The present invention relates to the field of multi-layered concrete structures formed by a process known as “slip forming.” More particularly, the present invention relates to a system and method of automating vertical slip forming.
This section is intended to introduce various aspects of the art, which may be associated with exemplary embodiments of the present disclosure. This discussion is believed to assist in providing a framework to facilitate a better understanding of particular aspects of the present disclosure. Accordingly, it should be understood that this section should be read in this light, and not necessarily as admissions of prior art.
Slip forming (also referred to as slip form construction and continuously formed or poured concrete construction) is a method of building concrete structures such as grain silos, nuclear power silos, elevator towers, stairwells, wind turbine towers, and others.
In constructing such towers, wet concrete is poured into forms. As the poured concrete sets, the forms are moved vertically (e.g., using hydraulics or similar means), with the forms “slipping” on the previously-poured concrete. In other words, the forms move vertically at a rate that allows the poured concrete to sufficiently set so as to support a new layer of concrete above, but that is still wet enough, or workable, to allow the new layer of concrete to combine with the previous layer without forming a joint. The overall process may be duplicated until the tower has reached its desired height. In some cases, the desired height may be over 100 feet high.
Despite the advances in the art, several limitations exist. For example, most slip forms and work platforms are supported using rods placed within the concrete, with a work platform surrounding the outside of the poured concrete. Additionally, the assembly is hydraulically raised, with the slip forms and work platforms raising simultaneously. Further, workers must continuously, and manually, pour concrete into the slip forms. Accordingly, there is a need for a system and method of slip forming that does not require framework support rods within the concrete, that may be mechanically raised, and that does not require manual pouring of concrete. The present invention seeks to solve these and other problems.
In one embodiment, a system for forming a vertical structure through the incremental pouring of wet concrete comprises a plurality of vertical columns external to the concrete of the vertical structure; a slip form structure comprising a pair of opposing walls forming a bottomless trough; a main frame coupled to the slip form structure, wherein the main frame is supported on, and configured to move vertically along, the vertical columns; and a work platform residing below the slip form structure and main frame, the work platform being supported on, and configured to move vertically along, the vertical columns; wherein the main platform moves independently of the work platform.
In one embodiment, the main frame further comprises a plurality of main frame motors coupled thereto; and, a series of geared vertical columns configured to interact with pinions of the respective main frame motors, wherein activation of the main frame motors induces the main frame, and slip form structure coupled thereto, to move vertically along the geared vertical columns such that the main frame and slip form structure are maintained in a substantially horizontal orientation.
In one embodiment, system for forming a vertical structure through the incremental pouring of wet concrete comprises a conduit having a proximal end and a distal end, wherein the proximal end is configured to be placed in fluid communication with a pump for pumping a concrete slurry. The distal end is configured to deliver wet concrete slurry to the trough formed by slip form sections.
The conduit also includes a nozzle at the distal end. The nozzle is configured to deliver a wet concrete slurry into the slip form sections. Optionally, a micro-motor is placed adjacent the nozzle. The micro-motor is configured to generate vibratory energy while concrete slurry is passing through the nozzle.
The system may further include a series of swivels. The swivels are placed along the conduit, and are configured to permit the conduit to articulate along an [x, y] coordinate according to processor commands.
In one embodiment, the system additionally comprises a distance sensor (e.g., IR sensors, optical sensors, ultrasonic, or similar sensors known in the art of distance measuring). The distance sensor resides adjacent the nozzle. The sensor is configured to sense a distance between the sensor and a layer of wet concrete as the wet concrete is poured through the nozzle.
The system may also have a processor. The processor is configured to receive commands from the distance sensor and to cause (i) the nozzle to close, or (ii) a pump to discontinue pumping a concrete slurry into the series of pipe sections, when the distance sensor senses that a layer of wet concrete within a slip form section has reached a designated distance from the nozzle.
In one embodiment, the system comprises a canopy above the slip form sections.
In one embodiment, the system additionally includes a series of base plates. The plurality of base plates are affixed to a foundation of the vertical structure to be formed. Each of the base plates is configured to support a corresponding geared vertical column.
The system also offers a series of brackets. The brackets connect the main frame to selected flanges of the slip form sections. In this way, when the main frame is raised, the slip form structure is raised with it.
Preferably, the system further comprises a work platform. The work platform resides within the geometry formed by the slip form structure and below the main frame. The work platform also comprises a plurality of perimeter members connected together to form a structure within the geometry of the slip form structure.
The work platform is configured to be raised along with the main frame. The work platform may operate with a series of work platform motors, such that the series of geared vertical columns are also configured to interact with respective work platform motors. In this way, the simultaneous activation of the work platform motors induces the work platform to move vertically along the geared vertical columns below the main frame such that the work platform is also maintained in a substantially horizontal orientation.
A method of forming a vertical structure through the incremental pouring of wet concrete is provided.
Also, a method of controlling a conduit associated with a concrete delivery system is provided.
Also, a method of automatically raising slip form sections during a concrete tower construction is provided.
Further, a method of filling a trough associated with a slip form structure is provided.
Additionally, a method of operating a wet concrete slurry delivery system is provided.
Each of these methods may operate under the control of a processor associated with a concrete pouring control system. The processor is programmed to (i) control a rate at which concrete is poured into the trough of a slip form structure in response to depth sensor readings, (ii) close a valve or open a valve associated with a nozzle at the end of a concrete conduit, (iii) move the nozzle along the trough and avoid obstacles, (iv) raise a main frame operatively connected to the slip form structure in response to successive layers of wet concrete being poured, (v) raise a work platform below the main frame, and (vi) combinations thereof. It will be appreciated that while a “processor” is described herein, a microcontroller or similar device may likewise be used.
So that the manner in which the present inventions can be better understood, certain illustrations, photographs, charts and/or flow charts are appended hereto. It is to be noted, however, that the drawings illustrate only selected embodiments of the inventions and are therefore not to be considered limiting of scope, for the inventions may admit to other equally effective embodiments and applications.
The following descriptions depict only example embodiments and are not to be considered limiting in scope. Any reference herein to “the invention” is not intended to restrict or limit the invention to exact features or steps of any one or more of the exemplary embodiments disclosed in the present specification. References to “one embodiment,” “an embodiment,” “various embodiments,” and the like, may indicate that the embodiment(s) so described may include a particular feature, structure, or characteristic, but not every embodiment necessarily includes the particular feature, structure, or characteristic. Further, repeated use of the phrase “in one embodiment,” or “in an embodiment,” do not necessarily refer to the same embodiment, although they may.
Reference to the drawings is done throughout the disclosure using various numbers. The numbers used are for the convenience of the drafter only and the absence of numbers in an apparent sequence should not be considered limiting and does not imply that additional parts of that particular embodiment exist. Numbering patterns from one embodiment to the other need not imply that each embodiment has similar parts, although it may.
Accordingly, the particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of the invention, which is to be given the full breadth of the appended claims and any and all equivalents thereof. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation. Unless otherwise expressly defined herein, such terms are intended to be given their broad, ordinary, and customary meaning not inconsistent with that applicable in the relevant industry and without restriction to any specific embodiment hereinafter described. As used herein, the article “a” is intended to include one or more items. When used herein to join a list of items, the term “or” denotes at least one of the items, but does not exclude a plurality of items of the list. For exemplary methods or processes, the sequence and/or arrangement of steps described herein are illustrative and not restrictive.
It should be understood that the steps of any such processes or methods are not limited to being carried out in any particular sequence, arrangement, or with any particular graphics or interface. Indeed, the steps of the disclosed processes or methods generally may be carried out in various sequences and arrangements while still falling within the scope of the present invention.
The term “coupled” may mean that two or more elements are in direct physical contact. However, “coupled” may also mean that two or more elements are not in direct contact with each other, but yet still cooperate or interact with each other.
The terms “comprising,” “including,” “having,” and the like, as used with respect to embodiments, are synonymous, and are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including, but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes, but is not limited to,” etc.).
As previously discussed, there is a need for a system and method of slip forming that does not require framework support rods within the concrete, that may be mechanically raised, and that does not require manual pouring of concrete. The system for forming a vertical structure through the incremental pouring of wet concrete (also referred to as a system for automating vertical slip forming in concrete construction) shown and described herein solves these needs and others.
Referring to
The slip form structure 400 is fabricated from a plurality of slip form sections. Each slip form section is configured to receive wet concrete in incremental layers. The slip form structure 400 includes side slip form sections 310 and end slip form sections 320. The slip form structure 400 also includes corner sections 330. These sections 310, 320, 330 are removably joined end-to-end using bolts or equivalent means.
In some instances, the geometry of the slip form structure 400 may call for unique or “custom fit” sizes of sections. Illustrative custom slip form sections 315 are also shown in
Each slip form section 310, 315, 320, 330 includes a flanged end. The flanges 340 flare out from opposing sides (shown best in
The slip form sections 310, 315, 320, 330 and their associated flanges 340 are preferably fabricated from steel. However, other durable materials such as aluminum or plastic may also be employed.
The work platform 700 is fabricated from perimeter members 710, which may be tubular, telescoping members, I-beams, or other structural support beam. The perimeter members 710 are preferably fabricated from aluminum, or a mix of aluminum and steel. Corner pieces are used to create a closed structure for the work platform 700. The work platform 700 may further comprise planks 702 as shown in
It is noted that a separate motor 1000 is intended to be placed along each column 360. In other words, a motor 1000 is secured to the main frame 800 at each corner, or near thereto. In addition, a motor 1000 may be secured to each corner of the work platform 700. In this way, the work platform 700 is separately driven up the columns 360, below the main frame 800. However, it will be noted that while geared vertical columns 360 are illustrated, geared columns are not required and other means may be used. For example, cable-driven systems, hydraulic systems, or similar means may be used. In other words, the main frame 800 may be slidably coupled to the vertical columns 360, wherein the main frame 800 and/or work platform 700 slides on the columns using a series of cables, pulleys, and motors, as is known in the art of elevators.
In the view of
The corner section 830 also includes a pair of brackets 810. The brackets 810 are designed to be pinned to the proximal end of a lever (shown at 834 in
The corner section additionally includes two pairs of adjacent posts 832. Each post 832 extends down from the corner section 830, and includes a pair of aligned holes 837. The aligned holes are configured to receive a pin (shown at 831 in
In operation, the brackets 810 provide a fulcrum that allows the guide wheels 836 push against dry concrete. The posts 832 serve as a mounting system for the guide wheels 836.
In
It is observed that the canopy 1100 includes a plurality of cross-members 1110. The cross-members are designed to support a tarp or other weather-insulating material (not shown). Those of ordinary skill in the art will understand that concrete is sensitive to temperature and moisture.
In one embodiment, as shown in
The concrete slurry delivery system 1400 may also include one or more micro-motors 1460. The micro-motors reside near the nozzle 1450 and impart vibratory energy at the nozzle 1450. This assists in moving the low-viscosity concrete slurry out of the nozzle 1450 and into the trough formed by the slip form structure 400.
Also visible in
In one embodiment, the concrete slurry delivery system is automated. To this end, the nozzle 1450 includes an associated sensor capable of detecting a distance between the nozzle 1450 and a surface. In this instance, the surface is a layer of wet concrete being poured into the trough formed by the slip form structure 400 as the concrete layer is formed.
The illustrative concrete slurry delivery system includes a knuckle boom 1470, as best seen in
In operation, as wet concrete is poured into the slip form structure 400, distance readings are taken by the nozzle 1450 sensor. These are optionally recorded by an on-board processor and analyzed (such as by using a microcontroller). Once a designated distance (or distance bandwidth) is recognized, the nozzle 1450 is closed (such as by means of an automated valve) and redirected to a new pouring location along the slip form structure 400. This process is repeated until a first layer of wet concrete is laid.
In an alternate, and more preferable, arrangement, the nozzle 1450 continually moves during the pouring process. Signals from the nozzle 1450 sensor are analyzed by a processor to determine a rate of change in the distance readings. If the rate of change increases, then the nozzle 1450 is moved more quickly; if the rate of change decreases, then the nozzle 1450 is moved along the trough more slowly.
In either instance, a second layer of wet concrete is not poured until the first layer of concrete 1310 is completed. In one aspect, a drying time of, for example, one hour may be applied before the pouring of the second layer commences. The first layer of concrete 1310 will have begun to set, but need not be completely dry. Ambient conditions and structural dimensions will dictate how quickly the second layer of wet concrete 1310 is poured after the first layer has been laid. Depending on a rate of setting, the operator may need to wait 30 minutes to 90 minutes after the first layer is poured before beginning to pour the second layer of concrete 1310. The rate of concrete slurry injection through the nozzle 1450 may also affect wait time.
As the main frame 800 is being raised, this, in turn, raises the slip form structure 400 a selected amount over the most recent layer of wet concrete 1310. In one embodiment, this is a mechanical process that is conducted without hydraulic rams (or jack rods) or hydraulic jacks. In such a scenario, the rack-and-pinion configuration described earlier is utilized. However, it will be appreciated that the present invention is not limited to rack-and-pinion configuration, and more traditional hydraulic systems may be utilized.
In one aspect, as soon as wet concrete has approached the top of the trough formed by the slip form structure 400 across the entire perimeter, the slip form sections 310, 315, 320, 330 are automatically raised. This may be done in response to a processor having directed the knuckle boom 1470 entirely across the perimeter of the slip form structure 400. Alternatively, this may be done in response to laser beam sensors residing at the top of the slip form sections 310, 315, 320, 330 sensing complete cover. Alternatively still, this may be done in response to the operator standing on the work platform 700 and activating the motors 1000 manually. In any instance, it is preferred that the work platform 700 and the main frame 800 are raised together. Because the slip form structure is coupled to the main frame 800, the slip form structure likewise raises. This enables the trough formed by the slip form structure 400 to receive a next layer of wet concrete.
As noted above, raising the main frame 800 is done by activating electric motors 1000 residing at each of the vertical geared columns 360. The motors 1000 are activated and deactivated simultaneously, and are operated at the same rate to ensure that the main frame 800 remains level.
It is also observed in
As part of the process of supporting the main frame 800, concrete embeds 802 may be utilized to secure the vertical columns 360 to the dried concrete walls.
As shown in the
Referring to
As noted above, the conduit 1410 may include a series of swivels, or swivel connections 1420. The swivels 1420 allow the nozzle 1450 of the concrete slurry delivery system 1400 to be incrementally advanced during the process of pouring each concrete layer. At all times, the concrete slurry delivery system 1400, or more particularly, the nozzle 1450 and associated sensor 1430 and micro-motor 1460, are supported by the canopy 1100, which in turn is supported by the main frame 800.
The knuckle boom 1470 also includes a draw cable 1475. The draw cable 1475 is mechanically pulled by a winch or kinematic mechanism powered by a motor when a sensor senses an obstacle along the slip form structure 400. For example, the draw cable 1475 may be pulled by activating a winch (not shown). In the view of
The winch may be powered and controlled by an on/off state controlled by a concrete pouring control system. Alternatively, the kinematic mechanism may be powered and controlled by a servomotor control system. The servomotor control is triggered by sensors located on the nozzle 1450. The sensors located on the nozzle 1450 may detect concrete depth and obstacles encountered during the pour. The sensors may be any combination of pressure, ultrasonic, optical, capacitive, or Hall Effect. The knuckle boom 1470 is moved by a motor including optionally a servomotor, hydraulic motor, or a speed controlled motor.
An optional sensing and control system may be utilized including a set of three to four video cameras for sensing the nozzle 1450 location by image processing in a video control system. The optional video controller communicates control signals to a winch, a servomotor controller in a kinematic mechanism for extending and retracting the nozzle 1450 and to a motor or servomotor for moving the knuckle boom 1470. Combinations of local nozzle and video sensors may be used in conjunction with the concrete pouring control system. Inputs may also include safety inputs to insure the safety of workers and operators.
The concrete pouring control system may contain and make use of a PID (proportional, integral, derivative) control algorithm and other controls programming to calculate and communicate on/off pour control command to the nozzle 1450 valve and micro-motor, on state communicated at the beginning of the pour and off state communicated when a pour is completed. The control system may employ a PLC (programmable logic controller) for programming and executing the controls programming including optionally PID programming. The control system may also include and HMI (human-machine interface) for entering parameters and controlling and monitoring the pour process.
Also visible in
The method 1700 first includes determining a flow rate for the concrete. This rate is optionally input into a processor for automation of concrete delivery, or is set by an operator manually turning a valve or adjusting a nozzle. This step is shown at Box 1710.
The method 1700 next includes determining a concrete layer wait time. This is the amount of time between pouring steps for wet concrete. This wait time again is preferably input into a processor for automation. This step is shown at Box 1720.
The method 1700 additionally includes inputting a concrete layer depth. This is indicated at Box 1730. This step may comprise setting a distance to be sensed by a sensor residing on the concrete nozzle. Thus, during a concrete pour, the sensor will determine that a predetermined concrete layer depth has been reached when the sensor senses that the nozzle has reached a certain distance from the concrete. Alternatively, the nozzle may be in the wet concrete during the pour, and the sensor will sense that the concrete layer has reached the sensor. A signal is then sent to close a valve associated with the nozzle to turn off the flow of wet concrete.
Once the above settings have been determined, the process of injecting concrete begins. This is provided at Box 1740. The automated concrete placement system will lower the nozzle and an associated vibratory device into or over the trough of the slip form structure. Concrete will flow out of the nozzle in order to pour a first concrete layer.
During pouring, sensor readings are made. More specifically, concrete distance readings are taken. This is shown at Box 1750.
Sensor readings will continue to be taken and, optionally, analyzed as shown in Box 1760. When the sensor determines that the level of concrete has risen to the desired depth, the nozzle will begin to travel along the perimeter of the slip form structure while continuing to dispense concrete.
In accordance with the method 1700, the nozzle will move according to [x, y] coordinate settings. This is provided at Box 1770. The speed of movement of the nozzle will be determined by the sensor measuring the pour depth. As the concrete level rises, the sensor will accelerate the nozzle's movement to prevent overfilling of the form.
It is noted that as the nozzle moves along the trough, it will encounter obstacles. Such obstacle may include rebar and embedded vertical support columns. When the nozzle reaches an obstacle, a sub-sequence will run commanding the concrete pump to shut off. The nozzle will then lift out of the concrete (with the vibrator still running), and a valve at the end of the nozzle will close.
The nozzle will sense (or continue to sense) the obstruction while in its elevated position. The nozzle will move until it senses that the obstruction has passed the obstacle. The nozzle will then lower back into the form. The valve will re-open and the nozzle will resume the flow of concrete.
When the nozzle has filed the form to the predetermined pour height throughout the perimeter of the trough, the pump will shut off and the valve for the concrete nozzle will close. The system will then remain stationary for a predetermined period of time while the most-recently poured layer of concrete sets. When the predetermined wait between lifts has been completed, the entire mechanism will climb slowly on the geared vertical columns. This means that motors residing along the outer sides of the main frame are activated, causing rotational movement. Preferably, the vertical columns are stabilized by supports (embeds 802) embedded in the inner wall of the concrete structure during the climb.
When the main frame has climbed a distance equal to the predetermined pour height, it will lock in place, and the wet concrete delivery system will once again be activated. The wet concrete delivery system will then pour another predetermined amount of concrete in the trough of the slip form structure on top of the previous pour. In an alternative embodiment, the system moves slowly and continuously, without the need for the system to remain stationary during any period, barring user intervention.
The working platform operates on the same columns, but separate from the main frame, to service or supply the wet concrete delivery system, and to allow workers to come and go from the work site, such as at day's end. In this way, the main platform and slip form structure can remain at the top of the vertical structure while the user lowers the working platform.
As can be seen, a method for forming a concrete structure using slip forms is provided herein. A concrete or slurry pour depth control system is provided that receives signals and communicates outputs for guidance and depth control. Inputs are local a concrete supply nozzle and optionally include triangulated video signals. The concrete pouring control system may optionally be trained to follow a series of motions along a pathway for use after training to perform that same series of motions including obstacle avoidance motions and pour motions with actual pouring. The concrete pouring control system contains and performs an optimal pour algorithm. The algorithm optimizes concrete pours taking into account parameters such as relative humidity, air temperature, wetness of the concrete, and maximum pour depth to maximize the rate of pour associated with the nozzle speed of movement.
The method 1800 begins with construction of the system itself. This is shown at Box 1805 of
The method 1800 next includes placing a “Start” switch along the slip form structure 400. This is provided at Box 1810. The Start switch tells the controller where the nozzle 1450 is and when to start a pour layer routine.
The method 1800 additionally includes entering data for the controller. The data pertains to the concrete mixture. This is indicated at Box 1815.
The method 1800 next provides for entering parameters for construction of the concrete tower. This is seen at Box 1820. The design parameters will include ambient temperature, ambient humidity, temperature of the concrete, maximum safe lift speed for the slip form structure 400, maximum safe lateral speed of the nozzle 1450. Other parameters such as nozzle size, pour depth and height of the concrete tower to be constructed may also be included.
The method 1800 also comprises initiating the pouring of the first layer of concrete into the slip form structure 400. This is shown at Box 1825 of
The method 1800 further includes initiating movement of the nozzle 1450 back away from the trough of the slip form structure 400. This is seen at Box 1830. As the nozzle 1450 moves backwards, it will collide with the Start switch. This informs the controller that a pour layer is to begin, and begins operation of the pumps and vibrator. It also begins controlled movement of the nozzle 1450 and associated valve.
The method 1800 next involves the activation of location sensors associated with the nozzle 1450 and conduit 1410. This is provided at Box 1835. The sensors send signals to the controller, which in turn moves the nozzle 1450 into the trough and opens the valve.
The method 1800 also comprises verifying that no obstruction is present. This is indicated at Box 1840. This involves the laser sensors along the conduit 1410 checking the immediate surroundings.
The method 1800 also provides lowering the nozzle 1450. At the same time, a command is sent to the pumps to start pumping, and for the vibrator to begin vibrating. This is shown at Box 1845. Wet concrete is now poured into the trough of the slip form structure 400.
The method 1800 additionally includes continuous monitoring of the depth of the concrete pour. This is given at Box 1850. In this step 1850, the laser sensor adjacent the nozzle observes the distance of the concrete layer from the nozzle. As the concrete layer rises, signals are sent back to the controller. When the concrete layer rises to a location a designated distance from the laser sensor, then the system knows that a desired pour depth has been achieved.
The method 1800 next addresses the sensing of obstructions. This is seen at Box 1855. The nozzle 1450 will inevitable approach a section of rebar or other obstacle along the pour path. When this occurs, the pump and vibrator are shut off, the valve is closed, and the nozzle 1450 is lifted out of the trough.
Next, the nozzle 1450 will move laterally along the trough. In one aspect, the nozzle 1450 will move a distance equal to the width of the nozzle 1450, plus a designated distance such as one inch or twelve inches. This is provided at Box 1860. As the nozzle 1450 moves, it will continue to check for obstructions per Box 1865. If an obstruction is sensed, then the nozzle 1450 will be moved back, or moved back farther before moving laterally. This is shown at Box 1875A. In one embodiment, moving the nozzle 1450 back comprises pulling cable 1475.
On the other hand, if no obstructions are encountered, then the nozzle 1450 will continue to fill the trough and to move laterally along the trough during the pour cycle. This is provided at Box 1875B.
The rate of lateral movement of the trough may be pre-set as one of the operating parameters of Box 1820. Alternatively, the rate of lateral movement may be dependent on the rate at which the trough fills during the pour cycle.
The conduit 1410 and connected nozzle 1450 will eventually complete the pour cycle. The loop is ended when the nozzle 1450 collides with the Start switch. This is provided at Box 1880. The controller then freezes the location of the nozzle 1450 and initiates raising of the slip form structure 400 for a next pour cycle. This is noted in Box 1885.
Finally, according to the method 1800, the loop is repeated if the full height of the concrete tower has not been reached. This is provided in Box 1890. In this instance, the loop of method 1800 will begin again at Box 1845.
Accordingly, in one, non-limiting example of use, a user would begin by assembling the system for forming a vertical structure through the incremental pouring of wet concrete by placing base plates 350 on the surface where the vertical, concrete structure will be built. The user would then erect the vertical columns 360 by coupling them to the base plates 350. The work platform 700 may then be coupled to the vertical columns 360. With the work platform 700 in place, any necessary equipment may be placed thereon. Next, the main frame 800 may be coupled to the vertical columns 360. Once assembled, the slip form structure 400 may be coupled to the main frame, such as by using L-angle brackets 347. L-angle brackets 347 are rigid, which means that as the main frame 800 moves along the vertical columns 360, the slip form structure moves therewith. The canopy 1100 may then be coupled to the main frame 800 as well, providing a covered working platform 700 as well as sheltering wet concrete as it is poured. In this configuration, concrete may be manually added to the slip form using standard methods known in the art. However, in one configuration, as described earlier, a conduit 1410 may be coupled to the system, which may further comprise a nozzle 1450 having one or more sensors coupled thereto. A concrete pump, supplying concrete to the nozzle 1450, may be controlled via one or more microcontrollers (or other processors), and may also control movement of a knuckle boom 1470 or other mechanism for moving the nozzle 1450 along the trough formed by the slip form structure 400. In such a scenario, the system described herein is automatically controlled; in other words, the supply of concrete, movement of the nozzle 1450, and movement of the main frame and associated slip form structure may be controlled via electronic signals from one or more microcontrollers, computers, or other processors. This is an improvement over the current art, as it significantly reduces man-power required which increases efficiency and lowers cost as a result. The order of assembly in this example should not be viewed as limiting, and the components may be assembled in any number of configurations. Because the work platform 700 is separate from the main frame, in one embodiment, the work platform may raise and lower independently therefrom. This is beneficial, as it allows workers to retrieve worksite materials, take a break and go to a restroom, or retire for the day, without the need to lower the main frame and associated slip forms, which is also a significant improvement over the prior art. As described earlier, and as shown, vertical columns 360 having geared racks thereon may be used. However, the invention is not so limited, and other methods may be used, such as hydraulics or cable-pulley systems.
As is clear from the above disclosure, the system for forming a vertical structure through the incremental pouring of wet concrete solves several problems in the industry; namely, the need for a system and method of slip forming that does not require framework support rods within the concrete, that may be mechanically raised, and that does not require manual pouring of concrete. Because the system may be automated, the number or workers to operate the system is substantially lowered, while production is increased.
Exemplary embodiments are described above. No element, act, or instruction used in this description should be construed as important, necessary, critical, or essential unless explicitly described as such. Although only a few of the exemplary embodiments have been described in detail herein, those skilled in the art will readily appreciate that many modifications are possible in these exemplary embodiments without materially departing from the novel teachings and advantages herein. Accordingly, all such modifications are intended to be included within the scope of this invention.
This application claims the benefit of U.S. Provisional Application Ser. No. 62/514,145, filed on Jun. 2, 2017, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
802699 | Lancaster | Oct 1905 | A |
1165586 | Fraser etal. | Dec 1915 | A |
1376911 | Abram | May 1921 | A |
1464600 | Dunham | Aug 1923 | A |
1596605 | Evans | Aug 1926 | A |
2217115 | Hermodsson | Oct 1940 | A |
2516318 | Hawes | Jul 1950 | A |
2596854 | Jack | May 1952 | A |
3207263 | Cull | Sep 1965 | A |
3224065 | Cheskin | Dec 1965 | A |
3510098 | Fox | May 1970 | A |
3516129 | Yoder | Jun 1970 | A |
3973885 | Schmidt | Aug 1976 | A |
4128610 | Ahlgren | Dec 1978 | A |
4374790 | McGowan | Feb 1983 | A |
5490367 | Lee | Feb 1996 | A |
6260311 | Vladikovic | Jul 2001 | B1 |
6276912 | Rock | Aug 2001 | B1 |
20030033772 | Russell | Feb 2003 | A1 |
20110171336 | Schwoerer | Jul 2011 | A1 |
20170016244 | Keller et al. | Jan 2017 | A1 |
Number | Date | Country |
---|---|---|
3020211 | Oct 2017 | CA |
3703487 | Aug 1988 | DE |
15910 | Jul 1915 | GB |
233796 | May 1925 | GB |
517076 | Jan 1940 | GB |
642362 | Aug 1950 | GB |
2099789 | Dec 1982 | GB |
WO-2005042876 | May 2005 | WO |
WO-2017136911 | Aug 2017 | WO |
WO-2019241257 | Dec 2019 | WO |
Number | Date | Country | |
---|---|---|---|
20180347211 A1 | Dec 2018 | US |
Number | Date | Country | |
---|---|---|---|
62514145 | Jun 2017 | US |