Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.
The invention pertains to a mobile robot for cleaning a floor or other surface. In particular, the invention pertains to a robot configured to implement a class of trajectories designed to efficiently scrub or otherwise clean the floor.
From their inception, robots have been designed to perform tasks that people prefer not to do or cannot do safely. Cleaning and vacuuming, for example, are just the type of jobs that people would like to delegate to such mechanical helpers. The challenge, however, has been to design robots that can clean the floor of a home well enough to satisfy the exacting standards of the people the live in it. Although robots have been designed to vacuum floors, robots designed to perform mopping present unique challenges. In particular, such a robot should be able to dispense cleaning solution, scrub the floor with the solution, and then effectively remove the spent cleaning solution. Robots tend to perform unsatisfactorily, however, because hard deposits on the floor may require time for the cleaning solution to penetrate and removal of the dirty solution may leave streak marks on the floor. There is therefore a need for a cleaning robot able to implement a cleaning plan that enables the robot to apply cleaning solution, repeatedly scrub the floor with the solution, and leave the floor free of streak marks.
The present invention pertains to a mobile robot configured to travel across a residential floor or other surface while cleaning the surface with a cleaning pad and cleaning solvent. The robot includes a controller for managing the movement of the robot as well as the treatment of the surface with a cleaning solvent. The movement of the robot can be characterized by a class of trajectories that achieve effective cleaning. These trajectories seek to: maximize usage of the cleaning solvent, reduce streaking, utilize absorption properties of the pad, and use as much of the surface of the pad as possible. In an exemplary embodiment, the trajectory may include an oscillatory motion with a bias in a forward direction by repeatedly moving forward a greater distance than backward. In the same exemplary embodiment, the cleaning pad is a disposable sheet impregnated with solvent that is then applied to and recovered from the surface by means of the trajectory.
In one embodiment, the cleaning robot includes a cleaning assembly; a path planner for generating a cleaning trajectory; and a drive system for moving the robot in accordance with the cleaning trajectory. The cleaning trajectory is a sequence of steps or motions that are repeated a plurality times in a prescribed order to effectively scrub the floor. Repetition of the sequence, in combination with the forward and back motion, causes the cleaning assembly to pass of areas of the floor a plurality of times while allowing time for the cleaning solution to penetrate dirt deposits.
The sequence repeated by the cleaning trajectory preferably comprises: (i) a first path for guiding the robot forward and to the left; (ii) a second path for guiding the robot backward and to the right; (iii) a third path for guiding the robot forward and to the right; and (iv) a fourth path for guiding the robot backward and to the left. The first path and third path result in a longitudinal displacement of the robot (movement parallel to the direction of progression) referred to as a first distance forward, and the second path and fourth path result in a longitudinal displacement referred to as a second distance backward. The first distance is greater than the second distance, preferably twice as large. In addition, the second path results in a lateral displacement (movement perpendicular to the direction of progression) which is referred to as the third distance, and the fourth path moves the robot laterally by a fourth distance that is equal in magnitude but opposite in direction from the third distance. In the preferred embodiment, the first through fourth paths are arcuate paths.
The present invention is illustrated by way of example and not limitation in the figures of the accompanying drawings, and in which:
Illustrated in
The cleaning component in the preferred embodiment is configured to scrub the floor with a disposable cleaning sheet, preferably a wet cleaning sheet impregnated with cleaning solution. In other embodiments, the cleaning assembly is configured to dispense cleaning solution directly on the floor and then scrub the floor with a dry cleaning sheet. In still other embodiments, the cleaning assembly is configured to employ cleaning components for brushing, dusting, polishing, mopping, or vacuuming the floor, which may be a wood, tile, or carpet, for example.
Illustrated in
The navigation system further includes a path planner 220 for generating or executing logic to traverse a desired trajectory or path 222 to scrub the entire floor with no gaps. In path 222 designed by the path planner 220 is a combination of a first trajectory from a room coverage planner 222 and a second trajectory from a local scrub planner 226, which are discussed in more detail below. Based on the current pose 212 and the desired path 222, the motion controller generates motion commands 232 for the robot drive 240. The commands in the preferred embodiment include the angular velocity for each of a pair of wheels 110, which are sufficient to control the speed and direction of the mobile robot. As the robot navigates through its environment, the navigation module 210 continually generates a current robot pose estimate while the path planner 220 updates the desired robot path.
The first trajectory is designed to guide the robot throughout the entire room until each section of the floor has been traversed. The second trajectory is a pattern including a plurality of incremental steps that drive the cleaning assembly both forward and backward, and optionally left and right. The first trajectory ensures every section of the floor is traversed with the cleaning assembly while the second trajectory ensures each section of floor traversed is effectively treated with cleaning solution and scrubbed with multiple passes of the cleaning assembly.
The first trajectory may take the form of any of a number of space-filling patterns intended to efficiently traverse each part of the room. For example, the first trajectory may be a rectilinear pattern in which the robot traverses the entire width of the room multiple times, each traversal of the room covering a unique swath or row adjacent to the prior row traversed. The pattern in repeated until the entire room is covered. In another embodiment, the robot follows a path around the contour of the room to complete a loop, then advances to an interior path just inside the path traversed in the preceding loop. Successively smaller looping patterns are traversed until the center of the room is reached. In still another embodiment, the robot traverses the room in one or more spiral patterns, each spiral including a series of substantially concentric circular or substantially square paths of different diameter. These and other cleaning contours are taught in U.S. patent application Ser. No. 12/429,963 filed on Apr. 24, 2009.
The second trajectory scrubs the floor using a combination of forward and backward motion. The step in the forward direction is generally larger than the step in the backward direction to produce a net forward movement. If the second trajectory includes lateral movement, the steps to the left and right are generally equal. The repeated forward/backward motion, in combination with hinge 130, causes the orientation of the cleaning assembly to oscillate between a small angle forward or a small angle backward as shown in
Illustrated in
The trajectory shown in trajectory in
Trajectories that include arced or arcuate paths can provide several benefits over trajectories having only straight paths. For example, the trajectory shown in
For the trajectory shown in
(a) fwd_height: the distance traveled in the direction of progression on the forward legs or strokes has a value of approximately 1.5 times with width of the cleaning assembly 120, the width being measured in the direction perpendicular to the direction of progression;
(b) back_height: the distance traveled in the direction opposite the direction of progression on the backward legs or strokes has a value of approximately 0.75 times the width of the cleaning assembly 120; and
(c) fwd_width: the distance traveled orthogonal to the direction of progression on the forward legs or strokes has a value of approximately 0.3 times the width of the cleaning assembly 120.
In general, however, fwd_height may range between one and five times the width of the cleaning assembly 120, the back_height may range between one third and four times the width of the cleaning assembly 120, and the elapse time of a cleaning single sequence may range between five second and sixty seconds.
Where the cleaning sheet is a Swiffer® Wet Cleaning Pad, for example, each sequence of the trajectory is completed in a time between 15 to 30 seconds, which enables the cleaning solution to remain on the floor long enough to dissolve dirt but not so long that it first evaporates.
Illustrated in
The trajectory shown ion trajectory in
For the trajectory shown in
(a) fwd_height: the distance traveled in the direction of progression on the forward legs or strokes has a value of approximately 1.5 times with width of the cleaning assembly 120, namely the direction perpendicular to the direction of progression;
(b) back_height: the distance traveled in the direction opposite the direction of progression on the backward legs or strokes has a value of approximately 0.75 times the width of the cleaning assembly 120; and
(c) radius: the radius of each arc is approximately equal to the diameter of the mobile robot, although the radius may range between 0.5 and 3 times the width of the cleaning assembly.
Illustrated in
In some embodiments, the robot further includes a bump sensor for detecting walls and other obstacles. When a wall is detected, the robot is configured to make a U-turn by completing a 180 degree rotation while moving the robot to one side, the distance moved being approximately equal to the width of the cleaning assembly. After completing the turn, the robot is then driven across the room along a row parallel with and adjacent to the preceding row traversed. By repeating this maneuver each time a wall is encountered, the robot is made to traverse a trajectory that takes the robot across each portion of the room.
The trajectory is preferably based, in part, on the pose of the robot which is tracked over time to ensure that the robot traverses a different section of the floor with each pass, thereby avoiding areas of the floor that have already been cleaned while there are areas still left to be cleaned.
One or more of the components of the mobile robot, including the navigation system, may be implemented in hardware, software, firmware, or any combination thereof. Software may be stored in memory as machine-readable instructions or code, or used to configure one or more processors, chips, or computers for purposes of executing the steps of the present invention. Memory includes hard drives, solid state memory, optical storage means including compact discs, and all other forms of volatile and non-volatile memory.
Although the description above contains many specifications, these should not be construed as limiting the scope of the invention but as merely providing illustrations of some of the presently preferred embodiments of this invention.
Therefore, the invention has been disclosed by way of example and not limitation, and reference should be made to the following claims to determine the scope of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
5440216 | Kim | Aug 1995 | A |
5720077 | Nakamura et al. | Feb 1998 | A |
5815880 | Nakanishi | Oct 1998 | A |
5841259 | Kim et al. | Nov 1998 | A |
5894621 | Kubo | Apr 1999 | A |
5940927 | Haegermarck et al. | Aug 1999 | A |
5959423 | Nakanishi et al. | Sep 1999 | A |
5991951 | Kubo et al. | Nov 1999 | A |
5998953 | Nakamura et al. | Dec 1999 | A |
6012618 | Matsuo | Jan 2000 | A |
6076025 | Ueno et al. | Jun 2000 | A |
6119057 | Kawagoe | Sep 2000 | A |
6142252 | Kinta et al. | Nov 2000 | A |
6299699 | Porat et al. | Oct 2001 | B1 |
6327741 | Reed | Dec 2001 | B1 |
6338013 | Ruffner | Jan 2002 | B1 |
6459955 | Bartsch et al. | Oct 2002 | B1 |
6463368 | Feiten et al. | Oct 2002 | B1 |
6481515 | Kirkpatrick et al. | Nov 2002 | B1 |
6580246 | Jacobs | Jun 2003 | B2 |
6741054 | Koselka et al. | May 2004 | B2 |
6742613 | Erlich et al. | Jun 2004 | B2 |
6771217 | Liu et al. | Aug 2004 | B1 |
6779217 | Fisher | Aug 2004 | B2 |
6901624 | Mori et al. | Jun 2005 | B2 |
6938298 | Aasen | Sep 2005 | B2 |
7013528 | Parker et al. | Mar 2006 | B2 |
7015831 | Karlsson et al. | Mar 2006 | B2 |
7113847 | Chmura et al. | Sep 2006 | B2 |
7135992 | Karlsson et al. | Nov 2006 | B2 |
7145478 | Goncalves et al. | Dec 2006 | B2 |
7162338 | Goncalves et al. | Jan 2007 | B2 |
7177737 | Karlsson et al. | Feb 2007 | B2 |
RE39581 | Stuchlik et al. | Apr 2007 | E |
7225552 | Kwon et al. | Jun 2007 | B2 |
7272467 | Goncalves et al. | Sep 2007 | B2 |
7320149 | Huffman et al. | Jan 2008 | B1 |
7346428 | Huffman et al. | Mar 2008 | B1 |
7480958 | Song et al. | Jan 2009 | B2 |
7720554 | Dibernardo et al. | May 2010 | B2 |
7827643 | Erlich et al. | Nov 2010 | B2 |
8380350 | Ozick et al. | Feb 2013 | B2 |
8452450 | Dooley et al. | May 2013 | B2 |
9725012 | Romanov et al. | Aug 2017 | B2 |
9725013 | Romanov et al. | Aug 2017 | B2 |
9801518 | Dooley | Oct 2017 | B2 |
20020002751 | Fisher | Jan 2002 | A1 |
20020011813 | Koselka et al. | Jan 2002 | A1 |
20020175648 | Erko et al. | Nov 2002 | A1 |
20030229421 | Chmura et al. | Dec 2003 | A1 |
20040031113 | Wosewick et al. | Feb 2004 | A1 |
20040143930 | Haegermarck | Jul 2004 | A1 |
20040244138 | Taylor et al. | Dec 2004 | A1 |
20050209736 | Kawagoe | Sep 2005 | A1 |
20050217061 | Rein Die | Oct 2005 | A1 |
20050229340 | Sawalski et al. | Oct 2005 | A1 |
20050278888 | Reindle et al. | Dec 2005 | A1 |
20060085095 | Reindle et al. | Apr 2006 | A1 |
20060288519 | Jaworski et al. | Dec 2006 | A1 |
20060293794 | Harwig et al. | Dec 2006 | A1 |
20060293809 | Harwig et al. | Dec 2006 | A1 |
20070061040 | Augenbraun et al. | Mar 2007 | A1 |
20080104783 | Crawford et al. | May 2008 | A1 |
20080155768 | Ziegler et al. | Jul 2008 | A1 |
20090133720 | Van Den Bogert | May 2009 | A1 |
20090281661 | Dooley | Nov 2009 | A1 |
20100198443 | Yabushita et al. | Aug 2010 | A1 |
20100235033 | Yamamoto | Sep 2010 | A1 |
20100241289 | Sandberg | Sep 2010 | A1 |
20110202175 | Romanov | Aug 2011 | A1 |
20150157182 | Noh | Jun 2015 | A1 |
Number | Date | Country |
---|---|---|
0191623 | Dec 2001 | WO |
0191624 | Dec 2001 | WO |
Entry |
---|
European Patent Office; Notification of Transmittal of the International Search Report and the Written opinion of the International Searching Authority, or the Declaration, the International Search Report, and the Written Opinion of the International Searching Authority; Sept. 10, 2009; Riiswiik, The Netherlands, from PCT/US2009/041728. |
The International Bureau of WIPO; Notification Concerning Transmittal of Copy of International Preliminary Report on Patentability, International Preliminary Report on Patentability, and Written Opinion of the International Searching Authority; Nov. 4, 201 O; Geneva, Switzerland, from PCT/US2009/041728. |
Number | Date | Country | |
---|---|---|---|
20180092500 A1 | Apr 2018 | US |
Number | Date | Country | |
---|---|---|---|
61292753 | Jan 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12928965 | Dec 2010 | US |
Child | 14522446 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15175328 | Jun 2016 | US |
Child | 15726536 | US | |
Parent | 14877207 | Oct 2015 | US |
Child | 15175328 | US | |
Parent | 14522446 | Oct 2014 | US |
Child | 14877207 | US |