Plastic closure articles commonly known as “clip tags” are well known, as described in U.S. Pat. No. 4,026,413 to Britt and U.S. Pat. No. 4,911,293 to Holmes, for example. Such a clip tag is commonly used to close a flexible container such as a plastic bag. An open end of the bag is typically gathered and then inserted through a slit on the tag, so that the gathered bag is frictionally held in a hole of the tag.
Closure clips for bag closure applications are typically provided in a connected strip that is spooled for high volume and rapid dispensing. These clips are often used for closing plastic bags or net bags for produce or baked goods products. In order to provide information about the packaged product (in addition to performing its bag closure function), each such bag closure clip may have information printed thereon after clip production and immediately prior to or contemporaneous with being attached to a bag and separated from its strip. Alternatively, separate labels have been affixed to each clip while in strip from, such as by a suitable adhesive, in order to provide information on that label about the packaged product in a bag once the clip has been attached thereto.
In one aspect, a system is configured to produce a series of printed clips. The system includes a source of web material, a cutting station, a drive assembly and a printing station. The web material is configured to pass through the system in a machine direction. The cutting station is configured to cut a first portion of the web material into at least a first clip, index the first portion after cutting, and sequentially cut a second portion of the web material into at least a second clip. Cut portions of the web material exit the cutting station in a free loop. A drive assembly is configured to feed web material of the free loop through the printing station at a web speed. The printing station is configured to print indicia on a first surface of the cut portions of the web material.
In another aspect, a method is described for manufacturing a series of printed clips. The method includes conveying a web material through a system in a machine direction; cutting a first portion of the web material into at least a first clip; indexing the first portion after cutting the first portion; cutting a second portion of the web material into at least a second clip; paying out cut portions of the web material in a free loop; feeding web material of the free loop through a printing station at a web speed; and printing first indicia on a first surface of the cut portions of the web material.
This summary is provided to introduce concepts in simplified form that are further described below in the Detailed Description. This summary is not intended to identify key features or essential features of the disclosed or claimed subject matter and is not intended to describe each disclosed embodiment or every implementation of the disclosed or claimed subject matter. Specifically, features disclosed herein with respect to one embodiment may be equally applicable to another. Further, this summary is not intended to be used as an aid in determining the scope of the claimed subject matter. Many other novel advantages, features, and relationships will become apparent as this description proceeds. The figures and the description that follow more particularly exemplify illustrative embodiments.
The disclosed subject matter will be further explained with reference to the attached figures, wherein like structure or system elements are referred to by like reference numerals throughout the several views. It is contemplated that all descriptions are applicable to like and analogous structures throughout the several embodiments.
While the above-identified figures set forth one or more embodiments of the disclosed subject matter, other embodiments are also contemplated, as noted in the disclosure. In all cases, this disclosure presents the disclosed subject matter by way of representation and not limitation. It should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that fall within the scope of the principles of this disclosure.
The figures may not be drawn to scale. In particular, some features may be enlarged relative to other features for clarity. Moreover, where terms such as above, below, over, under, top, bottom, side, right, left, vertical, horizontal, etc., are used, it is to be understood that they are used only for ease of understanding the description. It is contemplated that structures may be oriented otherwise.
This disclosure relates to the production of bag closure clips in strip form (adapted to be wrapped into spools for later automatic and rapid dispensing of clips once produced), and specifically to the ability to print information on each bag closure clip during such production. This contrasts with conventional methods of printing information after production and at the point of use. The described systems and methods allow for high quality printing of clips including printing in multiple colors and on either side (front or back or both) of the clips, wherein the printed indicia are carefully registered to the cut clips so that each of the printed clips is identical in a production run. The printing may include multiple ink colors and/or compositions for a single clip. The described methods and systems provide for high quality printing at high speeds.
As ultimately formed for use in packaging (and as shown in
The clips are formed by cutting a band 40 of clip web material. In one embodiment, band 40 is wider than a desired clip height H. In another embodiment, web band 40 has a width equal to a height H of a clip 12 between top bag receiving edge 24 and bottom edge 26. Cuts in the web are made to cut out the hole 28, slit 30 and ramped portions 32 in each clip 12, as well as to form that clip's sides 20 and 22. In a case in which band 40 is wider than clip height H, cuts are also made to form top bag receiving edge 24 and bottom edge 26—this results in exact reproducibility in the dimensions and indicia placement of each clip 12. Side 20 of each clip 12 includes clip strip connector nubs 20a and 20b, as well as clip strip connector recesses 20c and 20d. Likewise, side 22 of each clip includes clip strip connector nubs 22a and 22b, as well as clip strip connector recesses 22c and 22d. As a result of such cutting, strip 14 of connected clips 12 is formed, such as shown in
In an exemplary embodiment, clip 12 is formed as a polymer sheet having a perimeter and includes a cut or slit 30 connecting the perimeter and hole or aperture 28. Many configurations of clip 12 and specifically of hole 28 can be used. In exemplary embodiments, clips 12 are formed of a stiffly resilient sheet plastic material that allows for deformation in use for ease of insertion of a portion of a bag into hole 28 and removal of the portion of the bag therefrom.
Rectangular style clips 12 are especially practical for economy purposes, but clips 12 may take different forms such as octagonal shapes, triangular shapes, rhomboidal shapes, circular shapes, oval shapes, and irregular shapes. The clip material should be flexible and pliable but is preferably not elastic, and is therefore dimensionally stable, for most applications. Such dimensional stability maintains the integrity of printed indicia 16, which is not distorted by stretching or other permanent deformation.
Indicia 16 are provided on a front surface 18f (as in
Especially suitable materials for forming the clip 12 include woven or non-woven fabrics, woven or non-woven films, paper, polymers, polystyrenic thermoplastics, polyolefinic thermoplastics, polyesters, and others that exhibit the properties discussed (which can vary depending on how the article is to be use). Suitable materials include thermoplastic materials and polymers of styrene, ethylene, propylene, as well as a variety of other monomers and mixtures of monomers (e.g., to make co-polymers and ter-polymers, etc.). Suitable materials also include PLA (poly lactic acid) resin materials. Any of a variety of commercially available inks compatible with, or accepted on, a web material strip and retained thereon, and in any desired color, may be used to print indicia 16 on clip 12. Moreover, if it should be desired to use water-soluble ink markings, a thin film of water-insoluble plastic may be applied over the ink to enhance water resistance.
Upon exiting the cutting station 46, the now formed strip 14 of clips 12 is advanced through a printing station 48. At the printing station 48, indicia 16 are printed or otherwise imparted on each clip as desired to provide information about the product packaged in the bag to which that clip 12 is later attached. It is important that the printed indicia disposed on each clip 12 in the strip 14 (such as indicia 16 shown in
This alignment objective is achieved by precise print alignment with the shape of the clip onto which the print indicia are being applied. As opposed to the violent cutting process accomplished at the cutting station 46, the print process performed at the printing station 48 in an exemplary embodiment is performed on a strip 14 that moves stably and uniformly along machine direction 44 as printing ink is applied thereto. As band 40 exits cutting station 46 as a cut strip 14 of clips 12, the strip is unprinted prior to entering printing station 48; the unprinted portion is designated 14u. The unprinted strip 14u is allowed to sag between cutting station 46 and printing station 48 in a “free loop” by controlled nip roll 70 and drive roll 72. While two sets of rolls 70, 72 are illustrated in
Portions of band 40 exiting the cutting station 46 hang in the free loop, being introduced thereto in indexed increments from the cutting station 46. Although the band 40 is introduced into the free loop in abrupt segments, it is smoothly paid to the printing station 48 at a controlled rate that can be influenced by a length of the free loop (which can be determined by sensors not shown and sensor signals fed to process controller 64).
The described system controls when to start (and stop) printing for each clip 12 and the rate of advance of that clip 12 through the printing station 48; such control ensures the exact placement of printed indicia 16 on each clip 12. In addition, precise registration of the applied printed indicia with the shape of the clip 12 results in each clip 12 of the strip 14 being identical in appearance. These goals are achieved by the use of one or more sensors that detect the position of the strip 14 relative to the printing station 48 (and more specifically to an ink dispensing printer disposed in the printing station 48), and by detecting the rate of advance of the strip 14 in the machine direction 44 relative to the printing station 48. Additional sensors and encoders can be positioned upstream or downstream of their illustrated positions in other specific applications that are not illustrated.
Such sensors may be placed downstream and/or upstream from the printing station 48 (along the machine direction 44) but preferably in proximity to the printing station 48. In an exemplary embodiment as shown in
In an exemplary embodiment, sensor 50 is an optical sensor that is tuned to detect an edge of the hole 28 in each clip 12 passing thereby. Signal 50′ is transmitted to print controller 52 upon each such detection for the purpose of triggering the print function. One type of optical sensor suitable for this task is a photoelectric sensor available as model D-79183 from SICK AG, Germany. Sensors not illustrated may be used to determine a size or length of the free loop designated as 14u. Moreover, in an exemplary embodiment, signals from those sensors are transmitted to process controller 64 for the purpose of determining a rate of motion imparted to the cut web strip 14 at rolls 70, 72 to feed the band smoothly to print station 48. If the free loop is longer than desired, a speed of rolls 70, 72 may be increased to take up the excess length. On the other hand, if the free loop is shorter than desired, rolls 70, 72 may be slowed down to allow more length of strip 14u to sag.
In an exemplary embodiment, the achievement of properly aligned indicia 16 on each clip 12 factors in the rate of movement of the strip 14 through the printing station 48. Encoder sensor 56 can be arranged to track the speed of strip 14 directly, or may do so indirectly as illustrated, for example, in
In an exemplary embodiment, encoder sensor 56 is an electromechanical feedback device that provides information about the speed of the strip 14p as it passes the sensor 56. Signal 56′ is transmitted to print controller 52 for the purpose of controlling the rate of operation of the print function at printing station 48. One type of encoder sensor suitable for this task is the ACCU-CODER™ model from Encoder Products Company of Sandpoint, Id.
In an exemplary embodiment, one suitable printer 54 is a Markem-Imaje cartridge-type solvent thermal industrial Inkjet Model 1050, available from Markem-Imaje, of Keene, N.H. a wholly owned subsidiary of Dover Corporation, Downers Grove, Ill. In this instance, since the ink is solvent-based, it requires some processing time to dry before engaging another surface such as nip roll 70, to avoid ink smearing. Other suitable equipment for printer 54 is a piezoelectric impulse printer that uses an ultraviolet light emitting diode (LED) ink curing system, as model 905 Series for Kwik Lok, available from Squid Ink Manufacturing of Brooklyn Park, Minn. Another suitable printer 54 is commercially available from Squid Ink Manufacturing as model CoPilot Max industrial inkjet printing system.
As seen in
For example, as shown in
In the illustrated embodiment, the sensor 50 is mounted under an opening 76 in the platen 73 that permits the sensor 50 to detect the necessary characteristic (gap or edge) of the clip 12 passing over that opening 76, for production of a signal 50′ for each clip so detected. After the strip 14p has traversed the nip and drive rolls 70 and 72, it passes through staging and idler rollers 74 and then is wound about a driven hub into a pre-printed clip spool 75. Each clip 12 on spool 75 has the same shape and bears the same indicia printed thereon. Such a spool 75, as illustrated in
Thus, in the clip production systems of the current description, either or both clip body sides 18f, 18b of clips 12 may be printed in a highly accurate, fast and quality-controlled clip production process. Based on known geometry and distances between the printers 54 and the clip edge sensor 50, as well as line speed information from encoder sensor 56, the system, through process controller 64 and printer controllers 52, is able to trigger all printers 54 for carefully registered deposition of indicia 16 on traveling clips 12 on strip 14, so that each of the many plurality of clips of the printed strip 14p, 14pr, 14pl bears indicia 16 in an identical location on each clip body 18f, 18b.
In an exemplary embodiment, alignment devices are provided for each of the printers 54 and curing units 60 to precisely position these components with respect to a strip 14 travelling in channel 78. In this embodiment, the curing unit 60 is provided as an ultraviolet lamp and therefore will sometimes be referred to as a lamp. However, it is to be understood that alignment devices can also be provided for other types of curing units. The alignment devices in an exemplary embodiment include vertical lamp sliders 82, horizontal lamp adjusters 84, vertical printer sliders 86, and horizontal printer adjuster 88.
As shown in
An exemplary horizontal printer adjuster 88 is a commercially available high-load positioning slide for a fine transverse adjustment, as part 9222T11 from McMaster-Carr of Chicago, Ill. For each of vertical lamp sliders 82, horizontal lamp sliders 84 and vertical printer slider 86, a combination of carriage and rail elements for linear adjustments are available from McMaster-Carr. For example, a high-cycle low-profile ball bearing carriage is available under part number 7917N11. A suitable guide rail for a high-cycle low-profile ball bearing carriage is available under part number 7917N29.
Non-limiting examples of systems and methods are described herein. In an exemplary embodiment, a system is configured to produce a series 14p of printed clips, the system including a source 42 of web material 40, a cutting station 46, a drive assembly 70, 72 and a printing station 48. The web material 40 is configured to pass through the system in a machine direction 44. The cutting station 46 configured to cut a first portion of the web material 40 into at least a first clip 12. In an embodiment, the cutting station is configured to cut the first portion of the web material 40 into a first plurality of clips 12. The cutting station 46 is configured to index the first portion after cutting to sequentially cut a second portion of the web material 40 into at least a second clip 12. In an embodiment, the cutting station is configured to cut the second portion of the web material into a second plurality of clips 12. Cut portions of the web material 40 exit the cutting station in a free loop 14u. The drive assembly 70, 72 is configured to feed web material 40 of the free loop 14u through a printing station 48 at a web speed. The printing station 48 is configured to print indicia 16 on a first surface 18f, 18b of the cut portions of the web material.
In an exemplary embodiment, the printing station 48 includes a clip sensor 50 spaced from a printer 54, wherein the clip sensor 50 is configured to send a clip location signal 50′ to the printer 54. In an exemplary embodiment, the clip sensor 50 is disposed upstream of the printer 54 with respect to the machine direction 44. In another exemplary embodiment, the clip sensor 50 is disposed downstream of the printer 54 with respect to the machine direction 44.
In an exemplary embodiment, a platen 73 is configured to support the web material 14u as the web material is fed through the printing station 48, wherein the clip sensor 50 is located below the platen 73 and is configured to sense the clip location through an aperture 76 in the platen 73. In an exemplary embodiment, a platen 73 is configured to support the web material 14u in a channel 78 as the web material is fed past a printer 54 of the printing station 48; the channel 78 has a first width in a vicinity of the printer 54 and a second width remote from the printer 54, the second width being greater than the first width.
In an exemplary embodiment, an encoder sensor 56 is configured to detect the web speed. In an exemplary embodiment, a controller 64 is configured to change operation of the drive assembly 70/72 to thereby change the web speed. In an exemplary embodiment, a curing unit 60 is configured to cure the printed indicia 16 on the first surface 18f, 18b of the cut portions of the web material.
In an exemplary embodiment, the printing station 48 includes a first printer 54a configured to place a first ink deposition on the first surface 18f, 18b and a second printer 54b configured to place a second ink deposition on the first surface 18f, 18b. In an exemplary embodiment, the printing station 48 includes a first curing unit 60a configured to cure the first ink deposition and a second curing unit 60b configured to cure the second ink deposition. In an exemplary embodiment, at least one of the first and second curing units 60a, 60b includes a vertical position slider 82. In an exemplary embodiment, at least one of the first and second curing units 60a, 60b includes a horizontal position adjuster 84.
In an exemplary embodiment, the printing station 48 includes a horizontal printer adjuster 88 configured to change a horizontal position of both the first printer 54a and the second printer 54b in tandem. In an exemplary embodiment, the printing station 48 includes a vertical printer slider 86 configured to change a vertical position of at least one of the first and second printers.
In an exemplary embodiment as shown in
In an exemplary embodiment, a method for manufacturing a series of printed clips 14p includes conveying a web material 40 through a system in a machine direction 44; cutting a first portion of the web material into at least a first clip 12; indexing the first portion after cutting the first portion; cutting a second portion of the web material into at least a second clip 12; paying out cut portions of the web material in a free loop 14u; feeding web material of the free loop 14u through a printing station 48 at a web speed; and printing first indicia 16 on a first surface 18f (or 18b in a second case) of the cut portions of the web material. In an exemplary embodiment, the method includes printing second indicia 16 on a second surface 18b (or 18f in the second case), opposite the first surface 18f (or 18b in the second case), of the cut portions of the web material. In an exemplary embodiment, printing the first indicia on the first surface and printing the second indicia on the second surface occur in tandem.
In an exemplary embodiment, the method includes adjusting a horizontal position of a printer 54 relative to a platen 73 that is configured to support the cut portions of the web material. In an exemplary embodiment, the method includes adjusting a horizontal position of multiple printers 54 in tandem relative to a platen 73 that is configured to support the cut portions of the web material. In an exemplary embodiment, the method includes adjusting a vertical position of a printer 54 relative to a platen 73 that is configured to support the cut portions of the web material. In an exemplary embodiment, the method includes adjusting a horizontal position of a curing unit 60 relative to a platen 73 that is configured to support the cut portions of the web material. In an exemplary embodiment, the method includes adjusting a vertical position of a curing unit 60 relative to a platen 73 that is configured to support the cut portions of the web material. In an exemplary embodiment, the method includes removing a first platen 73 and replacing it with a second platen 73, wherein each of the first and second platens includes a channel configured to support the cut portions of the web material, and wherein the channel of the first platen has a different dimension than a channel of the second platen.
In an exemplary embodiment, the method includes monitoring a length of a free loop 14u and adjusting a speed of a drive assembly 70, 72 based on the length of the free loop, to thereby change the web speed.
Although the subject of this disclosure has been described with reference to several embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the scope of the disclosure. In addition, any feature disclosed with respect to one embodiment may be incorporated in another embodiment, and vice-versa. All references mentioned in this disclosure are hereby incorporated by reference.
This application claims the benefit of priority of U.S. Provisional Patent Application No. 63/055,142 filed on Jul. 22, 2020. This application is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
63055142 | Jul 2020 | US |