or engine or system or component) may include software such as one or more processes, one or more instances, Application Programming Interface(s) (API), subroutine(s), function(s), applet(s), servlet(s), routine(s), source code, object code, shared library/dynamic link library (dll), or even one or more instructions. This software may be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of a non-transitory storage medium may include, but are not limited or restricted to a programmable circuit; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); or persistent storage such as non-volatile memory (e.g., read-only memory “ROM”, power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or a portable memory device. As firmware, the logic (or component) may be stored in persistent storage.


The term “message” generally refers to signaling (wired or wireless) as either information placed in a prescribed format and transmitted in accordance with a suitable delivery protocol or information made accessible through a logical data structure such as an API. Hence, each message may be in the form of one or more packets, frames, or any other series of bits having a prescribed, structured format.


The term “object” generally relates to information having a logical structure or organization for malware analysis. The information may include an executable (e.g., an application, program, code segment, a script, dll or any file in a format that can be directly executed by a computer such as a file with an “.exe” extension, etc.), a non-executable (e.g., a file; any document such as a Portable Document Format “PDF” document; a word processing document such as Word® document; an electronic mail “email” message, web page, etc.), or simply a collection of related data (e.g., packets).


The term “computerized” generally represents that any corresponding operations are conducted by hardware in combination with software and/or firmware. The term “data store” generally refers to a data storage device such as the non-transitory storage medium described above, which provides non-persistent or persistent storage for the information (e.g., events).


According to one embodiment of the disclosure, the term “threat” may be broadly construed as any code, communication or activity that initiates or furthers a cyberattack. A threat may prompt or cause unauthorized, anomalous, unintended and/or unwanted behavior(s) or operations constituting a security compromise of information infrastructure. For instance, the threat may involve malicious software (“malware”), which is a type of malicious computer code that, as an illustrative example, executes an exploit to take advantage of a vulnerability in a network, network device or software, to gain unauthorized access, harm or co-opt operations of the network, the network device or the software, or to misappropriate, modify or delete data. Alternatively, as another illustrative example, the threat may correspond to information (e.g., executable code, script(s), data, command(s), etc.) that is designed to cause a network device to experience anomalous (unexpected or undesirable) behavior(s). The anomalous behavior(s) may include a communication-based anomaly or an execution-based anomaly, which, for example, could (1) alter the functionality of a network device executing application software in an unauthorized or malicious manner; (2) alter the functionality of the network device executing that application software without any malicious intent; and/or (3) provide unwanted functionality which may be generally acceptable in another context.


The term “network device” may be construed as either a physical electronic device featuring data processing and/or network connection functionality or a virtual electronic device being software that virtualizes certain functionality of the physical network device. The network may be a public network such as the Internet and/or a local (private) network such as an enterprise network, a wireless local area network (WLAN), a local area network (LAN), a wide area network (WAN), or the like. Examples of a network device, which may be deployed as a physical or virtual electronic device, may include, but are not limited or restricted to an endpoint such as computer system such as a workstation or server, ATM, point of sale systems, internet of things (IoT) devices, a standalone cyber-security appliance, an intermediary communication device (e.g., router, firewall, etc.), a virtual machine, or any other virtualized resource.


An “endpoint” generally refers to a physical or virtual network device equipped with a software image (e.g., operating system “OS”, one or more applications), and a software agent to capture processing events (e.g. tasks or activities) in real-time for threat detection or cyber-security investigation. Embodiments of an endpoint may include, but are not limited or restricted to a laptop, a tablet, a netbook, a server, a video game console, a set-top box, a device-installed mobile software, a smartphone, wearable, or other physical or virtual devices typically utilized by a consumer.


The term “transmission medium” may be construed as a physical or logical communication path between two or more network devices or between components within a network device. For instance, as a physical communication path, wired and/or wireless interconnects in the form of electrical wiring, optical fiber, cable, bus trace, or a wireless channel using radio frequency (RF) or infrared (IR), may be used. A logical communication path may simply represent a communication path between two or more network devices or between components within a network device such as one or more Application Programming Interfaces (APIs).


Finally, the terms “or” and “and/or” as used herein are to be interpreted as inclusive or meaning any one or any combination. Therefore, “A, B or C” or “A, B and/or C” mean “any of the following: A; B; C; A and B; A and C; B and C; A, B and C.” An exception to this definition will occur only when a combination of elements, functions, steps or acts are in some way inherently mutually exclusive.


As this invention is susceptible to embodiments of many different forms, it is intended that the present disclosure is to be considered as an example of the principles of the invention and not intended to limit the invention to the specific embodiments shown and described.


III. General Architecture

A. Cyber-Security Protection Service


Referring to FIG. 1, an exemplary block diagram of an embodiment of an automated, cyber-security protection service 100 is shown. Herein, the cyber-security protection service 100 includes one or more network devices 1101-110N (N≥1), which are communicatively coupled to a management system 120. Each network devices 1101 . . . or 110N includes one or more cyber-security engines 1301-130M (M≥1), which are configured to detect and protect the network device 1101 . . . or 110N against the threat of a cyberattack. As shown, one type of network device (e.g., network device 1101 operating as a cyber-security appliance) may deploy multiple cyber-security engines 1301-1303 that assist in threat detection and/or mitigation while another type of network device (e.g., network device 1102 operating as an endpoint) may deploy a single cyber-security engine 1304. The management system 120 may be located within the same proprietary network as the network devices 1101-110N (e.g., endpoints and/or appliances within an enterprise network of a customer) or may be remotely located and provided as a private or public cloud service.


As described herein, operating in accordance with an assigned set of analytic rules, each cyber-security engine 1301 . . . or 130M is configured to assist in the analysis of incoming objects to determine whether such objects are cyber-security threats (e.g., “malicious” denoting part of a cyberattack). Given that different types of cyber-security engines perform different operations, the analytic rule sets associated with these cyber-security engines are composed of different rules and different rule combinations. For example, depending on the type of cyber-security engine, an analytic rule set may be organized to (i) control analyses of content associated with incoming objects and prioritize the analyses, (ii) prioritize selection of monitors that are responsible for gathering information associated with the behavior(s) by either the incoming object or by the software executing the object being monitored during execution, (iii) control and prioritize analyses associated with the gathered information associated with the monitored behavior(s), or (iv) control and prioritize analytics of the results from the analyses of the content associated with the objects and/or from the analyses of the gathered information associated with the monitored behavior(s). The prioritization may involve the re-ordering of the rules controlling the analyses (or monitor selection) being conducted automatically. However, in some embodiments, the ordering of the analytic rules controlling the analyses may be based on administrator input and/or received (historical) metadata. The order of the analyses (or selection) may further differ for each object type, e.g., PDF, document, executable.


As further shown in FIG. 1, each of the network devices 1101-110N may correspond to the same or different types of network devices. For instance, a first network device 1101 may correspond to a cyber-security appliance while a second network device 1102 may correspond to an endpoint or multiple endpoints. For the cyber-security appliance 1101, the threat analysis logic represents a plurality of cyber-security engines 1301-1303 may be deployed therein. For instance, according to one embodiment of the disclosure, the plurality of cyber-security engines 1301-1303 forming the threat analysis logic may include at least (i) a static analysis engine 1301, (ii) a dynamic analysis engine 1302, and/or (iii) a correlation/classification engine 1303. Each of these cyber-security engines 1301-1303 may be under control of a different set of analytic rules (rule set), which may be evaluated and reprioritized by the management system 120.


More specifically, the first cyber-security engine 1301 (e.g., static analysis engine 1301), upon execution on the cyber-security appliance 1101, is configured to perform light-weight examinations of incoming objects to determine whether such objects are associated with a cyber-security threat. The examinations, conducted in according with a first rule set 1401, may involve statistical analysis techniques, such as heuristics or pattern correlation, to analyze the content of objects under analysis without execution of these objects.


According to one embodiment of the disclosure, a change in prioritization (ordering) of the first rule set 1401 may alter the ordering of operations performed by the static analysis engine 1301. The ordering alteration may be directed to a change in the ordering of the statistical analysis techniques (heuristics, pattern correlation, etc.) or may be directed to a change in the ordering of known malicious and/or benign patterns being evaluated with content of the objects by the static analysis engine 1301. According to another embodiment of the disclosure, a change in prioritization of the first rule set 1401 may alter weightings associated with certain rules within the first rule set 1401, and thus, may have a particular impact on the efficiency of identifying whether an object is malicious or non-malicious. The weighting may correspond to the severity of a rule violation as measured by the first cyber-security engine 1301 or another cyber-security engine, such as the correlation/classification engine 1303 for example, operating in concert with the first cyber-security engine 1301. Hence, the weighting alteration may be used to identify which of the analytic rules are salient in the analysis, where the higher weighted rules may also be performed first when the static analysis engine 1301 is evaluating the content within the incoming objects.


A second cyber-security engine 1302 (e.g., dynamic analysis engine 1302), upon execution on the appliance 1101, is configured to observe and analyze processing activities (e.g., behaviors) of incoming objects that occur during run-time and/or applications executing such objects. The analysis of these behaviors is conducted in accordance with a second rule set 1402, which is different from the first rule set 1401. Hence, the ordering in the observations and analyses of the behaviors by the dynamic analysis engine 1302 would be altered in response to a reprioritization of the second rule set 1402. In one embodiment, the dynamic analysis engine 1302 may not generally wait for results from the static analysis engine 1301 so that the dynamic analyses are performed concurrently (e.g., at least partially overlapping in time) with the static analyses. However, in another embodiment, results of a previously performed static analysis may determine whether a subsequent dynamic analysis is performed, and, in some embodiments, if performed, the rules to prioritize, e.g., which monitors to activate and captured behaviors are more probative.


Additionally, a cyber-security engine 1303 may be configured as a correlation/classification engine that, upon execution on the appliance 1101, is adapted to reach a verdict as to whether the object is a cyber-security threat. Operating in accordance with a third rule set 1403, the correlation/classification engine 1303 determines, based on results from analyses conducted by the static analysis engine 1301 and/or the dynamic analysis engine 1302, a verdict associated with an object under analysis. Therefore, a change in the third rule set 1403 may alter the priority (e.g., order in processing) of specific analyses being conducted by the correlation/classification engine 1303 on the analysis results produced by other cyber-security engines (e.g., static analysis engine 1301 and/or dynamic analysis engine 1302). By reprioritizing the analytic rules forming the third rule set 1403, the correlation/classification engine 1303 may perform analyses in accordance with selected “salient” threat detection rules of the third rule set 1403 (as determined by the administrator and/or metadata) earlier than previous analyses. The location for where each of these analysis engines run is provided for illustrative purposes as an example of a possible architecture. Hence, any or all of these analysis engines could run in any part of the cybersecurity-architecture.


Although not described in detail, the behaviors of the object may be observed (e.g., captured) by monitors. Therefore, a change in the ordering of the monitor activations (or the type of monitors activated) may alter the ordering in the observation and analysis of the behaviors associated with the object (or executing application) by the dynamic analysis engine 1302.


In the case of the endpoint 1102 for example, the threat analysis logic may be represented as a cyber-security engine 1304, namely a software agent that, upon execution on the endpoint 1102, is configured to reach a verdict as to whether an object under analysis is a cyber-security threat. The software agent 1304 analyzes the object in accordance with a fourth rule set 1404. Hence, as similarly described above, a change in the fourth rule set 1404 may alter the priority (e.g., order) of the analyses of an object conducted by the software agent 1304. As a result, the software agent 1304 performs analyses in accordance with selected “salient” rules (as determined by the administrator and/or metadata) prior to analyses conducted in accordance with non-salient rules.


Besides the detection rules described above, the post-processing rules (e.g., rules directed to reporting or issuing alerts and/or remediation rules may be prioritized). For example, reporting rules (not shown) may specify, depending on the threat landscape (e.g., prevailing at a point of time in the industry) that certain types of discovered cyberattacks should be accorded an “urgent” alert, needing immediate remediation. Such “urgent” alerts may involve transmission through a particular type of communication that tends to solicit immediate attention (e.g., text message, automated phone call, screen display generated and rendered on a security administrator's computer, etc.) or via multiple types of communications sent concurrently or at least close in time (e.g., less than 30 seconds apart). Less urgent alerts may involve placement of the alerts into a record that may be accessed by the security administrator during her or his normal course of business.


Referring still to FIG. 1, depending on the network device type, each network device 1101 . . . or 110N may be configured to provide one or more priority control messages 1501-150N to rule prioritization logic 180 deployed within the management system 120. Each priority control message, such as priority control message 1501 for example, may be configured to provide metadata 1601 (e.g., historical metadata) based on one or more analysis results 1701-1704 performed by corresponding cyber-security engines 1301-1303 (e.g., static analysis engine 1301, the dynamic analysis engine 1302, and/or correlation/classification engine 1303) to the management system 120. As another example, priority control message 1502 may be configured to provide metadata 1602 (e.g., historical metadata) based on analysis results 1705 performed by cyber-security engine 1305 (e.g., software agent 1305) to the management system 120. Herein, the metadata 1601-160N may include information associated with the results from analyses of rules forming analytic rule sets that control functionality of cyber-security engine(s) operating within the network devices 1101-110N. Examples of the metadata 1601-160N may include, but are not limited or restricted to (i) identifiers associated with each rule involved in a successful detection, normally a genuine detection (e.g., true positives and true negatives) to avoid promoting false positive or false negative detection such as a hash value(s) of the rules, and this portion could include multiple sources which could determine “true positive” (TP) or “true negative” (TN) and the system can arbitrate or include both as inputs to be weighed; (ii) an identifier for the object (e.g., file name, etc.), (iii) a source address of the object (e.g., Internet Protocol “IP” address), (iv) a destination address for the object, (v) a hash of the object, and/or (vi) any uniform resource locators (URLs) associated with the object.


According to one embodiment of the disclosure, the rule prioritization logic 180 analyzes the metadata 1601-160N and generates one or more rule priority messages 1851-185N responsive to priority control messages 1501-150N. The management system 120 returns the rule priority messages 1851-185N to the network devices 1101-110N. Each rule priority message 1851 . . . , or 185N may include rule recommendations 1901 . . . , or 190N, respectively. Each rule recommendation 1901 . . . , or 190N corresponds to information that identifies changes in prioritization of rules within one or more analytic rule set(s) that control one or more cyber-security engines deployed within a particular type of network device 1101 . . . , or 110N.


According to one embodiment of the disclosure, the rule recommendations 1901-190N may be generated (i) automatically (and in real-time) by the rule prioritization logic 180 based on the metadata 1601-160N and/or (ii) manually by an analyst or administrator relying on experiential knowledge. The generation of the rule recommendations 1901-190N may involve removal of, modification, or addition to the salient rules associated with the current rule set(s) implemented within the submitting network device 1101-110N based, at least in part, on the provided metadata 1601-160N. However, the changes to the current rule set may be based on administrator selections provided via an administrator interface 125 within the management system 120. The rule recommendations 1901-190N are adjusted to reprioritize a rule set cyber-security engine.


As an illustrative example, the removal, modification or addition to a rule set (e.g., fourth rule set 1404) may be accomplished by issuance of the rule priority messages 1852. The rule priority message 1852 may include changes to the fourth rule set 1404 that may be performed by a scheduling logic or other logic within the cyber-security engine 1302. These changes may include changes in the ordering of rules within the fourth rule set 1404, changes to weightings within certain rules within the fourth rule set 1404 utilized by the cyber-security engine 1302.


One or more of the cyber-security engines 1301-130M (e.g., cyber-security engine 1301) may be deployed on-premises to detect and analyze objects propagating into or through the local network 115 to determine whether such objects are associated with a cyberattack. For instance, the cyber-security engines 1301-1303 may operate within one or more cyber-security appliances that are installed within the local network 115 as edge network device(s), which generally operates as an endpoint within the local network 115.


Alternatively, although not shown in FIG. 1, each of the cyber-security systems 1301-130M may be deployed as a cloud-based solution in which the objects (or a representation thereof) are captured at the local network 115 and submitted to at least one of the cloud-based cyber-security systems 1301-130M. Furthermore, although not shown in FIG. 1, at least one of the cyber-security systems 1301-130M (e.g., cyber-security system 1304) may be deployed at an endpoint as a software agent operating in the background to analyze and monitor for certain behaviors by the object.


B. Management System


Referring now to FIG. 2A, an exemplary embodiment of a logical representation of the management system 120 of FIG. 1 is shown. Herein, the management system 120 includes a plurality of components 200, including a processor 210, a network interface 220, a memory 230, and/or an administrative (I/O) interface 125, which are communicatively coupled together via a transmission medium 250. As shown, when deployed as a physical device, the components 200 may be at least partially encased in a housing (not shown) made entirely or partially of a rigid material (e.g., hardened plastic, metal, glass, composite, or any combination thereof) to protect these components 200 from environmental conditions. As a virtual device, however, the management system 120 is directed to some or all of the logic within the memory 230.


The processor 210 is a multi-purpose, programmable component that accepts digital data as input, processes the input data according to stored instructions, and provides results as output. One example of a processor may include a central processing unit (CPU) with a corresponding instruction set architecture. Alternatively, the processor 210 may include another type of CPU, a digital signal processor (DSP), an Application Specific Integrated Circuit (ASIC), a field-programmable gate array (FPGA), or the like.


As shown in FIG. 2A, the processor 210 is communicatively coupled to the memory 230 via the transmission medium 250. According to one embodiment of the disclosure, the memory 230 is adapted to store (i) rule prioritization logic 180 and (ii) rule priorities data store 260. Herein, the rule prioritization logic 180 can be invoked periodically or aperiodically to determine whether any adjustment of an analytic rule set is warranted in efforts to improve operability of any of the network devices 1101-110N of FIG. 1. For example, a rule update process involving the rule prioritization logic 180 may be triggered to occur daily, or based on “time-since-last” update and/or other factors. Another factor may be “time to verdict” information, as monitored by network device 1102 and included in part of the metadata 1102. “Time to verdict” may be expressed in various ways, including (i) the amount of time utilized by one or more cyber-security engines to reach a definitive verdict, (ii) the number of rules processed in reaching the definitive verdict, or (iii) other statistical methods such as average number of rules utilized over a prescribed number of detections. The verdict may indicate whether or not the cyber-security engine has detected indicators of compromise signaling a cyber-security threat or, in other words, potential malicious or benign activities.


More specifically, the rule prioritization logic 180 parses an incoming priority control message (e.g., priority control message 1502) received from a network device (e.g., network device 1102) via the network interface 220. Such parsing may extract data from a header 240 of the priority control message 1502 to identify a sender of the priority control message 1502. Where the sender is a subscriber of the cyber-security protection service 100, the software profile of the subscriber may be referenced and content from the software profile may be utilized in the reprioritization of one or more rule sets as described below and illustrated in FIG. 7. The parsing may extract data from a body 245 of the priority control message 1502, which may include metadata 1604 (based on prior threat detection analyses performed by software agent 1302). Based on the metadata 1602 in combination with analysis results received from any other endpoints including software agents, the rule prioritization logic 180 determines whether reprioritization of a rule set utilized by at least the software agent 1304 is needed in order to reduce the number of rules needed to be processed before a determination can be made whether the message is malicious or non-malicious, thereby increasing the efficiency of the software agent (and other software agents within the cyber-security protection service 100 of FIG. 1).


Referring now to FIG. 2B, an illustrative embodiment of the data structure of the rule priorities data store 260 is shown. Herein, the rule priorities data store 260 includes storage locations 2701-270R (R≥2) to collectively maintain analytic rules 280 (e.g., rules 2801-280R) relied upon by the cyber-security engines 1301-130N in detected indicators of compromise associated with a suspect object signaling a potential cyber-security threat as described above. As shown, according to this embodiment of the disclosure, each of the storage locations 2701-270R includes analytic rules 280 along with metadata pertaining to each of these analytic rules 280 such as rule orderings (rankings) 282, rule weightings 284, frequencies of reporting 286, and identifiers (e.g., hash values) 288.


Given that different type of cyber-security engines utilize different analytic rules, the storage locations 2701-270R may be organized into groups of rules based on cyber-security engine type. As shown, for illustrative purposes this rule grouping includes four (4) rule groups 275-278, each representing a different type of cyber-security engine (e.g., static analysis engine 1301, dynamic analysis engine 1302, correlation/classification engine 1303, and software agents 1304). The fourth rule group 278 includes at least the fourth rule set 1404, as the number of rules in the fourth rule set 1404 being utilized by the software agent 1301 of the second network device 1102 may be less than the number of rules forming the fourth rule group 278 that are available for use by software agents. Similarly, the first-third rule groups 275-277 include at least the first-third rule sets 1401-1403. Other groups of analytic rules implemented within the rule priorities data store 260 may include post-processing rules such as remediation rules and/or reporting/alerting rules as described above.


As shown in FIGS. 2A-2B, the rule orders 282 identify salient rules with each rule group 275-278 based on a level of importance as set by an assigned ranking. Stated differently, the assigned rankings are group-specific, and thus, a specific ranking assigned to rules pertaining to one rule group (e.g., fourth rule group 279) has no effect on any rankings assigned to rules within another rule group (e.g., any of rule groups 275-277). The rule prioritization logic 180 may alter the assigned rankings to rules within each rule group based on the metadata provided to the management system 120. For example, the rule prioritization logic 180 may alter the rankings assigned to different analytic rules with the fourth rule group 278 based on the metadata 1604 provided by the endpoint 1102 as well as other endpoints with software agents communicatively coupled to the management system 120.


The rule weightings 284 also may be used to identify salient rules with each rule group 275-279. The rule prioritization logic 180 may alter the assigned weightings to rules within each rule group 275-278 based on the metadata. Sometimes, the rule weighting 2841 . . . or 284R has a direct correlation with the severity of a potential cyberattack in response to a rule activation (also referred to as a “rule violation”). Hence, a cyber-security engine may conclude that the suspect object is a cyber-security threat based only on a few rule violations, provided these rule violations are directed to at least one analytic rule that, upon detection, is sufficient to exceed an applicable likelihood threshold. Depending on the selected implementation, any updates by the rule prioritization logic 180 to the stored weighting metadata for one or more analytic rules (e.g., fourth rule group 278) may warrant a change in processing order of these updated rules 280R-9-280R, represented as R1280R-9 through R10280R. These updated rules may also be reordered by the rule prioritization logic 180 or by the cyber-security engine upon receiving the updated rules with the changed weighting via rule priority messages 1851-185N.


The frequencies of reporting 286 may be used to assist in identify salient rules within each rule group 275-278. The rule prioritization logic 180 receives the priority control messages including the metadata 1601-1604, which includes an identifier associated with each of the rules implicated in prior detections. Responsive to the same rules being involved in the detection of potential cyber-security attacks, which may be determined by matching identifiers within the incoming metadata to identifiers 2881-288R stored within the rule priorities data store 260, the corresponding frequencies of reporting 2861-286R is updated (e.g., incremented). Responsive to the same rules being involved in the detection of potential cyber-security attacks, the rule prioritization logic 180 may determine that these rules are “salient” rules and alter the processing order of these rules accordingly.


Additionally, as an optional embodiment as shown in FIG. 2C, one or more of the rule group 275 . . . and/or 278 may be further organized into two or more rule subgroups 290 and 292. These rule subgroups 290 and 292 may enable further prioritization of the analytic rules 280R-9-280R based on one or more factors, which may pertain to characteristics of the network devices (e.g., geographic location, properties directed to hardware and/or software configurations, etc.) and/or the subscriber(s) associated with the network devices uploading priority control messages to the management system 120. Such information may be extracted from content of the uploaded priority control messages (e.g., IP source address) or from content within a software profile completed by the subscriber at registration. From this information, the rule prioritization logic 180 may be able to determine the industry, government or other subscriber category, and/or geography of the network device supplying the priority control message and create subgroups therefrom. Herein, the rule prioritization logic 180 would assign additional priorities (e.g., order and/or weighting) pertaining to that rule subgroup.


Referring back to FIG. 2A, the administrative interface 125 is a portal that allows, after credential exchange and authentication, an administrator access to the contents of rule priorities data store 260. For instance, the administrative interface 125 may provide a graphics user interface (GUI) that allows an authenticated user to override or influence the order and/or weighting assigned to the analytic rules 2801-280R maintained within the priorities data store 260. This provides the administrator with an ability to customize the reprioritized rule sets to ensure that certain rules, which are viewed by the administrator as important, are retained as salient rules. The rule selection by the administrator may be supported by the rule prioritization logic 180 generating a suggested listing of analytic rules, where the suggested listing may be based on predicted threat severity (high, medium, low) and/or probability of occurrence (high, medium, low), e.g., with respect to the particular subscriber, subscriber category and corresponding threat landscape. The administrator may manually alter the rule prioritization included in the suggested listing to customize the reprioritization of rules to particular cyber-security threat concerns by the administrator.


Additionally, the administrative interface 125 may enable an authenticated user to alter (e.g., modify or change) the prioritization scheme currently utilized by the rule prioritization logic 180. As a result, the administrative interface 125 enables the user to adjust what parameters are considered (and the degree of reliance on such parameters) by the rule prioritization logic 180 in reprioritizing stored analytic rules. This alteration of the rule prioritization logic 180 may allow the authenticated user to bias prioritization of the stored analytic rules within each rule group to produce “salient” rules which may be different from the salient rules produced by the rule prioritization logic 180 prior to alteration.


C. Network Device—Endpoint Deployment


Referring to FIG. 3, an exemplary embodiment of a logical representation of a network device (e.g., network device 1102) of FIG. 1 is shown. Herein, for this embodiment, the network device 1102 operates as an endpoint, including a plurality of components 300, including a processor 310, a network interface 320 and a memory 330, which are communicatively coupled together via a transmission medium 340. As shown, when deployed as a physical device, the components 300 may be at least partially encased in a housing 350. As a virtual device, however, the network device 1102 is directed to some or all of the logic within the memory 330.


Herein, the processor 310 is a multi-purpose, programmable component such as a CPU, DSP or other programmable component as described above in reference to the processor 210 shown in FIG. 2A. The memory 330 may be implemented as persistent storage, including the cyber-security engine 1304 that, upon execution on the processor 310, operates as a daemon software agent by conducting a run-time analysis of received objects for any benign or malicious behaviors. The malicious behaviors may be based on detection of one or more indicators of compromise (IOCs), namely unauthorized, anomalous, unintended and/or unwanted behavior that may signal a potential cyberattack. The operability of the software agent 1304 is controlled by a plurality of analytic rules corresponding to the fourth rule set 1404 stored in the memory 330.


The memory 330 further includes scheduling logic 360 that, upon execution by the processor 310, specifies the order of processing of the plurality of analytic rules forming the fourth rule set 1404. According to one embodiment of the disclosure, at initial start-up, the scheduling logic 360 sets the processing order of the plurality of analytic rules to a default order. The default order may be a factory setting that represents a preferred order of analysis as to compliance with the plurality of analytic rules of the fourth rule set 1404.


While processing objects and evaluating the behaviors of the objects in accordance with the default-ordered, analytic rules, the software agent 1304 may collect historical metadata associated with the processing of the rules (e.g., object identifiers, verdicts computed for the objects, false negative and false negative count, resource usage, identifiers for each rule involved in a successful detection of an object, source address of the object, etc.). The historical metadata is locally stored as part of the metadata 1604.


Responsive to a triggering event, which may be based on periodic or aperiodic (ad hoc or on demand) messaging from the management system (not shown) or an occurrence of an event by the network device 1104 (e.g., metadata 1602 exceeds a prescribed size), rule update logic 370 within the network device 1102 generates and transmits one or more priority control messages 1504, including the metadata 1602, to the management system 120 via the network interface 320. In response to the priority control message(s) 1504, depending on the content of the metadata 1602, the network device 1102 may receive one or more priority messages 1854, which may include the rule recommendations 1904. The rule update logic 370 extracts the rule recommendations 1904 and modifies the stored default ordering information to reprioritize (e.g., reorder and/or re-weight) the processing order of the analytic rules forming the fourth rule set 1404. Additionally, or in the alternative, the rule recommendations 1904 may cause one or more analytic rules may be added or removed from the fourth rule set 1404. Thereafter, the scheduling logic 360 signals the cyber-security engine 1304 to perform analyses of incoming objects for benign or malicious behaviors in accordance with the reprioritized processing order of analytic rules of the fourth rule set 1404.


D. Network Device—Appliance Deployment


Referring to FIG. 4, an exemplary embodiment of a logical representation of a cyber-security appliance (e.g., network device 1101) of FIG. 1 is shown. Herein, deployed as a physical device or as a virtual device, the network device 1101 may be configured to operate as a cyber-security appliance, including a plurality of components 400, including a processor 410, a network interface 420 and a memory 430, which are communicatively coupled together via a transmission medium 440. Additionally, the plurality of components 400 further comprises an administrative portal 450 that enables authorized access to contents of the memory 430. The administrative port 450 permits different types of rules to be altered (e.g., modified, deleted, or added).


As described above, the processor 410 is a multi-purpose, programmable component such as a CPU, DSP or other programmable component as described above in reference to the processor 310 shown in FIG. 3. The memory 430 may include multiple cyber-security engine 1301-1303, where the operability of the cyber-security engine 1301-1303 is controlled by programmable rule sets and the cyber-security engine 1301-1303 collectively operate to detect a potential cyberattack. Example of the cyber-security engine 1301-1303 may include static analysis engine, dynamic analysis engine, correlation/classification logic, and monitors.


The static analysis engine 1301, upon execution by the processor 410, is configured to perform a light-weight examination of an object to determine whether that object is suspicious and/or malicious. The static analysis engine 1301 may employ analysis techniques, such as heuristics or pattern matching for example, in order to detect unrecognizable or known, malicious characteristics without execution of the object. Herein, the first rule set 1401 is stored within the memory 430 and the operations of the static analysis engine 1301 are governed, at least in part, by the first rule set 1401. As the first rule set 1401 is programmable, the static analysis engine 1301 may operate differently as prioritization of the analytic rules within the first rule set 1401 are changed.


The dynamic analysis engine 1302, upon execution by the processor 410, is configured to observe behavior(s) of the object during run-time. The observed behaviors are compared to known malicious behaviors and/or known benign behaviors in efforts to detect whether the object under analysis is associated with a potential cyberattack. According to one embodiment of the disclosure, operability of the dynamic analysis engine 1302 may be altered by changing prioritization of the analytic rules of the second rule set 1402 that control such operability. Such changes may be accomplished by at least reordering certain analytic rules of the second rule set 1402 when certain processing activities performed during object run-time are evaluated by the dynamic analysis engine 1302. Additionally, operability of the dynamic analysis engine 1302 may be altered by changing what behaviors are being monitored. Alternatively, the behavioral changes may also be accomplished by reprioritizing analytic rules that select what processing activities are being monitored (and the monitoring order). The change in monitoring may alter operability of the dynamic analysis engine 1302 and this would alter future processing of rules and analysis/evaluation, or also could be used to re-evaluate past actions under the newly changed dynamic analysis engine 130


The correlation/classification engine 1303, upon execution by the processor 410 and operating in accordance with the third rule set 1403 stored in the memory 430, is configured to reach a verdict, based on the results from the static analysis engine and/or the dynamic analysis engine, as to whether the object under analysis is part of a potential cyberattack. The reprioritization of one or more analytic rules of the third rule set 1403 may alter when certain analyses, corresponding to the reprioritized analytic rules, are conducted by the correlation/classification engine 1303. More specifically, the altering the priority of one or more analytic rules of the third rule set 1403 may change which analytic rules of the third rule set 1403 are considered to be the “salient” rules. This may affect the verdict determined by the correlation/classification engine 1303 as the reprioritization may redirect focus on the analyses by the correlation/classification engine 1303 on results associated with a different subset of analytic rules of the third rule set 1403 than previously considered.


According this embodiment of the disclosure, the correlation/classification engine 1303 may operate in concert to reach the verdict, and thus, the correlation rules and the classification rules may be prioritized together as the third rule set 1403. Alternatively, given that the correlation engine may deploy a rule set separate from the rule set utilized by the classification engine, and thus, the rule set utilized by the correlation engine may be prioritized separately from the rule set utilized by the classification engine.


The memory 430 further includes scheduling logic 460 that, upon execution by the processor 410, specifies the order of processing for each rule set 1401-1403 controlling operations of different cyber-security engines 1301-1303. According to one embodiment of the disclosure, at start-up, the scheduling logic 460 sets the processing order of each rule set 1401-1403 to an initial order. At this time, each rule set 1401-1403 may carry a default priority or in some embodiments, where no priority is defined, may be assigned a rule processing priority (e.g., randomly assigned, based on time of receipt, etc.). While receiving objects, followed by analysis of the content and their behaviors, data collection logic 470 may gather metadata associated with the processing of the rule 1401-1403 by the cyber-security engines 1301-1303, respectively. The metadata may include, but is not limited or restricted to object identifiers, verdicts computed for the objects, false negative and false negative count, resource usage, identifiers for each rule involved in a successful detection of an object, source address of the object, or the like. The metadata is locally stored as part of the metadata 1601.


Responsive to a triggering event, which may be based on periodic or aperiodic messaging from the management system (not shown) or an occurrence of an event by the network device 1101 (e.g., metadata 1601 exceeds a prescribed size), rule update logic 480 within the network device 1102 generates and transmits one or more priority control messages 1501 . . . , and/or 1503, including respective metadata 1601, 1602 and/or 1603, to the management system 120 via the network interface 420. In response to the priority control message(s) 1501, 1502 and/or 1503, depending on the content of the metadata 1601, 1602 and/or 1603, the network device 1102 may receive one or more priority messages 1851, 1852 and/or 1853, which may include the rule recommendations 1901, 1902 and/or 1903.


The rule update logic 480 extracts the rule recommendations 1901, 1902 and/or 1903 and modifies the stored default ordering information to reprioritize (e.g., reorder and/or re-weight) the processing order of the analytic rules forming the corresponding rule set(s) 1401, 1402 and/or 1403. Additionally, or in the alternative, the rule recommendations 1901, 1902 and/or 1903 may cause one or more analytic rules may be added or removed from the corresponding rule set(s) 1401, 1402 and/or 1403. Thereafter, the scheduling logic 460 signals some or all of the cyber-security engines 1301-1303 to perform analyses of incoming objects for benign or malicious behaviors in accordance with the reprioritized processing order of analytic rules of the corresponding rule set(s) 1401, 1402 and/or 1403. An illustrative example, similar to the unique binary analysis mentioned above, a new rule could be inserted above other rules if a unique binary analysis determines further processing or enhancement of evaluation should be performed (e.g., by a third party web service or data aggregation source for evaluation or a proprietary sandbox technology) and any of the enhanced evaluations should convict the artifact in question as “known high priority or damaging threat” then this could immediately increase the weighting of the analysis of the artifact, and subsequent unique binaries matching similarity analysis (or other criteria) could similarly be flagged as higher priority in the existing rules.


E. Network Device—Sensor Deployment


Referring to FIG. 5, an exemplary embodiment of a logical representation of a sensor (e.g., network device 110N) of FIG. 1 is shown. One embodiment of the architecture of the sensor is described in U.S. patent application Ser. No. 15/283,108 filed Sep. 30, 2016, the contents of which are incorporated by reference herein. Similar to the architecture of the endpoint 1102 and appliance 1101, the sensor 110N may deployed as a physical device or as a virtual device, including a processor 510, a network interface 520 and a memory 530, which are communicatively coupled together via a transmission medium 540.


Herein, the sensor 110N is responsible for evaluating information routed over a network and subsequently providing a data submission, which includes at least a portion of the evaluated information, to a cluster (not shown) for conducting an in-depth malware analysis. A “cluster” is a scalable, threat detection system that includes one or more computing node that analyze suspicious objects received from the sensors. Stated differently, the sensor 110N conducts a preliminary analysis of a received object, which is copied or intercepted during transit over the network, in order to intelligently control the number and/or frequency of data submissions to the cluster for analysis. In some embodiments, the number or frequency of submission of objects for analysis or the number and frequency of analyses may be based on the subscription privileges of the subscriber.


The processor 510 is a multi-purpose, processing component that is configured to execute logic 550 maintained within the persistent storage 530 being non-transitory storage medium. As described below, the logic 550 may include, but is not limited or restricted to, (i) message analysis logic 560, (ii) metadata extraction logic 565, (iii) metadata data store 570, (iii) rule data store 580 including analytic rules 585 that control operability of at least the message analysis logic 560, and (v) rule update logic 590.


As shown, the network interface 520 is configured to receive an incoming message 500, including metadata 502 and the object 504, from a network or via a network tap. The metadata analysis logic 560, executed by the processor 510 and under control by analytic rules 585, may conduct an analysis of at least a portion of the message 500, such as the object 504 for example, to determine whether the object 504 is suspicious. If so, the processor 510 processes the metadata extraction logic 565 that, during such processing, extracts the metadata 502 from the received information 500 and assigns the object identifier for the metadata 502. The metadata 502 may be stored in a metadata data store 570 while the suspicious object 504 may be stored in the same or a separate data store. The metadata 502 may be provided to a queue, accessible by computing nodes within the cluster, to obtain the metadata 502 and recover the object 504 to render a verdict as to whether the object 504 is a potential cyber-security threat. The verdict may be rendered through a variety of threat detection scheme, including threat detection processing as performed by the static analysis engine 1301, dynamic analysis engine 1302 and/or correlation/classification engine 1303 as described above.


Herein, the metadata analysis logic 560 conducts analyses, in accordance with the analytic rules 585, to determine whether the object 504 is suspicious. The metadata analysis logic 560 may employ analysis techniques, such as heuristics or pattern matching for example, in order to analyze the content of the object 504 after execution, during execution, prior to execution while the process is blocked by the system, post-execution, or while the object is at rest, without being executed. Herein, the analytic rules 585, stored within the memory 530, may be reprioritized in response to the rule update logic 590 receiving rule recommendations 190N included as part of the rule priority messages 185N from the management system 120 of FIG. 1. Based on the reprioritization of the analytic rules 585, the metadata analysis logic 560 may operate differently as described above.


IV. Registration

Referring now to FIG. 6A, using a portal 600 providing access to a subscription service 610 communicatively coupled to the management system 120, a customer is able to register (subscribe) to services offered by the management system 120. Additionally, via the portal 600, a customer (now “subscriber”) may be further able to modify current terms of the subscription selected by the customer (e.g., change subscription level, increase/decrease number of authorized network devices registered with the management system 120, change customer-configured attributes, etc.). By registering and selecting a particular subscription offered by the subscription service 610, the management system 120 maintains a certain metadata pertaining to the subscriber and/or network devices registered by the subscriber that are participating in the cyber-security protection service 100.


As an illustrative example, as shown in FIG. 6B, the portal 600 may provide a customer with access to one or more webpages 620, which allows a customer to supply customer details 630 (e.g., customer name 632, geographic location(s) 634 for the customer as represented by address or other information, customer's industry 636 that may be represented by a pull-down menu with a listing of high-level industry categories (financial, technology, United States government, etc.) and/or lower level industry subcategories (e.g., banking, brokerage, semiconductor manufacturer, government agency, network infrastructure manufacturer, etc.). The webpages 620 may prompt the customer for such customer details 630 and other information using conventional “user interactive” techniques. These may include a web form, e.g., rendered by a conventional web browser of the customer, including one or more online pages that prompts for and accepts customer input.


The portal 600 may further enable the customer to select a subscription level 640, which may automatically assign certain subscription attributes for the customer's subscription. These subscription attributes may include certain performance-based attributes 642 (e.g., QoS thresholds, throughput thresholds, etc.) and/or administrative-based attributes 644 (e.g., rule update frequency, total number of network device supported, selected rule update scheme being either automated rule updating that requires no administrative confirmation or semi-automated rule updating that requires administrative confirmation before proceeding with the rule update). Also, the portal 600 allows the subscriber to customize the subscription through subscriber-configured attributes 646 (e.g., data analytic geographic permissions or restrictions, special guest image software profiles for use in virtualized processing of objects by cyber-security engines of the network devices, alert rule reprioritization confirmations, etc.).


Referring back to FIG. 6A, upon completing registration (or modification of the subscription) via the portal 600, a message 650 may be provided to a network device (e.g., endpoint, web server, etc.) that is used in the registration process or selected by the customer during the registration process. The message 650 includes at least access credentials 660 that, if installed into a network device utilized by the subscriber (e.g., network device 1102), enables the network device 1102 to communicate with the subscription service 610 for update the subscription parameters and gain access to one or more user interfaces 670 (e.g., web page(s), graphical user interface(s) “GUI(s),” etc.) that allow an authorized administrator for the sub scriber to select rule prioritization procedures for that subscriber.


More specifically, as shown in FIG. 6C, responsive to successful access credential authentication, the portal 600 may provide a customer with access to the user interface(s) 670, which allows the subscriber to select one or more rule subgroups 680 to which the subscriber desires membership. The subgroups 680 may be arranged in accordance with any number of factors, including geographic location of the subscriber, subscriber's industry, or the like. Upon selecting one or more of these subgroups, a resultant rule reprioritization generated by the management system 120, in response to one or more rule priority messages received from network device utilized by the subscriber, may differ from rule reprioritizations without designation of the rule subgroup or designation of different rule subgroup(s).


Referring now to FIG. 6D, where the subscriber has registered for semi-automated rule updating that requires administrative confirmation before proceeding with the rule update, an alert rule reprioritization confirmation 690 is provided to the network administrator via the portal 600 or through separate band (e.g., text, email, automated phone call, etc.). The alert rule reprioritization confirmation 690 includes a displayable sequence of analytic rules 692 arranged in accordance with a recommended priority scheme (e.g., order, weighting, etc.) and a displayable acknowledgement radio button 694 that, when selected, constitutes administrator approval of the analytic rules 692. Prior to selection of the acknowledgement radio button 694, the analytic rules 692 may be reprioritized by the administrator by repositioning display elements 696 representative of the reprioritized analytic rules rendered on the user interface(s), tagging or re-ranking certain analytic rules that are deemed important to the administrator, or otherwise selecting a different ordering and/or weighting for the reprioritized rules.


Referring to FIG. 7, an illustrative embodiment of the operational flow of the management system 120 in reprioritizing rules controlling operations of a particular cyber-security engine (e.g., software agent) deployed within each of a plurality of network devices (e.g., endpoints 7001-700S, where S≥2) is shown. Initially, a first rule set 710 (R1, R2, R3, R4, R5, R6, R7, R8, R9, R10) is uploaded to the endpoints 7001-700S and made available to the software agents 7201-720S operating within the endpoints 7001-700S (operation 1). The management system 120 and each of the endpoints 7001-700S maintain a transmission protocol to communicate with each other concerning the current rule execution state of the corresponding endpoint 7001, . . . , or 700S.


More specifically, responsive to a periodic or aperiodic triggering event as described above, each of the endpoints 7001-700S may transmit corresponding priority messages 7301-730S therefrom (operation 2). Each priority message 7301, . . . , or 730S may include metadata 1601-160S, which collectively identify potentially “salient” rules 740 (e.g., rules R3, R5, R7 identified in priority message 7301) in prior threat detection analytics. These rules 740 (R3, R5, R7) may assist in identifying salient rules for future analyses by the software agents 7201-720S reprioritization of the first rule set 710. In fact, by reprioritizing the first rule set 710 where rules R3, R5, R7 are processed earlier (near start of rule set) than the remaining portion of the rule set (R1, R2, R4, R6, R8, R9, R10), a determination is made whether the reprioritized rule set 750 (R3, R5, R7, R1, R2, R4, R6, R8, R9, R10) reduces the amount of time or processing needed to achieve an outcome. For instance, where the cyber-security engine is directed to the correlation/classification engine or a dynamic analysis engine, the determination may conclude that the amount of analysis (e.g., number of rules processed) or processing time needed before a definitive verdict (non-malicious or malicious being part a potential cyberattack) for an object has been reduced (operation 3).


As further shown in FIG. 7, the reprioritized rule set 750 may be provided to each software agent of a subset of the software agents 7201-720S (e.g., software agents 7201-7202) to test the effectiveness of the new, reprioritized rule set 750 (operation 4). The software agents 7201-7202 apply the reprioritized rule set 750 and monitor the effectiveness of these rules (e.g., # of rules to reach verdict or determination, average processing time before malicious or non-malicious determined, etc.). If the effectiveness of the reprioritized rule 750 is validated, the reprioritized rule set 750 may be downloaded to all of the agents software agents 7201-720S or the remainder of the software agents 7203-720S (operation 5). This reprioritization scheme is an iterative operation, as the process continues to learn from infected endpoint and/or endpoints that have successfully thwarted cyberattacks, where regardless of state (infected, non-infected), the endpoints are configured to maintain knowledge of the salient analytic rules that defended against or would have protected against infection.


In another variation of the above recursive process, it is contemplated that an “in field beta” feature may aid in developing improve rule orders. As described above, the reprioritized rule set is generated by the management system 120 in response to the received metadata (i.e., meta-information) and provided to the subset of cyber-security engines (e.g., software agents 7201-7202) to be utilized in parallel to the first rule set 710 loaded for the software agents 7201-7202. The software agents 7201-7202 may (i) apply both the current rule ordering set forth in the first rule set 710 and the proposed rule ordering set forth in the reprioritized rule set 750 and (ii) generate meta-information associated with their processing. The meta-information would be communicated to the management system 120 and, if the reprioritized rule set 750 offers improvements over the first rule set 710, the endpoints 7001-′700S may be provisioned to load the reprioritized rule set 750 for control operability of the software agents 7201-720S. Similarly, the results may be used to generate a new proposed optimal ordering responsive to this additional information


Herein, different “user groups” within an enterprise or across a number of customers may be assigned different rule sets based on characteristics of the users (e.g., industry, geographical location, etc.), as different types of users may be subjected to different threats. While the different user groups may be assigned different rule orderings, the rule composition may be consistent across user groups even though the processing order may vary. During processing of an object by one or more rule-based cyber-security engines, data associated with the efficacy and/or efficiency of the various rule orderings is collected (e.g., historical metadata) and provided to the management system. The management system 120 assesses the data, and based on the assessment, generates a proposed optimal ordering. In some embodiments, a plurality of proposed optimal orderings may be generated and distributed to either the same user groups or newly generated user groups. This process may repeat until the cyber-security system determines that an optimal efficacy and efficiency has been reached, or in the alternative, may continue with the addition of new rules.


In the foregoing description, the invention is described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims.

Claims
  • 1. A computerized method for generating an improved cyber-security rule ordering for cyber-security threat detection or post-processing activities conducted by a rules-based cyber-security engine deployed within a network device, the method comprising: receiving metadata associated with analytics conducted on received data by the network device, the analytics being conducted in accordance with a first rule set being a plurality of rules arranged in a first ordered rule sequence and the first rule set to control operability of the cyber-security engine involved in (i) detecting whether the received data is a potential cyber-security threat or (ii) performing post-processing activities; analyzing the metadata to determine one or more salient rules from the plurality of rules; based on an analysis of the metadata, reprioritizing the plurality of rules within the first rule set by at least rearranging a processing order of the plurality of rules into a second ordered rule sequence differing from the first ordered rule sequence to produce a second rule set, the second rule set including the one or more salient rules being positioned toward a start of the second ordered rule sequence; and providing information associated with the second rule set for use by the cyber-security engine of the network device to perform analyses of incoming data received by the network device in accordance with the second rule set to achieve increased efficiency of the cyber-security engine in (i) detecting whether the received data constitutes the potential cyber-security threat or (ii) performing the post-processing activities.
  • 2. The computerized method of claim 1, wherein the post-processing activities include (i) reporting results produced by the rule-based cyber-security engines or (ii) performing remediation activities.
  • 3. The computerized method of claim 1, wherein the performing of the analyses of the incoming data in accordance with the second ordered rule sequence increases efficiency of the one or more cyber-security engines by reducing an amount of resources needed by the cyber-security engine to determine whether the incoming data is malicious or non-malicious from an amount of resources needed in determining whether the incoming data is malicious or non-malicious in accordance with the first ordered rule sequence.
  • 4. The computerized method of claim 3, wherein the second ordered rule sequence includes each of the plurality of rules included in the first ordered rule sequence.
  • 5. The computerized method of claim 1, wherein the receiving of the historical metadata further comprising receiving metadata associated with analytics conducted on data according to the plurality of rules by a second electronic device different than a first electronic device that provided the historical metadata and the reprioritizing of the plurality of rules is based, at least in part, on the historical metadata received from the first electronic device and the metadata received from the second electronic device.
  • 6. The computerized method of claim 1, wherein the second ordered rule sequence is different than the first ordered rule sequence in which the one or more salient rules are positioned differently in the second ordered rule sequence than the one or more salient rules are positioned within the first ordered rule sequence.
  • 7. The computerized method of claim 1, wherein the providing information associated with the second rule set for use by the cyber-security engine further comprising returning, to the cyber-security engine, the second rule set to control analyses by the cyber-security engine on the incoming data in detecting whether the incoming data is malicious or non-malicious while achieving at least improved efficiency in the analyses of the incoming data over analyses of the incoming data by the cyber-security engine as controlled by the first rule set.
  • 8. The computerized method of claim 1, wherein the reprioritizing of the plurality of rules including the rearranging of the processing order of the plurality of rules to generate the second ordered rule sequence is automatically generated based on the historical metadata.
  • 9. The computerized method of claim 8, wherein the reprioritizing of the plurality of rules including the rearranging of the processing order of the plurality of rules according to the second ordered rule sequence is conducted by prioritization logic automatically generating a reordering of one or more rules of the plurality of rules to produce the second ordered rule sequence.
  • 10. The computerized method of claim 1, wherein the cyber-security engine is a software agent deployed within a network device and the plurality of rules control operability of the software agent in analyses of the incoming data to determine whether the incoming data is a cyber-security threat.
  • 11. The computerized method of claim 10, wherein the providing of the information associated with the second rule set comprises returning the second rule set to a first plurality of software agents including the rules-based cyber-security engine to collect meta-information associated with analyses by the first plurality of software agents on the incoming data to determine improved efficacy or efficiency in the analyses of the incoming data by the cyber-security engine using the second rule set instead of the first rule set.
  • 12. The computerized method of claim 11, further comprising: providing information associated with the second rule set a second plurality of software agents upon confirmation, based on the meta-information, that the first plurality of software agents are experiencing improved efficacy or efficiency in the analyses of the incoming data, the first plurality of software agents being a subset of the second plurality of software agents.
  • 13. The computerized method of claim 1, wherein prior to receiving the historical metadata associated with analytics conducted on the received data by the network device, the method further comprises subscribing to a cyber-security protection service that gathers historical metadata based on cyber-security threat detection analytics performed by the rules-based cyber-security engine deployed within at least the network device.
  • 14. The computerized method of claim 1, wherein the analyzing of the metadata is conducted after execution, during execution, prior to execution while the process is blocked by the system, post-execution, or while the object is at rest, without being executed.
  • 15. A system comprising: a processor; and a memory communicatively coupled to the processor, the memory includes a rule priorities data store to maintain analytic rules that control operability of cyber-security engines installed in remotely located network devices communicatively coupled to the system, and rule prioritization logic communicatively coupled to the rule priorities data store, the rule prioritization logic being configured to (i) receive historical or realtime metadata based on cyber-security threat analyses on performed by a rule-based cyber-security engine operating in accordance with a first rule set, (ii) evaluate the historical metadata to determine one or more salient rules from a plurality of analytic rules forming the first rule set, (iii) generate a second rule set by reprioritizing one or more of the plurality of analytic rules within the first rule set from a first ordered rule sequence into a second ordered rule sequence differing from the first ordered rule sequence, the second rule set including the one or more salient rules being positioned toward a start of the second ordered rule sequence, and (iv) provide information associated with the second rule set for use by the rule-based cyber-security engine in conducting further cyber-security threat analyses.
  • 16. The system of claim 15, wherein the second ordered rule sequence includes each of the plurality of analytic rules included in the first ordered rule sequence.
  • 17. The system of claim 15, wherein the rule prioritization logic to receive the historical metadata by a second network device different than a first network device including the rule-based cyber-security engine.
  • 18. The system of claim 15, wherein the rule prioritization logic to provide information associated with the second rule set comprises providing the second rule set to control analyses by the rule-based cyber-security engine on the incoming data in detecting whether the incoming data is malicious or non-malicious while achieving at least improved efficiency in the analyses of the incoming data over prior analyses by the rule-based cyber-security engine as controlled by the first rule set.
  • 19. The system of claim 15, wherein the generate a second rule set is performed automatically based on information extracted from the historical metadata.
  • 20. The system of claim 17, wherein the rule-based cyber-security engine is a software agent deployed within the first network device and the second rule set controls operability of the software agent in analyses of incoming data to determine whether the incoming data is a cyber-security threat.
  • 21. The system of claim 15, wherein the rule prioritization logic to provide information associated with the second rule set by at least providing the second rule set to one or more cyber-security engines deployed within one or more network devices, including a network device including the rules-based cyber-security engine, in order to collect meta-information associated with analyses by the one or more network devices using both the first rule set and the second rule set to determine improved efficacy or efficiency in the analyses of the incoming data using the second rule set over the first rule set.
  • 22. The system of claim 21, wherein the rule prioritization logic at least further providing the second rule set to a plurality of cyber-security engines upon confirmation, based on the meta-information associated with analyses by the one or more network devices using both the first rule set and the second rule set, that the one or more cyber-security engines are experiencing improved efficacy or efficiency in the analyses of the incoming data, the one or more cyber-security engines being a subset of the plurality of cyber-security engines.
  • 23. A computerized method generating an improved cyber-security rule ordering for cyber-security threat detection or post-processing activities conducted by a rules-based cyber-security engine deployed within a network device, the method comprising: collecting metadata associated with analytics conducted on incoming data according to a plurality of rules arranged in a first ordered rule sequence to control operability of a rule-based cyber-security engine involved in determining whether the incoming data is a cyber-security threat; analyzing the metadata to determine one or more salient rules from the plurality of rules; and reprioritizing the plurality of rules by at least rearranging an order in processing of the plurality of rules according to a second ordered rule sequence with the one or more salient rules being positioned toward a start of the second ordered rule sequence; reconfiguring the rule-based cyber-security engine to perform analyses of subsequently received data in determining whether the subsequently received data is a cyber-security threat based on the plurality of rules controlling an order of the analyses according to the second ordered rule sequence.
  • 24. The computerized method of claim 23, wherein the reprioritizing of the plurality of rules enables the more efficient analysis of content associated with an object by reducing the number of analysis cycles necessary by the rules-based cyber-security engine in identifying the content as malicious or non-malicious.
  • 25. The computerized method of claim 23 further comprising performing additional reconfigurations of the rule-based cyber-security engine based on a third ordered rule sequence determined by continuing to collect the metadata associated with subsequent incoming data, analyzing the metadata and prioritizing the plurality of rules according to the third ordered rule sequence.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is based upon and claims the benefit of priority from U.S. Provisional Patent Application No. 62/692,584 filed Jun. 29, 2018, the entire contents of which are incorporated herein by reference. Embodiments of the disclosure relate to cyber-security. More particularly, one embodiment of the disclosure relates to a system and corresponding method for dynamically reprioritizing the use of analytic rules in controlling cyber-security threat detection to enhance resource utilization and accelerating the review and detection of higher priority artifacts dynamically.

US Referenced Citations (717)
Number Name Date Kind
4292580 Ott et al. Sep 1981 A
5175732 Hendel et al. Dec 1992 A
5319776 Hile et al. Jun 1994 A
5440723 Arnold et al. Aug 1995 A
5490249 Miller Feb 1996 A
5657473 Killean et al. Aug 1997 A
5802277 Cowlard Sep 1998 A
5842002 Schnurer et al. Nov 1998 A
5960170 Chen et al. Sep 1999 A
5978917 Chi Nov 1999 A
5983348 Ji Nov 1999 A
6088803 Tso et al. Jul 2000 A
6092194 Touboul Jul 2000 A
6094677 Capek et al. Jul 2000 A
6108799 Boulay et al. Aug 2000 A
6154844 Touboul et al. Nov 2000 A
6269330 Cidon et al. Jul 2001 B1
6272641 Ji Aug 2001 B1
6279113 Vaidya Aug 2001 B1
6298445 Shostack et al. Oct 2001 B1
6357008 Nachenberg Mar 2002 B1
6424627 Sorhaug et al. Jul 2002 B1
6442696 Wray et al. Aug 2002 B1
6484315 Ziese Nov 2002 B1
6487666 Shanklin et al. Nov 2002 B1
6493756 O'Brien et al. Dec 2002 B1
6550012 Villa et al. Apr 2003 B1
6775657 Baker Aug 2004 B1
6831893 Ben Nun et al. Dec 2004 B1
6832367 Choi et al. Dec 2004 B1
6895550 Kanchirayappa et al. May 2005 B2
6898632 Gordy et al. May 2005 B2
6907396 Muttik et al. Jun 2005 B1
6941348 Petry et al. Sep 2005 B2
6971097 Wallman Nov 2005 B1
6981279 Arnold et al. Dec 2005 B1
7007107 Ivchenko et al. Feb 2006 B1
7028179 Anderson et al. Apr 2006 B2
7043757 Hoefelmeyer et al. May 2006 B2
7058822 Edery et al. Jun 2006 B2
7069316 Gryaznov Jun 2006 B1
7080407 Zhao et al. Jul 2006 B1
7080408 Pak et al. Jul 2006 B1
7093002 Wolff et al. Aug 2006 B2
7093239 van der Made Aug 2006 B1
7096498 Judge Aug 2006 B2
7100201 Izatt Aug 2006 B2
7107617 Hursey et al. Sep 2006 B2
7159149 Spiegel et al. Jan 2007 B2
7213260 Judge May 2007 B2
7231667 Jordan Jun 2007 B2
7240364 Branscomb et al. Jul 2007 B1
7240368 Roesch et al. Jul 2007 B1
7243371 Kasper et al. Jul 2007 B1
7249175 Donaldson Jul 2007 B1
7287278 Liang Oct 2007 B2
7308716 Danford et al. Dec 2007 B2
7328453 Merkle, Jr. et al. Feb 2008 B2
7346486 Ivancic et al. Mar 2008 B2
7356736 Natvig Apr 2008 B2
7386888 Liang et al. Jun 2008 B2
7392542 Bucher Jun 2008 B2
7418729 Szor Aug 2008 B2
7428300 Drew et al. Sep 2008 B1
7441272 Durham et al. Oct 2008 B2
7448084 Apap et al. Nov 2008 B1
7458098 Judge et al. Nov 2008 B2
7464404 Carpenter et al. Dec 2008 B2
7464407 Nakae et al. Dec 2008 B2
7467408 O'Toole, Jr. Dec 2008 B1
7478428 Thomlinson Jan 2009 B1
7480773 Reed Jan 2009 B1
7487543 Arnold et al. Feb 2009 B2
7496960 Chen et al. Feb 2009 B1
7496961 Zimmer et al. Feb 2009 B2
7519990 Xie Apr 2009 B1
7523493 Liang et al. Apr 2009 B2
7530104 Thrower et al. May 2009 B1
7540025 Tzadikario May 2009 B2
7546638 Anderson et al. Jun 2009 B2
7565550 Liang et al. Jul 2009 B2
7568233 Szor et al. Jul 2009 B1
7584455 Ball Sep 2009 B2
7603715 Costa et al. Oct 2009 B2
7607171 Marsden et al. Oct 2009 B1
7639714 Stolfo et al. Dec 2009 B2
7644441 Schmid et al. Jan 2010 B2
7657419 van der Made Feb 2010 B2
7676841 Sobchuk et al. Mar 2010 B2
7698548 Shelest et al. Apr 2010 B2
7707633 Danford et al. Apr 2010 B2
7712136 Sprosts et al. May 2010 B2
7730011 Deninger et al. Jun 2010 B1
7739740 Nachenberg et al. Jun 2010 B1
7779463 Stolfo et al. Aug 2010 B2
7784097 Stolfo et al. Aug 2010 B1
7832008 Kraemer Nov 2010 B1
7836502 Zhao et al. Nov 2010 B1
7849506 Dansey et al. Dec 2010 B1
7854007 Sprosts et al. Dec 2010 B2
7869073 Oshima Jan 2011 B2
7877803 Enstone et al. Jan 2011 B2
7904959 Sidiroglou et al. Mar 2011 B2
7908660 Bahl Mar 2011 B2
7930738 Petersen Apr 2011 B1
7937387 Frazier et al. May 2011 B2
7937761 Bennett May 2011 B1
7949849 Lowe et al. May 2011 B2
7996556 Raghavan et al. Aug 2011 B2
7996836 McCorkendale et al. Aug 2011 B1
7996904 Chiueh et al. Aug 2011 B1
7996905 Arnold et al. Aug 2011 B2
8006305 Aziz Aug 2011 B2
8010667 Zhang et al. Aug 2011 B2
8020206 Hubbard et al. Sep 2011 B2
8028338 Schneider et al. Sep 2011 B1
8042184 Batenin Oct 2011 B1
8045094 Teragawa Oct 2011 B2
8045458 Alperovitch et al. Oct 2011 B2
8069484 McMillan et al. Nov 2011 B2
8087086 Lai et al. Dec 2011 B1
8171553 Aziz et al. May 2012 B2
8176049 Deninger et al. May 2012 B2
8176480 Spertus May 2012 B1
8201246 Wu et al. Jun 2012 B1
8204984 Aziz et al. Jun 2012 B1
8214905 Doukhvalov et al. Jul 2012 B1
8220055 Kennedy Jul 2012 B1
8225288 Miller et al. Jul 2012 B2
8225373 Kraemer Jul 2012 B2
8233882 Rogel Jul 2012 B2
8234640 Fitzgerald et al. Jul 2012 B1
8234709 Viljoen et al. Jul 2012 B2
8239944 Nachenberg et al. Aug 2012 B1
8260914 Ranjan Sep 2012 B1
8266091 Gubin et al. Sep 2012 B1
8286251 Eker et al. Oct 2012 B2
8291499 Aziz et al. Oct 2012 B2
8307435 Mann et al. Nov 2012 B1
8307443 Wang et al. Nov 2012 B2
8312545 Tuvell et al. Nov 2012 B2
8321936 Green et al. Nov 2012 B1
8321941 Tuvell et al. Nov 2012 B2
8332571 Edwards, Sr. Dec 2012 B1
8365286 Poston Jan 2013 B2
8365297 Parshin et al. Jan 2013 B1
8370938 Daswani et al. Feb 2013 B1
8370939 Zaitsev et al. Feb 2013 B2
8375444 Aziz et al. Feb 2013 B2
8381299 Stolfo et al. Feb 2013 B2
8402529 Green et al. Mar 2013 B1
8464340 Ahn et al. Jun 2013 B2
8479174 Chiriac Jul 2013 B2
8479276 Vaystikh et al. Jul 2013 B1
8479291 Bodke Jul 2013 B1
8510827 Leake et al. Aug 2013 B1
8510828 Guo et al. Aug 2013 B1
8510842 Amit et al. Aug 2013 B2
8516478 Edwards et al. Aug 2013 B1
8516590 Ranadive et al. Aug 2013 B1
8516593 Aziz Aug 2013 B2
8522348 Chen et al. Aug 2013 B2
8528086 Aziz Sep 2013 B1
8533824 Hutton et al. Sep 2013 B2
8539582 Aziz et al. Sep 2013 B1
8549638 Aziz Oct 2013 B2
8555391 Demir et al. Oct 2013 B1
8561177 Aziz et al. Oct 2013 B1
8566476 Shiffer et al. Oct 2013 B2
8566946 Aziz et al. Oct 2013 B1
8584094 Dadhia et al. Nov 2013 B2
8584234 Sobel et al. Nov 2013 B1
8584239 Aziz et al. Nov 2013 B2
8595834 Xie et al. Nov 2013 B2
8627476 Satish et al. Jan 2014 B1
8635696 Aziz Jan 2014 B1
8682054 Xue et al. Mar 2014 B2
8682812 Ranjan Mar 2014 B1
8689333 Aziz Apr 2014 B2
8695096 Zhang Apr 2014 B1
8713631 Pavlyushchik Apr 2014 B1
8713681 Silberman et al. Apr 2014 B2
8726392 McCorkendale et al. May 2014 B1
8739280 Chess et al. May 2014 B2
8776229 Aziz Jul 2014 B1
8782792 Bodke Jul 2014 B1
8789172 Stolfo et al. Jul 2014 B2
8789178 Kejriwal et al. Jul 2014 B2
8793278 Frazier et al. Jul 2014 B2
8793787 Ismael et al. Jul 2014 B2
8805947 Kuzkin et al. Aug 2014 B1
8806647 Daswani et al. Aug 2014 B1
8832829 Manni et al. Sep 2014 B2
8850570 Ramzan Sep 2014 B1
8850571 Staniford et al. Sep 2014 B2
8881234 Narasimhan et al. Nov 2014 B2
8881271 Butler, II Nov 2014 B2
8881282 Aziz et al. Nov 2014 B1
8898788 Aziz et al. Nov 2014 B1
8935779 Manni et al. Jan 2015 B2
8949257 Shiffer et al. Feb 2015 B2
8984638 Aziz et al. Mar 2015 B1
8990939 Staniford et al. Mar 2015 B2
8990944 Singh et al. Mar 2015 B1
8997219 Staniford et al. Mar 2015 B2
9009822 Ismael et al. Apr 2015 B1
9009823 Ismael et al. Apr 2015 B1
9027135 Aziz May 2015 B1
9071638 Aziz et al. Jun 2015 B1
9104867 Thioux et al. Aug 2015 B1
9106630 Frazier et al. Aug 2015 B2
9106694 Aziz et al. Aug 2015 B2
9118715 Staniford et al. Aug 2015 B2
9159035 Ismael et al. Oct 2015 B1
9171160 Vincent et al. Oct 2015 B2
9176843 Ismael et al. Nov 2015 B1
9189627 Islam Nov 2015 B1
9195829 Goradia et al. Nov 2015 B1
9197664 Aziz et al. Nov 2015 B1
9223972 Vincent et al. Dec 2015 B1
9225740 Ismael et al. Dec 2015 B1
9241010 Bennett et al. Jan 2016 B1
9251343 Vincent et al. Feb 2016 B1
9262635 Paithane et al. Feb 2016 B2
9268936 Butler Feb 2016 B2
9275229 LeMasters Mar 2016 B2
9282109 Aziz et al. Mar 2016 B1
9292686 Ismael et al. Mar 2016 B2
9294501 Mesdaq et al. Mar 2016 B2
9300686 Pidathala et al. Mar 2016 B2
9306960 Aziz Apr 2016 B1
9306974 Aziz et al. Apr 2016 B1
9311479 Manni et al. Apr 2016 B1
9355247 Thioux et al. May 2016 B1
9356944 Aziz May 2016 B1
9363280 Rivlin et al. Jun 2016 B1
9367681 Ismael et al. Jun 2016 B1
9398028 Karandikar et al. Jul 2016 B1
9413781 Cunningham et al. Aug 2016 B2
9426071 Caldejon et al. Aug 2016 B1
9430646 Mushtaq et al. Aug 2016 B1
9432389 Khalid et al. Aug 2016 B1
9438613 Paithane et al. Sep 2016 B1
9438622 Staniford et al. Sep 2016 B1
9438623 Thioux et al. Sep 2016 B1
9459901 Jung et al. Oct 2016 B2
9467460 Otvagin et al. Oct 2016 B1
9483644 Paithane et al. Nov 2016 B1
9495180 Ismael Nov 2016 B2
9497213 Thompson et al. Nov 2016 B2
9507935 Ismael et al. Nov 2016 B2
9516057 Aziz Dec 2016 B2
9519782 Aziz et al. Dec 2016 B2
9521115 Woolward Dec 2016 B1
9536091 Paithane et al. Jan 2017 B2
9537972 Edwards et al. Jan 2017 B1
9560059 Islam Jan 2017 B1
9560081 Woolward Jan 2017 B1
9565202 Kindlund et al. Feb 2017 B1
9591015 Amin et al. Mar 2017 B1
9591020 Aziz Mar 2017 B1
9594904 Jain et al. Mar 2017 B1
9594905 Ismael et al. Mar 2017 B1
9594912 Thioux et al. Mar 2017 B1
9609007 Rivlin et al. Mar 2017 B1
9626509 Khalid et al. Apr 2017 B1
9628498 Aziz et al. Apr 2017 B1
9628507 Haq et al. Apr 2017 B2
9633134 Ross Apr 2017 B2
9635039 Islam et al. Apr 2017 B1
9641546 Manni et al. May 2017 B1
9654485 Neumann May 2017 B1
9661009 Karandikar et al. May 2017 B1
9661018 Aziz May 2017 B1
9674298 Edwards et al. Jun 2017 B1
9680862 Ismael et al. Jun 2017 B2
9690606 Ha et al. Jun 2017 B1
9690933 Singh et al. Jun 2017 B1
9690935 Shiffer et al. Jun 2017 B2
9690936 Malik et al. Jun 2017 B1
9736179 Ismael Aug 2017 B2
9740857 Ismael et al. Aug 2017 B2
9747446 Pidathala et al. Aug 2017 B1
9756074 Aziz et al. Sep 2017 B2
9773112 Rathor et al. Sep 2017 B1
9781144 Otvagin et al. Oct 2017 B1
9787639 Sun Oct 2017 B1
9787700 Amin et al. Oct 2017 B1
9787706 Otvagin et al. Oct 2017 B1
9792196 Ismael et al. Oct 2017 B1
9824209 Ismael et al. Nov 2017 B1
9824211 Wilson Nov 2017 B2
9824216 Khalid et al. Nov 2017 B1
9825976 Gomez et al. Nov 2017 B1
9825989 Mehra et al. Nov 2017 B1
9838408 Karandikar et al. Dec 2017 B1
9838411 Aziz Dec 2017 B1
9838416 Aziz Dec 2017 B1
9838417 Khalid et al. Dec 2017 B1
9846776 Paithane et al. Dec 2017 B1
9876701 Caldejon et al. Jan 2018 B1
9888016 Amin et al. Feb 2018 B1
9888019 Pidathala et al. Feb 2018 B1
9910988 Vincent et al. Mar 2018 B1
9912644 Cunningham Mar 2018 B2
9912681 Ismael et al. Mar 2018 B1
9912684 Aziz et al. Mar 2018 B1
9912691 Mesdaq et al. Mar 2018 B2
9912698 Thioux et al. Mar 2018 B1
9916440 Paithane et al. Mar 2018 B1
9921978 Chan et al. Mar 2018 B1
9934376 Ismael Apr 2018 B1
9934381 Kindlund et al. Apr 2018 B1
9946568 Ismael et al. Apr 2018 B1
9954890 Staniford et al. Apr 2018 B1
9973531 Thioux May 2018 B1
10002252 Ismael et al. Jun 2018 B2
10019338 Goradia et al. Jul 2018 B1
10019573 Silberman et al. Jul 2018 B2
10025691 Ismael et al. Jul 2018 B1
10025927 Khalid et al. Jul 2018 B1
10027689 Rathor et al. Jul 2018 B1
10027690 Aziz et al. Jul 2018 B2
10027696 Rivlin et al. Jul 2018 B1
10033747 Paithane et al. Jul 2018 B1
10033748 Cunningham et al. Jul 2018 B1
10033753 Islam et al. Jul 2018 B1
10033759 Kabra et al. Jul 2018 B1
10050998 Singh Aug 2018 B1
10068091 Aziz et al. Sep 2018 B1
10075455 Zafar et al. Sep 2018 B2
10083302 Paithane et al. Sep 2018 B1
10084813 Eyada Sep 2018 B2
10089461 Ha et al. Oct 2018 B1
10097573 Aziz Oct 2018 B1
10104102 Neumann Oct 2018 B1
10108446 Steinberg et al. Oct 2018 B1
10121000 Rivlin et al. Nov 2018 B1
10122746 Manni et al. Nov 2018 B1
10133863 Bu et al. Nov 2018 B2
10133866 Kumar et al. Nov 2018 B1
10146810 Shiffer et al. Dec 2018 B2
10148693 Singh et al. Dec 2018 B2
10165000 Aziz et al. Dec 2018 B1
10169585 Pilipenko et al. Jan 2019 B1
10176321 Abbasi et al. Jan 2019 B2
10181029 Ismael et al. Jan 2019 B1
10191861 Steinberg et al. Jan 2019 B1
10192052 Singh et al. Jan 2019 B1
10198574 Thioux et al. Feb 2019 B1
10200384 Mushtaq et al. Feb 2019 B1
10210329 Malik et al. Feb 2019 B1
10216927 Steinberg Feb 2019 B1
10218740 Mesdaq et al. Feb 2019 B1
10242185 Goradia Mar 2019 B1
20010005889 Albrecht Jun 2001 A1
20010047326 Broadbent et al. Nov 2001 A1
20020018903 Kokubo et al. Feb 2002 A1
20020038430 Edwards et al. Mar 2002 A1
20020091819 Melchione et al. Jul 2002 A1
20020095607 Lin-Hendel Jul 2002 A1
20020116627 Tarbotton et al. Aug 2002 A1
20020144156 Copeland Oct 2002 A1
20020162015 Tang Oct 2002 A1
20020166063 Lachman et al. Nov 2002 A1
20020169952 DiSanto et al. Nov 2002 A1
20020184528 Shevenell et al. Dec 2002 A1
20020188887 Largman et al. Dec 2002 A1
20020194490 Halperin et al. Dec 2002 A1
20030021728 Sharpe et al. Jan 2003 A1
20030074578 Ford et al. Apr 2003 A1
20030084318 Schertz May 2003 A1
20030101381 Mateev et al. May 2003 A1
20030115483 Liang Jun 2003 A1
20030188190 Aaron et al. Oct 2003 A1
20030191957 Hypponen et al. Oct 2003 A1
20030200460 Morota et al. Oct 2003 A1
20030212902 van der Made Nov 2003 A1
20030229801 Kouznetsov et al. Dec 2003 A1
20030237000 Denton et al. Dec 2003 A1
20040003323 Bennett et al. Jan 2004 A1
20040006473 Mills et al. Jan 2004 A1
20040015712 Szor Jan 2004 A1
20040019832 Arnold et al. Jan 2004 A1
20040047356 Bauer Mar 2004 A1
20040083408 Spiegel et al. Apr 2004 A1
20040088581 Brawn et al. May 2004 A1
20040093513 Cantrell et al. May 2004 A1
20040111531 Staniford et al. Jun 2004 A1
20040117478 Triulzi et al. Jun 2004 A1
20040117624 Brandt et al. Jun 2004 A1
20040128355 Chao et al. Jul 2004 A1
20040165588 Pandya Aug 2004 A1
20040236963 Danford et al. Nov 2004 A1
20040243349 Greifeneder et al. Dec 2004 A1
20040249911 Alkhatib et al. Dec 2004 A1
20040255161 Cavanaugh Dec 2004 A1
20040268147 Wiederin et al. Dec 2004 A1
20050005159 Oliphant Jan 2005 A1
20050021740 Bar et al. Jan 2005 A1
20050033960 Vialen et al. Feb 2005 A1
20050033989 Poletto et al. Feb 2005 A1
20050050148 Mohammadioun et al. Mar 2005 A1
20050086523 Zimmer et al. Apr 2005 A1
20050091513 Mitomo et al. Apr 2005 A1
20050091533 Omote et al. Apr 2005 A1
20050091652 Ross et al. Apr 2005 A1
20050108562 Khazan et al. May 2005 A1
20050114663 Cornell et al. May 2005 A1
20050125195 Brendel Jun 2005 A1
20050149726 Joshi et al. Jul 2005 A1
20050157662 Bingham et al. Jul 2005 A1
20050183143 Anderholm et al. Aug 2005 A1
20050201297 Peikari Sep 2005 A1
20050210533 Copeland et al. Sep 2005 A1
20050238005 Chen et al. Oct 2005 A1
20050240781 Gassoway Oct 2005 A1
20050262562 Gassoway Nov 2005 A1
20050265331 Stolfo Dec 2005 A1
20050283839 Cowburn Dec 2005 A1
20060010495 Cohen et al. Jan 2006 A1
20060015416 Hoffman et al. Jan 2006 A1
20060015715 Anderson Jan 2006 A1
20060015747 Van de Ven Jan 2006 A1
20060021029 Brickell et al. Jan 2006 A1
20060021054 Costa et al. Jan 2006 A1
20060031476 Mathes et al. Feb 2006 A1
20060047665 Neil Mar 2006 A1
20060070130 Costea et al. Mar 2006 A1
20060075496 Carpenter et al. Apr 2006 A1
20060095968 Portolani et al. May 2006 A1
20060101516 Sudaharan et al. May 2006 A1
20060101517 Banzhof et al. May 2006 A1
20060117385 Mester et al. Jun 2006 A1
20060123477 Raghavan et al. Jun 2006 A1
20060143709 Brooks et al. Jun 2006 A1
20060150249 Gassen et al. Jul 2006 A1
20060161983 Cothrell et al. Jul 2006 A1
20060161987 Levy-Yurista Jul 2006 A1
20060161989 Reshef et al. Jul 2006 A1
20060164199 Gilde et al. Jul 2006 A1
20060173992 Weber et al. Aug 2006 A1
20060179147 Tran et al. Aug 2006 A1
20060184632 Marino et al. Aug 2006 A1
20060191010 Benjamin Aug 2006 A1
20060221956 Narayan et al. Oct 2006 A1
20060236393 Kramer et al. Oct 2006 A1
20060242709 Seinfeld et al. Oct 2006 A1
20060248519 Jaeger et al. Nov 2006 A1
20060248582 Panjwani et al. Nov 2006 A1
20060251104 Koga Nov 2006 A1
20060288417 Bookbinder et al. Dec 2006 A1
20070006288 Mayfield et al. Jan 2007 A1
20070006313 Porras et al. Jan 2007 A1
20070011174 Takaragi et al. Jan 2007 A1
20070016951 Piccard et al. Jan 2007 A1
20070019286 Kikuchi Jan 2007 A1
20070033645 Jones Feb 2007 A1
20070038943 FitzGerald et al. Feb 2007 A1
20070064689 Shin et al. Mar 2007 A1
20070074169 Chess et al. Mar 2007 A1
20070094730 Bhikkaji et al. Apr 2007 A1
20070101435 Konanka et al. May 2007 A1
20070128855 Cho et al. Jun 2007 A1
20070142030 Sinha et al. Jun 2007 A1
20070143827 Nicodemus et al. Jun 2007 A1
20070156895 Vuong Jul 2007 A1
20070157180 Tillmann et al. Jul 2007 A1
20070157306 Elrod et al. Jul 2007 A1
20070168988 Eisner et al. Jul 2007 A1
20070171824 Ruello et al. Jul 2007 A1
20070174915 Gribble et al. Jul 2007 A1
20070192500 Lum Aug 2007 A1
20070192858 Lum Aug 2007 A1
20070198275 Malden et al. Aug 2007 A1
20070208822 Wang et al. Sep 2007 A1
20070220607 Sprosts et al. Sep 2007 A1
20070240218 Tuvell et al. Oct 2007 A1
20070240219 Tuvell et al. Oct 2007 A1
20070240220 Tuvell et al. Oct 2007 A1
20070240222 Tuvell et al. Oct 2007 A1
20070250930 Aziz et al. Oct 2007 A1
20070256132 Oliphant Nov 2007 A2
20070271446 Nakamura Nov 2007 A1
20080005782 Aziz Jan 2008 A1
20080018122 Zierler et al. Jan 2008 A1
20080028463 Dagon et al. Jan 2008 A1
20080040710 Chiriac Feb 2008 A1
20080046781 Childs et al. Feb 2008 A1
20080066179 Liu Mar 2008 A1
20080072326 Danford et al. Mar 2008 A1
20080077793 Tan et al. Mar 2008 A1
20080080518 Hoeflin et al. Apr 2008 A1
20080086720 Lekel Apr 2008 A1
20080098476 Syversen Apr 2008 A1
20080120722 Sima et al. May 2008 A1
20080134178 Fitzgerald et al. Jun 2008 A1
20080134334 Kim et al. Jun 2008 A1
20080141376 Clausen et al. Jun 2008 A1
20080184367 McMillan et al. Jul 2008 A1
20080184373 Traut et al. Jul 2008 A1
20080189787 Arnold et al. Aug 2008 A1
20080201778 Guo et al. Aug 2008 A1
20080209557 Herley et al. Aug 2008 A1
20080215742 Goldszmidt et al. Sep 2008 A1
20080222729 Chen et al. Sep 2008 A1
20080263665 Ma et al. Oct 2008 A1
20080295172 Bohacek Nov 2008 A1
20080301755 Sinha Dec 2008 A1
20080301810 Lehane et al. Dec 2008 A1
20080307524 Singh et al. Dec 2008 A1
20080313738 Enderby Dec 2008 A1
20080320594 Jiang Dec 2008 A1
20090003317 Kasralikar et al. Jan 2009 A1
20090007100 Field et al. Jan 2009 A1
20090013408 Schipka Jan 2009 A1
20090031423 Liu et al. Jan 2009 A1
20090036111 Danford et al. Feb 2009 A1
20090037835 Goldman Feb 2009 A1
20090044024 Oberheide et al. Feb 2009 A1
20090044274 Budko et al. Feb 2009 A1
20090064332 Porras et al. Mar 2009 A1
20090077666 Chen et al. Mar 2009 A1
20090083369 Marmor Mar 2009 A1
20090083855 Apap et al. Mar 2009 A1
20090089879 Wang et al. Apr 2009 A1
20090094697 Proves et al. Apr 2009 A1
20090113425 Ports et al. Apr 2009 A1
20090125976 Wassermann et al. May 2009 A1
20090126015 Monastyrsky et al. May 2009 A1
20090126016 Sobko et al. May 2009 A1
20090133125 Choi et al. May 2009 A1
20090144823 Lamastra et al. Jun 2009 A1
20090158430 Borders Jun 2009 A1
20090172815 Gu et al. Jul 2009 A1
20090187992 Poston Jul 2009 A1
20090193293 Stolfo et al. Jul 2009 A1
20090198651 Shiffer et al. Aug 2009 A1
20090198670 Shiffer et al. Aug 2009 A1
20090198689 Frazier et al. Aug 2009 A1
20090199274 Frazier et al. Aug 2009 A1
20090199296 Xie et al. Aug 2009 A1
20090228233 Anderson et al. Sep 2009 A1
20090241187 Troyansky Sep 2009 A1
20090241190 Todd et al. Sep 2009 A1
20090265692 Godefroid et al. Oct 2009 A1
20090271867 Zhang Oct 2009 A1
20090300415 Zhang et al. Dec 2009 A1
20090300761 Park et al. Dec 2009 A1
20090328185 Berg et al. Dec 2009 A1
20090328221 Blumfield et al. Dec 2009 A1
20100005146 Drako et al. Jan 2010 A1
20100011205 McKenna Jan 2010 A1
20100017546 Poo et al. Jan 2010 A1
20100030996 Butler, II Feb 2010 A1
20100031353 Thomas et al. Feb 2010 A1
20100037314 Perdisci et al. Feb 2010 A1
20100043073 Kuwamura Feb 2010 A1
20100054278 Stolfo et al. Mar 2010 A1
20100058474 Hicks Mar 2010 A1
20100064044 Nonoyama Mar 2010 A1
20100077481 Polyakov et al. Mar 2010 A1
20100083376 Pereira et al. Apr 2010 A1
20100115621 Staniford et al. May 2010 A1
20100132038 Zaitsev May 2010 A1
20100154056 Smith et al. Jun 2010 A1
20100180344 Malyshev et al. Jul 2010 A1
20100192223 Ismael et al. Jul 2010 A1
20100220863 Dupaquis et al. Sep 2010 A1
20100235831 Dittmer Sep 2010 A1
20100251104 Massand Sep 2010 A1
20100281102 Chinta et al. Nov 2010 A1
20100281541 Stolfo et al. Nov 2010 A1
20100281542 Stolfo et al. Nov 2010 A1
20100287260 Peterson et al. Nov 2010 A1
20100299754 Amit et al. Nov 2010 A1
20100306173 Frank Dec 2010 A1
20110004737 Greenebaum Jan 2011 A1
20110025504 Lyon et al. Feb 2011 A1
20110041179 St Hlberg Feb 2011 A1
20110047594 Mahaffey et al. Feb 2011 A1
20110047620 Mahaffey et al. Feb 2011 A1
20110055907 Narasimhan et al. Mar 2011 A1
20110078794 Manni et al. Mar 2011 A1
20110093951 Aziz Apr 2011 A1
20110099620 Stavrou et al. Apr 2011 A1
20110099633 Aziz Apr 2011 A1
20110099635 Silberman et al. Apr 2011 A1
20110113231 Kaminsky May 2011 A1
20110145918 Jung et al. Jun 2011 A1
20110145920 Mahaffey et al. Jun 2011 A1
20110145934 Abramovici et al. Jun 2011 A1
20110167493 Song et al. Jul 2011 A1
20110167494 Bowen et al. Jul 2011 A1
20110173213 Frazier et al. Jul 2011 A1
20110173460 Ito et al. Jul 2011 A1
20110219449 St. Neitzel et al. Sep 2011 A1
20110219450 McDougal et al. Sep 2011 A1
20110225624 Sawhney et al. Sep 2011 A1
20110225655 Niemela et al. Sep 2011 A1
20110247072 Staniford et al. Oct 2011 A1
20110265182 Peinado et al. Oct 2011 A1
20110289582 Kejriwal et al. Nov 2011 A1
20110302587 Nishikawa et al. Dec 2011 A1
20110307954 Melnik et al. Dec 2011 A1
20110307955 Kaplan et al. Dec 2011 A1
20110307956 Yermakov et al. Dec 2011 A1
20110314546 Aziz et al. Dec 2011 A1
20120011560 Natarajan Jan 2012 A1
20120023593 Puder et al. Jan 2012 A1
20120054869 Yen et al. Mar 2012 A1
20120066698 Yanoo Mar 2012 A1
20120079596 Thomas et al. Mar 2012 A1
20120084859 Radinsky et al. Apr 2012 A1
20120096553 Srivastava et al. Apr 2012 A1
20120110667 Zubrilin et al. May 2012 A1
20120117652 Manni et al. May 2012 A1
20120121154 Xue et al. May 2012 A1
20120124426 Maybee et al. May 2012 A1
20120174186 Aziz et al. Jul 2012 A1
20120174196 Bhogavilli et al. Jul 2012 A1
20120174218 McCoy et al. Jul 2012 A1
20120198279 Schroeder Aug 2012 A1
20120210423 Friedrichs et al. Aug 2012 A1
20120222121 Staniford et al. Aug 2012 A1
20120255015 Sahita et al. Oct 2012 A1
20120255017 Sallam Oct 2012 A1
20120260342 Dube et al. Oct 2012 A1
20120266244 Green et al. Oct 2012 A1
20120278886 Luna Nov 2012 A1
20120297489 Dequevy Nov 2012 A1
20120330801 McDougal et al. Dec 2012 A1
20120331553 Aziz et al. Dec 2012 A1
20130014259 Gribble et al. Jan 2013 A1
20130036472 Aziz Feb 2013 A1
20130047257 Aziz Feb 2013 A1
20130074185 McDougal et al. Mar 2013 A1
20130086684 Mohler Apr 2013 A1
20130097699 Balupari et al. Apr 2013 A1
20130097706 Titonis et al. Apr 2013 A1
20130111587 Goel et al. May 2013 A1
20130117852 Stute May 2013 A1
20130117855 Kim et al. May 2013 A1
20130139264 Brinkley et al. May 2013 A1
20130160125 Likhachev et al. Jun 2013 A1
20130160127 Jeong et al. Jun 2013 A1
20130160130 Mendelev et al. Jun 2013 A1
20130160131 Madou et al. Jun 2013 A1
20130167236 Sick Jun 2013 A1
20130174214 Duncan Jul 2013 A1
20130185789 Hagiwara et al. Jul 2013 A1
20130185795 Winn et al. Jul 2013 A1
20130185798 Saunders et al. Jul 2013 A1
20130191915 Antonakakis et al. Jul 2013 A1
20130196649 Paddon et al. Aug 2013 A1
20130227691 Aziz et al. Aug 2013 A1
20130246370 Bartram et al. Sep 2013 A1
20130247186 LeMasters Sep 2013 A1
20130263260 Mahaffey et al. Oct 2013 A1
20130291109 Staniford et al. Oct 2013 A1
20130298243 Kumar et al. Nov 2013 A1
20130318038 Shiffer et al. Nov 2013 A1
20130318073 Shiffer et al. Nov 2013 A1
20130325791 Shiffer et al. Dec 2013 A1
20130325792 Shiffer et al. Dec 2013 A1
20130325871 Shiffer et al. Dec 2013 A1
20130325872 Shiffer et al. Dec 2013 A1
20140032875 Butler Jan 2014 A1
20140053260 Gupta et al. Feb 2014 A1
20140053261 Gupta et al. Feb 2014 A1
20140130158 Wang et al. May 2014 A1
20140137180 Lukacs et al. May 2014 A1
20140169762 Ryu Jun 2014 A1
20140179360 Jackson et al. Jun 2014 A1
20140181131 Ross Jun 2014 A1
20140189687 Jung et al. Jul 2014 A1
20140189866 Shiffer et al. Jul 2014 A1
20140189882 Jung et al. Jul 2014 A1
20140237600 Silberman et al. Aug 2014 A1
20140280245 Wilson Sep 2014 A1
20140283037 Sikorski et al. Sep 2014 A1
20140283063 Thompson et al. Sep 2014 A1
20140328204 Klotsche et al. Nov 2014 A1
20140337836 Ismael Nov 2014 A1
20140344926 Cunningham et al. Nov 2014 A1
20140351935 Shao et al. Nov 2014 A1
20140380473 Bu et al. Dec 2014 A1
20140380474 Paithane et al. Dec 2014 A1
20150007312 Pidathala et al. Jan 2015 A1
20150096022 Vincent et al. Apr 2015 A1
20150096023 Mesdaq et al. Apr 2015 A1
20150096024 Haq et al. Apr 2015 A1
20150096025 Ismael Apr 2015 A1
20150180886 Staniford et al. Jun 2015 A1
20150186645 Aziz et al. Jul 2015 A1
20150199513 Ismael et al. Jul 2015 A1
20150199531 Ismael et al. Jul 2015 A1
20150199532 Ismael et al. Jul 2015 A1
20150220735 Paithane et al. Aug 2015 A1
20150372980 Eyada Dec 2015 A1
20160004869 Ismael et al. Jan 2016 A1
20160006756 Ismael et al. Jan 2016 A1
20160044000 Cunningham Feb 2016 A1
20160127393 Aziz et al. May 2016 A1
20160191547 Zafar et al. Jun 2016 A1
20160191550 Ismael et al. Jun 2016 A1
20160261612 Mesdaq et al. Sep 2016 A1
20160285914 Singh et al. Sep 2016 A1
20160301703 Aziz Oct 2016 A1
20160335110 Paithane et al. Nov 2016 A1
20170083703 Abbasi et al. Mar 2017 A1
20180013770 Ismael Jan 2018 A1
20180048660 Paithane et al. Feb 2018 A1
20180121316 Ismael et al. May 2018 A1
20180288077 Siddiqui et al. Oct 2018 A1
20190306118 Guo Oct 2019 A1
20200007546 Valiquette Jan 2020 A1
Foreign Referenced Citations (11)
Number Date Country
2439806 Jan 2008 GB
2490431 Oct 2012 GB
0206928 Jan 2002 WO
0223805 Mar 2002 WO
2007117636 Oct 2007 WO
2008041950 Apr 2008 WO
2011084431 Jul 2011 WO
2011112348 Sep 2011 WO
2012075336 Jun 2012 WO
2012145066 Oct 2012 WO
2013067505 May 2013 WO
Non-Patent Literature Citations (57)
Entry
“Mining Specification of Malicious Behavior”—Jha et al, UCSB, Sep. 2007 https://www.cs.ucsb.edu/.about.chris/research/doc/esec07.sub.--mining.pdf-.
“Network Security: NetDetector—Network Intrusion Forensic System (NIFS) Whitepaper”, (“NetDetector Whitepaper”), (2003).
“When Virtual is Better Than Real”, IEEEXplore Digital Library, available at, http://ieeexplore.ieee.org/xpl/articleDetails.sp?reload=true&arnumbe- r=990073, (Dec. 7, 2013).
Abdullah, et al., Visualizing Network Data for Intrusion Detection, 2005 IEEE Workshop on Information Assurance and Security, pp. 100-108.
Adetoye, Adedayo , et al., “Network Intrusion Detection & Response System”, (“Adetoye”), (Sep. 2003).
Apostolopoulos, George; hassapis, Constantinos; “V-eM: A cluster of Virtual Machines for Robust, Detailed, and High-Performance Network Emulation”, 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Sep. 11-14, 2006, pp. 117-126.
Aura, Tuomas, “Scanning electronic documents for personally identifiable information”, Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM, 2006.
Baecher, “The Nepenthes Platform: An Efficient Approach to collect Malware”, Springer-verlag Berlin Heidelberg, (2006), pp. 165-184.
Bayer, et al., “Dynamic Analysis of Malicious Code”, J Comput Virol, Springer-Verlag, France., (2006), pp. 67-77.
Boubalos, Chris , “extracting syslog data out of raw pcap dumps, seclists.org, Honeypots mailing list archives”, available at http://seclists.org/honeypots/2003/q2/319 (“Boubalos”), (Jun. 5, 2003).
Chaudet, C. , et al., “Optimal Positioning of Active and Passive Monitoring Devices”, International Conference on Emerging Networking Experiments and Technologies, Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, CoNEXT '05, Toulousse, France, (Oct. 2005), pp. 71-82.
Chen, P. M. and Noble, B. D., “When Virtual is Better Than Real, Department of Electrical Engineering and Computer Science”, University of Michigan (“Chen”) (2001).
Cisco “Intrusion Prevention for the Cisco ASA 5500-x Series” Data Sheet (2012).
Cohen, M.I. , “PyFlag—An advanced network forensic framework”, Digital investigation 5, Elsevier, (2008), pp. S112-S120.
Costa, M. , et al., “Vigilante: End-to-End Containment of Internet Worms”, SOSP '05, Association for Computing Machinery, Inc., Brighton U.K., (Oct. 23-26, 2005).
Didier Stevens, “Malicious PDF Documents Explained”, Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 9, No. 1, Jan. 1, 2011, pp. 80-82, XP011329453, ISSN: 1540-7993, DOI: 10.1109/MSP.2011.14.
Distler, “Malware Analysis: An Introduction”, SANS Institute InfoSec Reading Room, SANS Institute, (2007).
Dunlap, George W. , et al., “ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay”, Proceeding of the 5th Symposium on Operating Systems Design and Implementation, USENIX Association, (“Dunlap”), (Dec. 9, 2002).
FireEye Malware Analysis & Exchange Network, Malware Protection System, FireEye Inc., 2010.
FireEye Malware Analysis, Modern Malware Forensics, FireEye Inc., 2010.
FireEye v.6.0 Security Target, pp. 1-35, Version 1.1, FireEye Inc., May 2011.
Goel, et al., Reconstructing System State for Intrusion Analysis, Apr. 2008 SIGOPS Operating Systems Review, vol. 42 Issue 3, pp. 21-28.
Gregg Keizer: “Microsoft's HoneyMonkeys Show Patching Windows Works”, Aug. 8, 2005, XP055143386, Retrieved from the Internet: URL:http://www.informationweek.com/microsofts-honeymonkeys-show-patching-windows-works/d/d-id/1035069? [retrieved on Jun. 1, 2016].
Heng Yin et al, Panorama: Capturing System-Wide Information Flow for Malware Detection and Analysis, Research Showcase @ CMU, Carnegie Mellon University, 2007.
Hiroshi Shinotsuka, Malware Authors Using New Techniques to Evade Automated Threat Analysis Systems, Oct. 26, 2012, http://www.symantec.com/connect/blogs/, pp. 1-4.
Idika et al., A-Survey-of-Malware-Detection-Techniques, Feb. 2, 2007, Department of Computer Science, Purdue University.
Isohara, Takamasa, Keisuke Takemori, and Ayumu Kubota. “Kernel-based behavior analysis for android malware detection.” Computational intelligence and Security (CIS), 2011 Seventh International Conference on. IEEE, 2011.
Kaeo, Merike , “Designing Network Security”, (“Kaeo”), (Nov. 2003).
Kevin A Roundy et al: “Hybrid Analysis and Control of Malware”, Sep. 15, 2010, Recent Advances in Intrusion Detection, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 317-338, XP019150454 ISBN:978-3-642-15511-6.
Khaled Salah et al: “Using Cloud Computing to Implement a Security Overlay Network”, Security & Privacy, IEEE, IEEE Service Center, Los Alamitos, CA, US, vol. 11, No. 1, Jan. 1, 2013 (Jan. 1, 2013).
Kim, H. , et al., “Autograph: Toward Automated, Distributed Worm Signature Detection”, Proceedings of the 13th Usenix Security Symposium (Security 2004), San Diego, (Aug. 2004), pp. 271-286.
King, Samuel T., et al., “Operating System Support for Virtual Machines”, (“King”), (2003).
Kreibich, C. , et al., “Honeycomb-Creating Intrusion Detection Signatures Using Honeypots”, 2nd Workshop on Hot Topics in Networks (HotNets-11), Boston, USA, (2003).
Kristoff, J. , “Botnets, Detection and Mitigation: DNS-Based Techniques”, NU Security Day, (2005), 23 pages.
Lastline Labs, The Threat of Evasive Malware, Feb. 25, 2013, Lastline Labs, pp. 1-8.
Li et al., A VMM-Based System Call Interposition Framework for Program Monitoring, Dec. 2010, IEEE 16th International Conference on Parallel and Distributed Systems, pp. 706-711.
Lindorfer, Martina, Clemens Kolbitsch, and Paolo Milani Comparetti. “Detecting environment-sensitive malware.” Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, 2011.
Marchette, David J., “Computer Intrusion Detection and Network Monitoring: A Statistical Viewpoint”, (“Marchette”), (2001).
Moore, D. , et al., “Internet Quarantine: Requirements for Containing Self-Propagating Code”, INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003), pp. 1901-1910.
Morales, Jose A., et al., ““Analyzing and exploiting network behaviors of malware.””, Security and Privacy in Communication Networks. Springer Berlin Heidelberg, 2010. 20-34.
Mori, Detecting Unknown Computer Viruses, 2004, Springer-Verlag Berlin Heidelberg.
Natvig, Kurt , “SANDBOXII: Internet”, Virus Bulletin Conference, (“Natvig”), (Sep. 2002).
NetBIOS Working Group. Protocol Standard for a NetBIOS Service on a TCP/UDP transport: Concepts and Methods. STD 19, RFC 1001, Mar. 1987.
Newsome, J. , et al., “Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software”, in Proceedings of the 12th Annual Network and Distributed System Security, Symposium (NDSS '05), (Feb. 2005).
Nojiri, D. , et al., “Cooperation Response Strategies for Large Scale Attack Mitigation”, DARPA Information Survivability Conference and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302.
Oberheide et al., CloudAV.sub.—N-Version Antivirus in the Network Cloud, 17th USENIX Security Symposium USENIX Security '08 Jul. 28-Aug. 1, 2008 San Jose, CA.
Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Roonald Perez, Leendert van Doorn, John Linwood Griffin, Stefan Berger., sHype: Secure Hypervisor Appraoch to Trusted Virtualized Systems (Feb. 2, 2005) (“Sailer”).
Silicon Defense, “Worm Containment in the Internal Network”, (Mar. 2003), pp. 1-25.
Singh, S. , et al., “Automated Worm Fingerprinting”, Proceedings of the ACM/USENIX Symposium on Operating System Design and Implementation, San Francisco, California, (Dec. 2004).
Thomas H. Ptacek, and Timothy N. Newsham , “Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection”, Secure Networks, (“Ptacek”), (Jan. 1998).
Venezia, Paul , “NetDetector Captures Intrusions”, InfoWorld Issue 27, (“Venezia”), (Jul. 14, 2003).
Vladimir Getov: “Security as a Service in Smart Clouds—Opportunities and Concerns”, Computer Software and Applications Conference (COMPSAC), 2012 IEEE 36th Annual, IEEE, Jul. 16, 2012 (Jul. 16, 2012).
Wahid et al., Characterising the Evolution in Scanning Activity of Suspicious Hosts, Oct. 2009, Third International Conference on Network and System Security, pp. 344-350.
Whyte, et al., “DNS-Based Detection of Scanning Works in an Enterprise Network”, Proceedings of the 12th Annual Network and Distributed System Security Symposium, (Feb. 2005), 15 pages.
Williamson, Matthew M., “Throttling Viruses: Restricting Propagation to Defeat Malicious Mobile Code”, ACSAC Conference, Las Vegas, NV, USA, (Dec. 2002), pp. 1-9.
Yuhei Kawakoya et al: “Memory behavior-based automatic malware unpacking in stealth debugging environment”, Malicious and Unwanted Software (Malware), 2010 5th International Conference on, IEEE, Piscataway, NJ, USA, Oct. 19, 2010, pp. 39-46, XP031833827, ISBN:978-1-4244-8-9353-1.
Zhang et al., The Effects of Threading, Infection Time, and Multiple-Attacker Collaboration on Malware Propagation, Sep. 2009, IEEE 28th International Symposium on Reliable Distributed Systems, pp. 73-82.
Provisional Applications (1)
Number Date Country
62692584 Jun 2018 US