Technical Field
The present disclosure relates to plasma devices and processes for surface processing and tissue removal. More particularly, the disclosure relates to a system and method for generating and directing chemically reactive, plasma-generated species in a plasma device along with excited-state species (e.g., energetic photons) that are specific to the supplied feedstocks for treating tissue.
Background of Related Art
Electrical discharges in dense media, such as liquids and gases at or near atmospheric pressure, can, under appropriate conditions, result in plasma formation. Plasmas have the unique ability to create large amounts of chemical species, such as ions, radicals, electrons, excited-state (e.g., metastable) species, molecular fragments, photons, and the like. The plasma species may be generated in a variety of internal energy states or external kinetic energy distributions by tailoring plasma electron temperature and electron density. In addition, adjusting spatial, temporal and temperature properties of the plasma creates specific changes to the material being irradiated by the plasma species and associated photon fluxes. Plasmas are also capable of generating photons including energetic ultraviolet photons that have sufficient energy to initiate photochemical and photocatalytic reaction paths in biological and other materials that are irradiated by the plasma photons.
Plasmas have broad applicability to provide alternative solutions to industrial, scientific and medical needs, especially workpiece surface processing at low temperature. Plasmas may be delivered to a workpiece, thereby affecting multiple changes in the properties of materials upon which the plasmas impinge. Plasmas have the unique ability to create large fluxes of radiation (e.g., ultraviolet), ions, photons, electrons and other excited-state (e.g., metastable) species which are suitable for performing material property changes with high spatial, material selectivity, and temporal control. Plasmas may also remove a distinct upper layer of a workpiece but have little or no effect on a separate underlayer of the workpiece or it may be used to selectively remove a particular tissue from a mixed tissue region or selectively remove a tissue with minimal effect to adjacent organs of different tissue type.
One suitable application of the unique chemical species is to drive non-equilibrium or selective chemical reactions at or within the workpiece to provide for selective removal of only certain types of materials. Such selective processes are especially sought in biological tissue processing (e.g., mixed or multi-layered tissue), which allows for cutting and removal of tissue at low temperatures with differential selectivity to underlayers and adjacent tissues. This is particularly useful for inactivation of biofilm-forming bacteria, removal of biofilms, mixtures of fatty and muscle tissue, debridement of surface layers and removing of epoxy and other non-organic materials during implantation procedures.
The plasma species are capable of modifying the chemical nature of tissue surfaces by breaking chemical bonds, substituting or replacing surface-terminating species (e.g., surface functionalization) through volatilization, gasification or dissolution of surface materials (e.g., etching). With proper techniques, material choices and conditions, one can remove one type of tissue entirely without affecting a nearby different type of tissue. Controlling plasma conditions and parameters (including S-parameters, V, I, Θ, and the like) allows for the selection of a set of specific particles, which, in turn, allows for selection of chemical pathways for material removal or modification as well as selectivity of removal of desired tissue type. The present disclosure provides for a system and method for creating plasma under a broad range of conditions including tailored geometries, various plasma feedstock media, number and location of electrodes and electrical excitation parameters (e.g., voltage, current, phase, frequency, pulse condition, etc.).
The supply of electrical energy that ignites and sustains the plasma discharge is delivered through substantially conductive electrodes that are in contact with the ionizable media and other plasma feedstocks. The present disclosure also provides for methods and apparatus that utilize specific electrode structures that improve and enhance desirable aspects of plasma operation such as higher electron temperature and higher secondary emission. In particular, the present disclosure provides for porous media for controlled release of chemical reactants.
Controlling plasma conditions and parameters allows for selection of a set of specific particles, which, in turn, allows for selection of chemical pathways for material removal or modification as well as selectivity of removal of desired tissue type. The present disclosure also provides for a system and method for generating plasmas that operate at or near atmospheric pressure. The plasmas include electrons that drive reactions at material surfaces in concert with other plasma species. Electrons delivered to the material surface can initiate a variety of processes including bond scission, which enables volatilization in subsequent reactions. The electron-driven reactions act synergistically with associated fluxes to achieve removal rates of material greater than either of the reactions acting alone.
A method for removing biofilm from a lumen of a medical implant is contemplated by the present disclosure. The method includes the steps of inserting a plasma applicator into a lumen defined in a medical implant, the lumen having a proximal end portion and a distal end portion having an opening defined therein, positioning the plasma applicator adjacent a biofilm formation, generating a selectively reactive plasma effluent at the plasma applicator and directing the selectively reactive plasma effluent at the biofilm formation. The plasma is further applied along the entire length of lumen to restore the lumen to a bacteria-free condition similar its new condition.
A method for removing biofilm from a lumen of an endotracheal tube is also contemplated by the present disclosure. The method includes the steps of inserting a plasma applicator into a lumen of an endotracheal tube and positioning the plasma applicator adjacent a biofilm formation. The plasma applicator includes a shaft having a proximal portion and a deflectable distal portion and a lumen defined therein terminating in an opening at a distal end of the distal portion, the lumen being in fluid communication with an ionizable media source and at least one electrode disposed at the distal portion and coupled to a power source. The method also includes the steps of generating a selectively reactive plasma effluent at the plasma applicator and directing the selectively reactive plasma effluent at the biofilm formation and applying the plasma along the full length of the lumen to inactivate remaining and dispersed biofilm-forming bacteria.
A method for removing biofilm from a lumen of an endotracheal tube is also disclosed. The method includes the steps of inserting a seal at a distal end portion of an endotracheal tube, inserting a plasma applicator into a lumen of an endotracheal tube and positioning the plasma applicator adjacent a biofilm formation. The method further includes the steps of supplying ionizable media and the at least one precursor feedstock to the plasma applicator, igniting the ionizable media and the at least one precursor feedstock at the plasma applicator to form a selectively reactive plasma effluent and directing the selectively reactive plasma effluent at the biofilm formation.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate exemplary embodiments of the disclosure and, together with a general description of the disclosure given above, and the detailed description of the embodiments given below, serve to explain the principles of the disclosure, wherein:
Plasmas are generated using electrical energy that is delivered as either direct current (DC) electricity or alternating current (AC) electricity at frequencies from about 0.1 hertz (Hz) to about 100 gigahertz (GHz), including radio frequency (“RF”, from about 0.1 MHz to about 100 MHz) and microwave (“MW”, from about 0.1 GHz to about 100 GHz) bands, using appropriate generators, electrodes, and antennas. Choice of excitation frequency, the workpiece, as well as the electrical circuit that is used to deliver electrical energy to the circuit affects many properties and requirements of the plasma. The performance of the plasma chemical generation, the delivery system and the design of the electrical excitation circuitry are interrelated as the choices of operating voltage, frequency and current levels (as well as phase) effect the electron temperature and electron density. Further, choices of electrical excitation and plasma device hardware also determine how a given plasma system responds dynamically to the introduction of new ingredients to the host plasma gas or liquid media. The corresponding dynamic adjustment of the electrical drive, such as via dynamic match networks or adjustments to voltage, current, or excitation frequency may be used to maintain controlled power transfer from the electrical circuit to the plasma.
Referring initially to
The precursor source 18 may be a bubbler or a nebulizer configured to aerosolize precursor feedstocks prior to introduction thereof into the device 12. The precursor source 18 may also be a micro droplet or injector system capable of generating predetermined refined droplet volume of the precursor feedstock from about 1 femtoliter to about 1 nanoliter in volume. The precursor source 18 may also include a microfluidic device, a piezoelectric pump, or an ultrasonic vaporizer.
The system 10 provides a flow of plasma through the device 12 to a workpiece “W” (e.g., tissue). Plasma feedstocks, which include ionizable media and precursor feedstocks, are supplied by the ionizable media source 16 and the precursor source 18, respectively, to the plasma device 12. During operation, the precursor feedstock and the ionizable media are provided to the plasma device 12 where the plasma feedstocks are ignited to form plasma effluent containing ions, radicals, photons from the specific excited species and metastables that carry internal energy to drive desired chemical reactions in the workpiece “W” (e.g., tissue) or at the surface thereof. The feedstocks may be mixed upstream from the ignition point or midstream thereof (e.g., at the ignition point) of the plasma effluent, as shown in
The ionizable media source 16 provides ionizable feedstock to the plasma device 12. The ionizable media source 16 is coupled to the plasma device 12 and may include a storage tank and a pump (not explicitly shown). The ionizable media may be a liquid or a gas such as argon, helium, neon, krypton, xenon, radon, carbon dioxide, nitrogen, hydrogen, oxygen, etc. and their mixtures, and the like, or a liquid. These and other gases may be initially in a liquid form that is gasified during application.
The precursor source 18 provides precursor feedstock to the plasma device 12. The precursor feedstock may be either in solid, gaseous or liquid form and may be mixed with the ionizable media in any state, such as solid, liquid (e.g., particulates or droplets), gas, and the combination thereof. The precursor source 18 may include a heater, such that if the precursor feedstock is liquid, it may be heated into gaseous state prior to mixing with the ionizable media.
In one embodiment, the precursors may be any chemical species capable of forming reactive species such as ions, electrons, excited-state (e.g., metastable) species, molecular fragments (e.g., radicals) and the like, when ignited by electrical energy from the power source 14 or when undergoing collisions with particles (electrons, photons, or other energy-bearing species of limited and selective chemical reactivity) formed from ionizable media 16. More specifically, the precursors may include various reactive functional groups, such as acyl halide, alcohol, aldehyde, alkane, alkene, amide, amine, butyl, carhoxlic, cyanate, isocyanate, ester, ether, ethyl, halide, haloalkane, hydroxyl, ketone, methyl, nitrate, nitro, nitrile, nitrite, nitroso, peroxide, hydroperoxide, oxygen, hydrogen, nitrogen, and combination thereof. In embodiments, the chemical precursors may be water, halogenoalkanes, such as dichloromethane, tricholoromethane, carbon tetrachloride, difluoromethane, trifluoromethane, carbon tetrafluoride, and the like; peroxides, such as hydrogen peroxide, acetone peroxide, benzoyl peroxide, and the like; alcohols, such as methanol, ethanol, isopropanol, ethylene glycol, propylene glycol, alkalises such as NaOH, KOH, amines, alkyls, alkenes, and the like. Such chemical precursors may be applied in substantially pure, mixed, or soluble form.
The precursors and their functional groups may be delivered to a surface to react with the surface species (e.g., molecules) of the workpiece “W.” In other words, the functional groups may be used to modify or replace existing surface terminations of the workpiece “W” or materials disposed thereon. The functional groups react readily with the surface species due to their high reactivity and the reactivity imparted thereto by the plasma. In addition, the functional groups are also reacted within the plasma volume prior to delivering the plasma volume to the workpiece.
Some functional groups generated in the plasma can be reacted in situ to synthesize materials that subsequently form a deposition upon the surface. This deposition may be used for stimulating healing, killing bacteria, and increasing hydrophilic or hydroscopic properties. In addition, deposition of certain function groups may also allow for encapsulation of the surface to achieve predetermined gas/liquid diffusion, e.g., allowing gas permeation but preventing liquid exchange, to bond or stimulate bonding of surfaces, or as a physically protective layer.
With reference to
In another embodiment, the ionizable media source 16 and the precursors source 18 may be coupled to the plasma device 12 via the tubing 114 and 113 at separate connections, such that the mixing of the feedstocks occurs within the plasma device 12 upstream from the ignition point. In other words, the plasma feedstocks are mixed proximally of the ignition point, which may be any point between the respective sources 16 and 18 and the plasma device 12, prior to ignition of the plasma feedstocks to create the desired mix of the plasma effluent species for each specific surface treatment on the workpiece “W.”
In a further embodiment, the plasma feedstocks may be mixed midstream, e.g., at the ignition point or downstream of the plasma effluent, directly into the plasma. It is also envisioned that the ionizable media may be supplied to the device 12 proximally of the ignition point, while the precursor feedstocks are mixed therewith at the ignition point. In a further illustrative embodiment, the ionizable media may be ignited in an unmixed state and the precursors may be mixed directly into the ignited plasma. Prior to mixing, the plasma feedstocks may be ignited individually. The plasma feedstock is supplied at a predetermined pressure to create a flow of the medium through the device 12, which aids in the reaction of the plasma feedstocks and produces a plasma effluent. The plasma according to the present disclosure is generated at or near atmospheric pressure under normal atmospheric conditions.
The system 10 further includes a suction source 15 (e.g., negative pressure source) configured to siphon tissue and unreacted components from the treatment site. The suction source 15 may be a vacuum pump, fan, circulator, and the like and is coupled to the device 12.
With reference to
The catheter shaft 102 may slidably disposed within the handle 101 allowing for the longitudinal movement of the catheter shaft 102 (e.g., extension and retraction). The catheter shaft 102 may include a stop or a shoulder at a proximal end thereof that abuts a complementary shoulder or stop disposed within the handle 101 to prevent further extension of the catheter shaft 102.
The device 12 also includes controls 111 (e.g., toggle switch, trigger, etc.) coupled to the power source 14 and the ionizable media source 16. Upon actuation, the controls 111 regulate the flow of ionizable media from the ionizable media source 16 and the precursors source 18 as well as the flow of power from the power source 14, such that the ionizable media flowing through the lumen 103 is ignited therein and is ejected from the opening 105 to form the plasma effluent 32.
The handle 101 includes a rotating assembly 123 for controlling the rotational movement of the distal portion 106 about a longitudinal axis of the catheter shaft 112. The rotating assembly 123 engages one or more gears (not shown) which are attached to the catheter shaft 112. In one embodiment, the ratio of rotation of rotating assembly 123 to distal portion 106 is 1:1, however, it is contemplated that a different gearing structure may be incorporated to increase or decrease the rotational ratio depending upon a particular purpose.
In one embodiment, the distal portion 106 is configured for controlled deflection. A pull-wire 107 (
The distal portion 106 is constructed to be more flexible than the proximal portion 104, such that when the handle 101 is pulled back or otherwise actuated, the pull-wire bends the distal portion 106 from an undeflected position to a deflected position. In particular, the proximal portion 104 may include a wire or other support materials (not shown) therein to provide tensile strength to the catheter shaft 102 while still maintaining flexibility for maneuvering through a vascular system. The distal portion 106 is formed from a flexible biocompatible material such as polytetrafluoroethylene, polyurethane, polyimide, and the like to allow for maneuverability thereof.
The applicator 100 includes two or more electrodes 108 and 110 disposed at the distal portion 106. The electrodes 108 and 110 may be formed from a conductive material and have a ring-like shape. The electrodes 108 and 110 may be disposed over the distal portion 106 to provide for capacitive coupling with the ionizable media. In another embodiment, the electrodes 108 and 110 may be formed as needle electrodes (e.g., pointed tip) and may be disposed within the distal portion 106.
The electrodes 108 and 110 are coupled to conductors (not shown) that extend through the catheter shaft 102 and are connected to the power source 14 via electrical connectors 112. The catheter shaft 102 is also coupled to the ionizable media source 16 via gas tubing 114 and to the precursors source 16 via tubing 113. The ionizable media source 16 and the precursors source 16 may include various flow sensors and controllers (e.g., valves, mass flow controllers, etc.) to control the flow of ionizable media to the applicator 100. In particular, the lumen 103 is in gaseous and/or liquid communication with the ionizable media source 16 and the precursors source 18 allowing for the flow of ionizable media and precursor feedstocks to flow through the catheter shaft 102 to the distal portion 106. The ionizable media in conjunction with the precursor feedstocks is ignited by application of energy through the electrodes 108 and 110 to form plasma effluent 32 exiting through the opening 105.
The applicator 100 also includes a suction lumen 150 coupled to the negative pressure source 19. This allows for the removal of unreacted feedstocks and debris particles to be removed from the application site. The lumen 150 may be incorporated into the shaft 102 (
The applicator 100 may also include a temperature sensor 130 at the distal portion 106. The temperature sensor 130 may be a thermistor, a thermocouple, or any other type of suitable temperature sensor that is coupled to the power source 14. The temperature sensor 130 provides continual temperature readings to the power source 14, which then adjusts the energy supplied to the plasma feedstocks to regulate the energy output of the plasma effluent 32.
The applicator 100 is suitable for removing biofilms from various type of medical implants, namely, lumens of various implants (e.g., endotracheal tubes). Tracheal tubes provide a source for bacterial growth within lumens where environment is warm and moist providing ideal conditions for bacterial growth. Since the lumens are inaccessible by the immune system the bacterial growth advances into biofilms that cannot be eliminated by conventional chemical treatments. Growth of the biofilms inside the tracheal tubes leads to costly tube replacement procedures. The applicator 100 generates the plasma effluent 32 that removes the biofilm and deactivates bacterial contamination within the endotracheal tube.
As illustrated in
With reference to
Seal 306 may have a profile configured to match the opening 303 thereby sealing the opening 303. The seal 306 may be disposed within the lumen 306. In embodiments, the seal 306 may abut against an interior lip of the opening 303 such that the seal 306 does not pass beyond opening 303. Seal 306 may be secured to the lumen 317 via a living hinge or any other pivotable attachment that enables the seal 306 to move within the lumen 317 with minimum contact. The seal 306 may be made of polypropylene or any other suitable polymer from which the living hinge element may be formed.
Forward movement/pressure by the applicator 100 holds seal 306 against the opening lip of 303. When plasma is deactivated, the applicator 100 may be withdrawn from the lumen 306 and/or away from the seal 306 to enable air to pass therethrough thereby allowing for intermittent respiration for the patient. In embodiments, the applicator 100 may include a contact sensor (e.g., pressure actuated limit switch) at the distal portion 106, which is coupled to the controls 111. The contact sensor acts as a safety lockout preventing plasma activation via the controls 111 when the contact sensor is disengaged from the seal 306. This ensures that the seal 306 is closed prior to activation and subsequent application of the plasma plume.
In step 402, the applicator 100 is inserted into the lumen 317. The distal portion 106 may be deflected to direct the plasma effluent 32 toward the biofilm. In one embodiment, the deflection may be from about 0° to about 45° with respect to a longitudinal axis defined by the shaft 102. In step 404, the ionizable media along with precursors is supplied to the applicator 100 and is ignited therein to form the plasma effluent 32. In one embodiment, the ionizable media may be argon, helium or a mixture thereof and the precursors may be hydrogen peroxide, water, oxygen, nitrogen or mixtures thereof.
In step 406, the applicator 100 is moved across the lumen 317 ensuring that the plasma effluent 32 is directed at walls thereof to remove the biofilm. As biofilm is removed, bacteria and other debris is removed from the treatment site through the suction lumen 150 via suction source 15. The temperature of the plasma effluent 32 is from about 60°, allowing the plasma to be used within the silicone tube 311 without damaging the walls thereof. The relatively low temperature of the plasma effluent 32 does not affect its ability to remove biofilm, since the primary effect on bacteria is due to the chemical reactivity of the plasma constituents (e.g., ionized plasma feedstocks). The precursors supplied to the applicator 100 are specifically chosen to generate a selectively reactive plasma effluent 32. In other words, the precursors, when ignited, produce a plasma effluent 32 that interacts with bacteria, and has little to no effect on material of the tube 311.
The emissions may be measured in the plasma effluent 32 by an optical spectrometer (not shown) including an optical fiber positioned to capture the emission from the plasma effluent 32 at the area of contact with the lumen 317. In embodiments, nuclear magnetic resonance (NMR) and/or laser induced florescence (LIF) devices may be used to evaluate the gas evacuated from the tube 128 at the location of suction source 15. In further embodiments, a second plasma ignition point in the effluent from tube 128 may be ignited enabling the emissions to be monitored in the plasma effluent 32 directly at the optical spectrometer at suction source 15.
In step 408, the effect of the plasma treatment is monitored by measuring the spectra of the application of the plasma effluent 32. The spectra are observed for specific emissions related to the destruction of the biofilms. The spectra are used to confirm the destruction of the biofilm and are used as a feedback mechanism for advancing of the applicator 100. In particular, the spectra are used by the user to determine when a specific region of the lumen 317 is substantially cleared of the biofilm allowing the user to determine when the applicator 100 may be advanced further into the lumen 317 and additional biofilm may be removed. The distal portion 106 may also be advanced by extending the catheter shaft 102 in a distal direction. Additionally, the spectra may be used to determine when the lumen 317 is substantially clear of the biofilm and application of the plasma effluent 32 may be terminated. In step 410, the applicator 100 is extracted from the lumen 317 and the seal 306 is removed, restoring the functionality of the tube 311.
Although the illustrative embodiments of the present disclosure have been described herein with reference to the accompanying drawings, it is to be understood that the disclosure is not limited to those precise embodiments, and that various other changes and modifications may be effected therein by one skilled in the art without departing from the scope or spirit of the disclosure. In particular, as discussed above this allows the tailoring of the relative populations of plasma species to meet needs for the specific process desired on the workpiece surface or in the volume of the reactive plasma.
The present application claims the benefit of and priority to U.S. Provisional Application Ser. No. 61/780,369, filed on Mar. 13, 2013, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
438257 | Raquet | Oct 1890 | A |
2213820 | Maxson | Sep 1940 | A |
2598301 | Rajchman | May 1952 | A |
3134947 | Charasz | May 1964 | A |
3434476 | Shaw et al. | Mar 1969 | A |
3492074 | Rendina | Jan 1970 | A |
3671195 | Bersin | Jun 1972 | A |
3687832 | Fydelor et al. | Aug 1972 | A |
3838242 | Goucher | Sep 1974 | A |
3903891 | Brayshaw | Sep 1975 | A |
3938525 | Coucher | Feb 1976 | A |
3948601 | Fraser | Apr 1976 | A |
3991764 | Incropera et al. | Nov 1976 | A |
4010400 | Hollister | Mar 1977 | A |
4017707 | Brown et al. | Apr 1977 | A |
4088926 | Fletcher | May 1978 | A |
4143337 | Beaulieu | Mar 1979 | A |
4177422 | Deficis et al. | Dec 1979 | A |
4181897 | Miller | Jan 1980 | A |
4188426 | Auerbach | Feb 1980 | A |
4207286 | Gut Boucher | Jun 1980 | A |
4274919 | Jensen et al. | Jun 1981 | A |
4337415 | Durr | Jun 1982 | A |
4517495 | Piepmeier | May 1985 | A |
4577165 | Uehara et al. | Mar 1986 | A |
4629887 | Bernier | Dec 1986 | A |
4629940 | Gagne et al. | Dec 1986 | A |
4665906 | Jervis | May 1987 | A |
4699082 | Hakim | Oct 1987 | A |
4780803 | Dede Garcia-Santamaria | Oct 1988 | A |
4781175 | McGreevy et al. | Nov 1988 | A |
4818916 | Morrisroe | Apr 1989 | A |
4837484 | Eliasson et al. | Jun 1989 | A |
4855563 | Beresnev et al. | Aug 1989 | A |
4877999 | Knapp et al. | Oct 1989 | A |
4901719 | Trenconsky et al. | Feb 1990 | A |
4922210 | Flachenecker et al. | May 1990 | A |
4956582 | Bourassa | Sep 1990 | A |
5013959 | Kogelschatz | May 1991 | A |
5025373 | Keyser, Jr. et al. | Jun 1991 | A |
5041110 | Fleenor | Aug 1991 | A |
5067957 | Jervis | Nov 1991 | A |
5088997 | Delahuerga et al. | Feb 1992 | A |
5098430 | Fleenor | Mar 1992 | A |
5117088 | Stava | May 1992 | A |
5120703 | Snyder et al. | Jun 1992 | A |
5124526 | Muller et al. | Jun 1992 | A |
5135604 | Kumar et al. | Aug 1992 | A |
5155547 | Casper et al. | Oct 1992 | A |
5157015 | Snyder et al. | Oct 1992 | A |
5159173 | Frind et al. | Oct 1992 | A |
5180949 | Durr | Jan 1993 | A |
5194740 | Kogelschatz et al. | Mar 1993 | A |
5217457 | Delahuerga et al. | Jun 1993 | A |
5223457 | Mintz et al. | Jun 1993 | A |
5256138 | Burek et al. | Oct 1993 | A |
5280154 | Cuomo et al. | Jan 1994 | A |
5300068 | Rosar et al. | Apr 1994 | A |
5304279 | Coultas et al. | Apr 1994 | A |
5320621 | Gordon et al. | Jun 1994 | A |
5334834 | Ito et al. | Aug 1994 | A |
RE34780 | Trenconsky et al. | Nov 1994 | E |
5383019 | Farrell et al. | Jan 1995 | A |
5384167 | Nishiwaki et al. | Jan 1995 | A |
5401350 | Patrick et al. | Mar 1995 | A |
5404219 | D'Silva | Apr 1995 | A |
5449356 | Walbrink et al. | Sep 1995 | A |
5449432 | Hanawa | Sep 1995 | A |
5466424 | Kusano et al. | Nov 1995 | A |
5505729 | Rau | Apr 1996 | A |
5526138 | Sato | Jun 1996 | A |
5534231 | Savas | Jul 1996 | A |
5554172 | Horner et al. | Sep 1996 | A |
5607509 | Schumacher et al. | Mar 1997 | A |
5618382 | Mintz et al. | Apr 1997 | A |
5656186 | Mourou et al. | Aug 1997 | A |
5669904 | Platt, Jr. et al. | Sep 1997 | A |
5669907 | Platt, Jr. et al. | Sep 1997 | A |
5683366 | Eggers et al. | Nov 1997 | A |
5688357 | Hanawa | Nov 1997 | A |
5697882 | Eggers et al. | Dec 1997 | A |
5707402 | Heim | Jan 1998 | A |
5708330 | Rothenbuhler et al. | Jan 1998 | A |
5720745 | Farin et al. | Feb 1998 | A |
5733511 | De Francesco | Mar 1998 | A |
5776255 | Asaba et al. | Jul 1998 | A |
5780862 | Siess | Jul 1998 | A |
5810764 | Eggers et al. | Sep 1998 | A |
5818581 | Kurosawa et al. | Oct 1998 | A |
5841531 | Gliddon | Nov 1998 | A |
5843019 | Eggers et al. | Dec 1998 | A |
5843079 | Suslov | Dec 1998 | A |
5845488 | Hancock et al. | Dec 1998 | A |
5849136 | Mintz et al. | Dec 1998 | A |
5855203 | Matter | Jan 1999 | A |
5858477 | Veerasamy et al. | Jan 1999 | A |
5865937 | Shan et al. | Feb 1999 | A |
5866871 | Birx | Feb 1999 | A |
5866985 | Coultas et al. | Feb 1999 | A |
5869832 | Wang et al. | Feb 1999 | A |
5892328 | Shang et al. | Apr 1999 | A |
5908441 | Bare | Jun 1999 | A |
5909086 | Kim et al. | Jun 1999 | A |
5945790 | Schaefer | Aug 1999 | A |
5961772 | Selwyn | Oct 1999 | A |
5977715 | Li et al. | Nov 1999 | A |
6013075 | Avramenko et al. | Jan 2000 | A |
6020794 | Wilbur | Feb 2000 | A |
6024733 | Eggers et al. | Feb 2000 | A |
6027601 | Hanawa | Feb 2000 | A |
6030667 | Nakagawa et al. | Feb 2000 | A |
6033582 | Lee et al. | Mar 2000 | A |
6036878 | Collins | Mar 2000 | A |
6046546 | Porter et al. | Apr 2000 | A |
6047700 | Eggers et al. | Apr 2000 | A |
6053172 | Hovda et al. | Apr 2000 | A |
6063079 | Hovda et al. | May 2000 | A |
6063084 | Farin | May 2000 | A |
6063937 | Dlubala et al. | May 2000 | A |
6066134 | Eggers et al. | May 2000 | A |
6074386 | Goble et al. | Jun 2000 | A |
6086585 | Hovda et al. | Jul 2000 | A |
6099523 | Kim et al. | Aug 2000 | A |
6102046 | Weinstein et al. | Aug 2000 | A |
6105581 | Eggers et al. | Aug 2000 | A |
6109268 | Thapliyal et al. | Aug 2000 | A |
6110395 | Gibson, Jr. | Aug 2000 | A |
6113597 | Eggers et al. | Sep 2000 | A |
6132575 | Pandumsoporn et al. | Oct 2000 | A |
6137237 | MacLennan et al. | Oct 2000 | A |
6142992 | Cheng et al. | Nov 2000 | A |
6149620 | Baker et al. | Nov 2000 | A |
6153852 | Blutke et al. | Nov 2000 | A |
6159208 | Hovda et al. | Dec 2000 | A |
6159531 | Dang et al. | Dec 2000 | A |
6170428 | Redeker et al. | Jan 2001 | B1 |
6172130 | Bellesort | Jan 2001 | B1 |
6172324 | Birx | Jan 2001 | B1 |
6178918 | van Os et al. | Jan 2001 | B1 |
6179836 | Eggers et al. | Jan 2001 | B1 |
6182469 | Campbell et al. | Feb 2001 | B1 |
6183655 | Wang et al. | Feb 2001 | B1 |
6190381 | Olsen et al. | Feb 2001 | B1 |
6197026 | Farin et al. | Mar 2001 | B1 |
6203542 | Ellsberry et al. | Mar 2001 | B1 |
6206871 | Zanon et al. | Mar 2001 | B1 |
6206878 | Bishop et al. | Mar 2001 | B1 |
6207924 | Trassy | Mar 2001 | B1 |
6210402 | Olsen et al. | Apr 2001 | B1 |
6210410 | Farin et al. | Apr 2001 | B1 |
6213999 | Platt, Jr. et al. | Apr 2001 | B1 |
6221094 | Bare | Apr 2001 | B1 |
6222186 | Li et al. | Apr 2001 | B1 |
6224592 | Eggers et al. | May 2001 | B1 |
6225593 | Howieson et al. | May 2001 | B1 |
6228078 | Eggers et al. | May 2001 | B1 |
6228082 | Baker et al. | May 2001 | B1 |
6228229 | Raaijmakers et al. | May 2001 | B1 |
6235020 | Cheng et al. | May 2001 | B1 |
6237526 | Brcka | May 2001 | B1 |
6238391 | Olsen et al. | May 2001 | B1 |
6242735 | Li et al. | Jun 2001 | B1 |
6248250 | Hanawa et al. | Jun 2001 | B1 |
6252354 | Collins et al. | Jun 2001 | B1 |
6254600 | Willink et al. | Jul 2001 | B1 |
6254738 | Stimson et al. | Jul 2001 | B1 |
6264650 | Hovda et al. | Jul 2001 | B1 |
6264651 | Underwood et al. | Jul 2001 | B1 |
6264652 | Eggers et al. | Jul 2001 | B1 |
6270687 | Ye et al. | Aug 2001 | B1 |
6277112 | Underwood et al. | Aug 2001 | B1 |
6277251 | Hwang et al. | Aug 2001 | B1 |
6283961 | Underwood et al. | Sep 2001 | B1 |
6287980 | Hanazaki et al. | Sep 2001 | B1 |
6291938 | Jewett et al. | Sep 2001 | B1 |
6296636 | Cheng et al. | Oct 2001 | B1 |
6296638 | Davison et al. | Oct 2001 | B1 |
6299948 | Gherardi et al. | Oct 2001 | B1 |
6309387 | Eggers et al. | Oct 2001 | B1 |
6313587 | MacLennan et al. | Nov 2001 | B1 |
6326584 | Jewett et al. | Dec 2001 | B1 |
6326739 | MacLennan et al. | Dec 2001 | B1 |
6328760 | James | Dec 2001 | B1 |
6329757 | Morrisroe et al. | Dec 2001 | B1 |
6333481 | Augeraud et al. | Dec 2001 | B2 |
6345588 | Stimson | Feb 2002 | B1 |
6346108 | Fischer | Feb 2002 | B1 |
6348051 | Farin et al. | Feb 2002 | B1 |
6353206 | Roderick | Mar 2002 | B1 |
6355032 | Hovda et al. | Mar 2002 | B1 |
6363937 | Hovda et al. | Apr 2002 | B1 |
6365063 | Collins et al. | Apr 2002 | B2 |
6375750 | van Os et al. | Apr 2002 | B1 |
6376972 | Tarasenko et al. | Apr 2002 | B1 |
6379351 | Thapliyal et al. | Apr 2002 | B1 |
6387088 | Shattuck et al. | May 2002 | B1 |
6391025 | Weinstein et al. | May 2002 | B1 |
6396214 | Grosse et al. | May 2002 | B1 |
6401652 | Mohn et al. | Jun 2002 | B1 |
6407513 | Vollkommer et al. | Jun 2002 | B1 |
6409933 | Holland et al. | Jun 2002 | B1 |
RE37780 | Lanzani et al. | Jul 2002 | E |
6416507 | Eggers et al. | Jul 2002 | B1 |
6416508 | Eggers et al. | Jul 2002 | B1 |
6416633 | Spence | Jul 2002 | B1 |
6424099 | Kirkpatrick et al. | Jul 2002 | B1 |
6424232 | Mavretic et al. | Jul 2002 | B1 |
6432103 | Ellsberry et al. | Aug 2002 | B1 |
6432260 | Mahoney et al. | Aug 2002 | B1 |
6443948 | Suslov | Sep 2002 | B1 |
6444084 | Collins | Sep 2002 | B1 |
6445141 | Kastner et al. | Sep 2002 | B1 |
6459066 | Khater et al. | Oct 2002 | B1 |
6461350 | Underwood et al. | Oct 2002 | B1 |
6461354 | Olsen et al. | Oct 2002 | B1 |
6464695 | Hovda et al. | Oct 2002 | B2 |
6464889 | Lee et al. | Oct 2002 | B1 |
6464891 | Druz et al. | Oct 2002 | B1 |
6468270 | Hovda et al. | Oct 2002 | B1 |
6468274 | Alleyne et al. | Oct 2002 | B1 |
6471822 | Yin et al. | Oct 2002 | B1 |
6474258 | Brcka | Nov 2002 | B2 |
6475217 | Platt | Nov 2002 | B1 |
6482201 | Olsen et al. | Nov 2002 | B1 |
6488825 | Hilliard | Dec 2002 | B1 |
6497826 | Li et al. | Dec 2002 | B2 |
6500173 | Underwood et al. | Dec 2002 | B2 |
6501079 | Furuya | Dec 2002 | B1 |
6502416 | Kawasumi et al. | Jan 2003 | B2 |
6502588 | Li et al. | Jan 2003 | B2 |
6507155 | Barnes et al. | Jan 2003 | B1 |
6525481 | Klima et al. | Feb 2003 | B1 |
6534133 | Kaloyeros et al. | Mar 2003 | B1 |
6540741 | Underwood et al. | Apr 2003 | B1 |
6544261 | Ellsberry et al. | Apr 2003 | B2 |
6558383 | Cunningham et al. | May 2003 | B2 |
6565558 | Lindenmeier et al. | May 2003 | B1 |
6575968 | Eggers et al. | Jun 2003 | B1 |
6579289 | Schnitzler | Jun 2003 | B2 |
6579426 | van Gogh et al. | Jun 2003 | B1 |
6582423 | Thapliyal et al. | Jun 2003 | B1 |
6582427 | Goble et al. | Jun 2003 | B1 |
6582429 | Krishnan et al. | Jun 2003 | B2 |
6589237 | Woloszko et al. | Jul 2003 | B2 |
6589437 | Collins | Jul 2003 | B1 |
6595990 | Weinstein et al. | Jul 2003 | B1 |
6617794 | Barnes et al. | Sep 2003 | B2 |
6624583 | Coll et al. | Sep 2003 | B1 |
6625555 | Kuan et al. | Sep 2003 | B2 |
6629974 | Penny et al. | Oct 2003 | B2 |
6632193 | Davison et al. | Oct 2003 | B1 |
6632220 | Eggers et al. | Oct 2003 | B1 |
6642526 | Hartley | Nov 2003 | B2 |
6646386 | Sirkis et al. | Nov 2003 | B1 |
6652717 | Hong | Nov 2003 | B1 |
6653594 | Nakamura et al. | Nov 2003 | B2 |
6657594 | Anderson | Dec 2003 | B2 |
6659106 | Hovda et al. | Dec 2003 | B1 |
6663017 | Endres et al. | Dec 2003 | B2 |
6666865 | Platt | Dec 2003 | B2 |
6685803 | Lazarovich et al. | Feb 2004 | B2 |
6712811 | Underwood et al. | Mar 2004 | B2 |
6719754 | Underwood et al. | Apr 2004 | B2 |
6719883 | Stimson | Apr 2004 | B2 |
6723091 | Goble et al. | Apr 2004 | B2 |
6726684 | Woloszko et al. | Apr 2004 | B1 |
6740842 | Johnson et al. | May 2004 | B2 |
6746447 | Davison et al. | Jun 2004 | B2 |
6763836 | Tasto et al. | Jul 2004 | B2 |
6770071 | Woloszko et al. | Aug 2004 | B2 |
6772012 | Ricart et al. | Aug 2004 | B2 |
6773431 | Eggers et al. | Aug 2004 | B2 |
6774569 | de Vries et al. | Aug 2004 | B2 |
6780178 | Palanker et al. | Aug 2004 | B2 |
6780184 | Tanrisever | Aug 2004 | B2 |
6781317 | Goodman | Aug 2004 | B1 |
6787730 | Coccio et al. | Sep 2004 | B2 |
6805130 | Tasto et al. | Oct 2004 | B2 |
6806438 | Nakano et al. | Oct 2004 | B2 |
6815633 | Chen et al. | Nov 2004 | B1 |
6818140 | Ding | Nov 2004 | B2 |
6832996 | Woloszko et al. | Dec 2004 | B2 |
6837884 | Woloszko | Jan 2005 | B2 |
6837887 | Woloszko et al. | Jan 2005 | B2 |
6837888 | Ciarrocca et al. | Jan 2005 | B2 |
6840937 | Van Wyk | Jan 2005 | B2 |
6849191 | Ono et al. | Feb 2005 | B2 |
6852112 | Platt | Feb 2005 | B2 |
6855143 | Davison et al. | Feb 2005 | B2 |
6855225 | Su et al. | Feb 2005 | B1 |
6861377 | Hirai et al. | Mar 2005 | B1 |
6867859 | Powell | Mar 2005 | B1 |
6876155 | Howald et al. | Apr 2005 | B2 |
6890332 | Truckai et al. | May 2005 | B2 |
6890346 | Ganz | May 2005 | B2 |
6896672 | Eggers et al. | May 2005 | B1 |
6896674 | Woloszko et al. | May 2005 | B1 |
6896775 | Chistyakov | May 2005 | B2 |
6909237 | Park et al. | Jun 2005 | B1 |
6911029 | Platt | Jun 2005 | B2 |
6915806 | Pacek et al. | Jul 2005 | B2 |
6919527 | Boulos et al. | Jul 2005 | B2 |
6920883 | Bessette et al. | Jul 2005 | B2 |
6921398 | Carmel et al. | Jul 2005 | B2 |
6922093 | Kanda | Jul 2005 | B2 |
6924455 | Chen et al. | Aug 2005 | B1 |
6929640 | Underwood et al. | Aug 2005 | B1 |
6949096 | Davison et al. | Sep 2005 | B2 |
6949887 | Kirkpatrick et al. | Sep 2005 | B2 |
6958063 | Soll et al. | Oct 2005 | B1 |
6974453 | Woloszko et al. | Dec 2005 | B2 |
6991631 | Woloszko et al. | Jan 2006 | B2 |
7004941 | Tvinnereim et al. | Feb 2006 | B2 |
7019253 | Johnson et al. | Mar 2006 | B2 |
7046088 | Ziegler | May 2006 | B2 |
7048733 | Hartley et al. | May 2006 | B2 |
7070596 | Woloszko et al. | Jul 2006 | B1 |
7084832 | Pribyl | Aug 2006 | B2 |
7090672 | Underwood et al. | Aug 2006 | B2 |
7096819 | Chen et al. | Aug 2006 | B2 |
7100532 | Pribyl | Sep 2006 | B2 |
7104986 | Hovda et al. | Sep 2006 | B2 |
7115185 | Gonzalez et al. | Oct 2006 | B1 |
7122035 | Canady | Oct 2006 | B2 |
7122965 | Goodman | Oct 2006 | B2 |
7131969 | Hovda et al. | Nov 2006 | B1 |
7132620 | Coelho et al. | Nov 2006 | B2 |
7132996 | Evans et al. | Nov 2006 | B2 |
7150745 | Stern et al. | Dec 2006 | B2 |
7157857 | Brouk et al. | Jan 2007 | B2 |
7160521 | Porshnev et al. | Jan 2007 | B2 |
7161112 | Smith et al. | Jan 2007 | B2 |
7164484 | Takahashi et al. | Jan 2007 | B2 |
7165451 | Brooks et al. | Jan 2007 | B1 |
7166816 | Chen et al. | Jan 2007 | B1 |
7179255 | Lettice et al. | Feb 2007 | B2 |
7186234 | Dahla et al. | Mar 2007 | B2 |
7189939 | Lee et al. | Mar 2007 | B2 |
7189940 | Kumar et al. | Mar 2007 | B2 |
7192428 | Eggers et al. | Mar 2007 | B2 |
7199399 | Chin-Lung et al. | Apr 2007 | B2 |
7201750 | Eggers et al. | Apr 2007 | B1 |
7214280 | Kumar et al. | May 2007 | B2 |
7214934 | Stevenson | May 2007 | B2 |
7217268 | Eggers et al. | May 2007 | B2 |
7217903 | Bayer et al. | May 2007 | B2 |
7220261 | Truckai et al. | May 2007 | B2 |
7227097 | Kumar et al. | Jun 2007 | B2 |
7238185 | Palanker et al. | Jul 2007 | B2 |
7241293 | Davison | Jul 2007 | B2 |
7270658 | Woloszko et al. | Sep 2007 | B2 |
7270659 | Ricart et al. | Sep 2007 | B2 |
7270661 | Dahla et al. | Sep 2007 | B2 |
7271363 | Lee et al. | Sep 2007 | B2 |
7275344 | Woodmansee, III et al. | Oct 2007 | B2 |
7276063 | Davison et al. | Oct 2007 | B2 |
7282244 | Schaepkens et al. | Oct 2007 | B2 |
7292191 | Anderson | Nov 2007 | B2 |
7297143 | Woloszko et al. | Nov 2007 | B2 |
7297145 | Woloszko et al. | Nov 2007 | B2 |
7298091 | Pickard et al. | Nov 2007 | B2 |
7309843 | Kumar et al. | Dec 2007 | B2 |
7311708 | McClurken | Dec 2007 | B2 |
7316682 | Konesky | Jan 2008 | B2 |
7318823 | Sharps et al. | Jan 2008 | B2 |
7331957 | Woloszko et al. | Feb 2008 | B2 |
7353771 | Millner et al. | Apr 2008 | B2 |
7355379 | Kitamura et al. | Apr 2008 | B2 |
7357798 | Sharps et al. | Apr 2008 | B2 |
7361175 | Suslov | Apr 2008 | B2 |
7382129 | Mills | Jun 2008 | B2 |
7387625 | Hovda et al. | Jun 2008 | B2 |
7393351 | Woloszko et al. | Jul 2008 | B2 |
7399944 | DeVries et al. | Jul 2008 | B2 |
7410669 | Dieckhoff et al. | Aug 2008 | B2 |
7419488 | Ciarrocca et al. | Sep 2008 | B2 |
7426900 | Brcka | Sep 2008 | B2 |
7429260 | Underwood et al. | Sep 2008 | B2 |
7429262 | Woloszko et al. | Sep 2008 | B2 |
7431857 | Shannon et al. | Oct 2008 | B2 |
7435247 | Woloszko et al. | Oct 2008 | B2 |
7442191 | Hovda et al. | Oct 2008 | B2 |
7445619 | Auge, II et al. | Nov 2008 | B2 |
7449021 | Underwood et al. | Nov 2008 | B2 |
7453403 | Anderson | Nov 2008 | B2 |
7458973 | Ouchi | Dec 2008 | B2 |
7459899 | Mattaboni et al. | Dec 2008 | B2 |
7468059 | Eggers et al. | Dec 2008 | B2 |
7480299 | O'Keeffe et al. | Jan 2009 | B2 |
7489206 | Kotani et al. | Feb 2009 | B2 |
7491200 | Underwood | Feb 2009 | B2 |
7497119 | Brooks et al. | Mar 2009 | B2 |
7498000 | Pekshev et al. | Mar 2009 | B2 |
7506014 | Drummond | Mar 2009 | B2 |
7507236 | Eggers et al. | Mar 2009 | B2 |
7510665 | Shannon et al. | Mar 2009 | B2 |
7511246 | Morrisroe | Mar 2009 | B2 |
7549990 | Canady | Jun 2009 | B2 |
7563261 | Carmel et al. | Jul 2009 | B2 |
7566333 | Van Wyk et al. | Jul 2009 | B2 |
7572255 | Sartor et al. | Aug 2009 | B2 |
7578817 | Canady | Aug 2009 | B2 |
7578818 | Platt | Aug 2009 | B2 |
7589473 | Suslov | Sep 2009 | B2 |
7601150 | Farin | Oct 2009 | B2 |
7608839 | Coulombe et al. | Oct 2009 | B2 |
7611509 | Van Wyk | Nov 2009 | B2 |
7628787 | Sartor et al. | Dec 2009 | B2 |
7632267 | Dahla | Dec 2009 | B2 |
7633231 | Watson | Dec 2009 | B2 |
7648503 | Podhajsky | Jan 2010 | B2 |
7666478 | Paulussen et al. | Feb 2010 | B2 |
7691101 | Davison et al. | Apr 2010 | B2 |
7691102 | Podhajsky et al. | Apr 2010 | B2 |
7708733 | Sanders et al. | May 2010 | B2 |
7715889 | Ito | May 2010 | B2 |
7758575 | Beller | Jul 2010 | B2 |
7824398 | Woloszko et al. | Nov 2010 | B2 |
7879034 | Woloszko et al. | Feb 2011 | B2 |
7887891 | Rius | Feb 2011 | B2 |
7892223 | Geiselhart | Feb 2011 | B2 |
7892230 | Woloszko | Feb 2011 | B2 |
7901403 | Woloszko et al. | Mar 2011 | B2 |
7940008 | Mattaboni et al. | May 2011 | B2 |
7949407 | Kaplan et al. | May 2011 | B2 |
8585627 | Dacey, Jr. | Nov 2013 | B2 |
8764701 | Hicks | Jul 2014 | B1 |
8994270 | Koo et al. | Mar 2015 | B2 |
20010025177 | Woloszko et al. | Sep 2001 | A1 |
20010054601 | Ding | Dec 2001 | A1 |
20020014832 | Moradi et al. | Feb 2002 | A1 |
20020022836 | Goble et al. | Feb 2002 | A1 |
20020022838 | Cunningham et al. | Feb 2002 | A1 |
20020023899 | Khater et al. | Feb 2002 | A1 |
20020092826 | Ding | Jul 2002 | A1 |
20020125207 | Ono et al. | Sep 2002 | A1 |
20020132380 | Nakano et al. | Sep 2002 | A1 |
20020165594 | Biel | Nov 2002 | A1 |
20030006019 | Johnson et al. | Jan 2003 | A1 |
20030008327 | Ornatskaia | Jan 2003 | A1 |
20030027186 | Pierce | Feb 2003 | A1 |
20030036753 | Morgan et al. | Feb 2003 | A1 |
20030038912 | Broer et al. | Feb 2003 | A1 |
20030075522 | Weichart et al. | Apr 2003 | A1 |
20030093073 | Platt | May 2003 | A1 |
20030105456 | Lin | Jun 2003 | A1 |
20030125727 | Truckai et al. | Jul 2003 | A1 |
20030132198 | Ono et al. | Jul 2003 | A1 |
20030158545 | Hovda et al. | Aug 2003 | A1 |
20030208194 | Hovda et al. | Nov 2003 | A1 |
20040007985 | de Vries et al. | Jan 2004 | A1 |
20040022669 | Ruan et al. | Feb 2004 | A1 |
20040027127 | Mills | Feb 2004 | A1 |
20040075375 | Miyashita et al. | Apr 2004 | A1 |
20040086434 | Gadgil et al. | May 2004 | A1 |
20040111219 | Gulati | Jun 2004 | A1 |
20040116918 | Konesky | Jun 2004 | A1 |
20040120869 | Ko | Jun 2004 | A1 |
20040129212 | Gadgil et al. | Jul 2004 | A1 |
20040138658 | Farin et al. | Jul 2004 | A1 |
20040140194 | Taylor et al. | Jul 2004 | A1 |
20040181220 | Farin | Sep 2004 | A1 |
20050015001 | Lec et al. | Jan 2005 | A1 |
20050017646 | Boulos et al. | Jan 2005 | A1 |
20050080413 | Canady | Apr 2005 | A1 |
20050103748 | Yamaguchi et al. | May 2005 | A1 |
20050107786 | Canady | May 2005 | A1 |
20050118350 | Koulik et al. | Jun 2005 | A1 |
20050149012 | Penny et al. | Jul 2005 | A1 |
20050153159 | Sugiyama et al. | Jul 2005 | A1 |
20050205212 | Singh et al. | Sep 2005 | A1 |
20050234439 | Underwood | Oct 2005 | A1 |
20050288665 | Woloszko | Dec 2005 | A1 |
20060004354 | Suslov | Jan 2006 | A1 |
20060011465 | Burke et al. | Jan 2006 | A1 |
20060017388 | Stevenson | Jan 2006 | A1 |
20060036239 | Canady | Feb 2006 | A1 |
20060038992 | Morrisroe | Feb 2006 | A1 |
20060052771 | Sartor et al. | Mar 2006 | A1 |
20060065628 | Vahedi et al. | Mar 2006 | A1 |
20060084154 | Jones et al. | Apr 2006 | A1 |
20060091109 | Partlo et al. | May 2006 | A1 |
20060127879 | Fuccione | Jun 2006 | A1 |
20060172429 | Nilsson et al. | Aug 2006 | A1 |
20060175015 | Chen et al. | Aug 2006 | A1 |
20060200122 | Sartor et al. | Sep 2006 | A1 |
20060224146 | Lin | Oct 2006 | A1 |
20060253117 | Hovda et al. | Nov 2006 | A1 |
20060266735 | Shannon et al. | Nov 2006 | A1 |
20060278254 | Jackson | Dec 2006 | A1 |
20070014752 | Roy et al. | Jan 2007 | A1 |
20070021747 | Suslov | Jan 2007 | A1 |
20070021748 | Suslov | Jan 2007 | A1 |
20070027440 | Altshuler et al. | Feb 2007 | A1 |
20070029292 | Suslov et al. | Feb 2007 | A1 |
20070029500 | Coulombe | Feb 2007 | A1 |
20070039389 | Brooks et al. | Feb 2007 | A1 |
20070045561 | Cooper | Mar 2007 | A1 |
20070068899 | Yoon | Mar 2007 | A1 |
20070084563 | Holland | Apr 2007 | A1 |
20070087455 | Hoffman | Apr 2007 | A1 |
20070106288 | Woloszko et al. | May 2007 | A1 |
20070149970 | Schnitzler et al. | Jun 2007 | A1 |
20070210035 | Twarog et al. | Sep 2007 | A1 |
20070213704 | Truckai et al. | Sep 2007 | A1 |
20070251920 | Hoffman | Nov 2007 | A1 |
20070255271 | Dabney et al. | Nov 2007 | A1 |
20070258329 | Winey | Nov 2007 | A1 |
20070282322 | Dabney et al. | Dec 2007 | A1 |
20070292972 | Paulussen et al. | Dec 2007 | A1 |
20080023443 | Paterson et al. | Jan 2008 | A1 |
20080039832 | Palanker et al. | Feb 2008 | A1 |
20080050291 | Nagasawa | Feb 2008 | A1 |
20080083701 | Shao et al. | Apr 2008 | A1 |
20080099434 | Chandrachood et al. | May 2008 | A1 |
20080099435 | Grimbergen | May 2008 | A1 |
20080099436 | Grimbergen | May 2008 | A1 |
20080108985 | Konesky | May 2008 | A1 |
20080122252 | Corke et al. | May 2008 | A1 |
20080122368 | Saito et al. | May 2008 | A1 |
20080125772 | Stone et al. | May 2008 | A1 |
20080167398 | Patil et al. | Jul 2008 | A1 |
20080179290 | Collins et al. | Jul 2008 | A1 |
20080185366 | Suslov | Aug 2008 | A1 |
20080268172 | Fukuda et al. | Oct 2008 | A1 |
20080284506 | Messer | Nov 2008 | A1 |
20080292497 | Vangeneugden et al. | Nov 2008 | A1 |
20090039789 | Nikolay | Feb 2009 | A1 |
20090048594 | Sartor et al. | Feb 2009 | A1 |
20090054893 | Sartor et al. | Feb 2009 | A1 |
20090054896 | Fridman et al. | Feb 2009 | A1 |
20090064933 | Liu et al. | Mar 2009 | A1 |
20090076505 | Arts | Mar 2009 | A1 |
20090216226 | Davison et al. | Aug 2009 | A1 |
20090275941 | Sartor et al. | Nov 2009 | A1 |
20100016856 | Platt, Jr. | Jan 2010 | A1 |
20100042094 | Arts | Feb 2010 | A1 |
20100069902 | Sartor et al. | Mar 2010 | A1 |
20100089742 | Suslov | Apr 2010 | A1 |
20100114096 | Podhajsky | May 2010 | A1 |
20100125267 | Lee et al. | May 2010 | A1 |
20100130973 | Choi et al. | May 2010 | A1 |
20100204690 | Bigley et al. | Aug 2010 | A1 |
20110101862 | Koo et al. | May 2011 | A1 |
20110139751 | Koo et al. | Jun 2011 | A1 |
20120029506 | Johnson | Feb 2012 | A1 |
20120095453 | Cox | Apr 2012 | A1 |
20130053762 | Rontal | Feb 2013 | A1 |
20130123756 | Eberli | May 2013 | A1 |
Number | Date | Country |
---|---|---|
2391565 | Aug 2000 | CN |
3710489 | Nov 1987 | DE |
4139029 | Jun 1993 | DE |
4326037 | Feb 1995 | DE |
9117019 | Mar 1995 | DE |
19524645 | Feb 1997 | DE |
19537897 | Mar 1997 | DE |
9117299 | Mar 2000 | DE |
19848784 | May 2000 | DE |
29724247 | Aug 2000 | DE |
0016542 | Oct 1980 | EP |
0366876 | May 1990 | EP |
0495699 | Jul 1992 | EP |
0602764 | Jun 1994 | EP |
0956827 | Nov 1999 | EP |
1174901 | Jan 2002 | EP |
1978038 | Oct 2008 | EP |
1340509 | Oct 1963 | FR |
61-159953 | Jul 1986 | JP |
62-130777 | Jun 1987 | JP |
03-149797 | Jun 1991 | JP |
H06-119995 | Apr 1994 | JP |
8-243755 | Sep 1996 | JP |
2000286094 | Oct 2000 | JP |
2001501485 | Feb 2001 | JP |
2001332399 | Nov 2001 | JP |
2003007497 | Jan 2003 | JP |
2003049276 | Feb 2003 | JP |
2003093869 | Apr 2003 | JP |
2005-522824 | Jul 2005 | JP |
2005-526904 | Sep 2005 | JP |
2005-528737 | Sep 2005 | JP |
2005276618 | Oct 2005 | JP |
2006114450 | Apr 2006 | JP |
2006310101 | Sep 2006 | JP |
2006310101 | Nov 2006 | JP |
2007188748 | Jul 2007 | JP |
2007207540 | Aug 2007 | JP |
2008041495 | Feb 2008 | JP |
2008071656 | Mar 2008 | JP |
2010-242857 | Oct 2010 | JP |
1438745 | Nov 1988 | SU |
9901887 | Jan 1999 | WO |
9936940 | Jul 1999 | WO |
0139555 | May 2001 | WO |
03085693 | Oct 2003 | WO |
2004032176 | Apr 2004 | WO |
2004094306 | Nov 2004 | WO |
2006116252 | Nov 2006 | WO |
2009080273 | Jul 2009 | WO |
2009146432 | Dec 2009 | WO |
2009146439 | Dec 2009 | WO |
2010008062 | Jan 2010 | WO |
2010146438 | Dec 2010 | WO |
2011123125 | Oct 2011 | WO |
2012153332 | Nov 2012 | WO |
Entry |
---|
European Communication and Search Report, corresponding to European Application No. 14154624.2, dated Oct. 28, 2015; 9 total pages. |
Park et al., “Atmospheric-pressure plasma sources for biomedical applications”, Plasma sources Science and Technology, vol. 21, No. 4, Invited Review, Jun. 2012; 21 pages. |
Japanese Office Action (with English translation), dated Nov. 17, 2015, corresponding to Japanese Application No. 2015-009663; 8 total pages. |
European Search Report dated Dec. 9, 2014, corresponding to European Application No. 09 84 5329; 8 pages. |
Y. Ushio, et al., “General Film Behaviour 299 Secondary Electron Emission Studies on Mg0 Films,” Thin Solid Films, Jan. 1, 1988; pp. 299-308. |
Japanese Notice of Final Rejection and Denial of Entry of Amendment (with English translation), issued Apr. 2, 2015, corresponding to Japanese Patent Application No. 2012-513022; 10 total pages. |
Extended European Search Report corresponding to European Application No. 09755793.8, dated Jul. 21, 2014; 8 pages. |
Extended European Search Report issued in Appl. No. 10849146.5 dated Sep. 26, 2013; 6 pages. |
Japanese Notice of Final Rejection and Denial of Entry of Amendment (with English translation), dated Jun. 2, 2015, corresponding to Japanese Patent Application No. 2013-502548; 15 total pages. |
English translation of Japanese Notice of Reasons for Rejection, dated Feb. 18, 2014, corresponding to Japanese Patent Application No. 2013-502548; 6 pages. |
English translation of Japanese Notice of Reasons for Rejection, dated Oct. 7, 2014, corresponding to Japanese Patent Application No. 2013-502548; 6 pages. |
Australian Patent Examination Report No. 1, dated Apr. 17, 2014, corresponding to Australian Patent Application No. 2010349784; 3 pages. |
European Communication dated Jun. 17, 2014, corresponding to European Patent Application No. 10849146.5; 6 pages. |
European Communication/Examination Report dated Jul. 14, 2015, corresponding to European Patent Application No. 09 845 329.3; 8 pages. |
European Communication dated Oct. 22, 2015, corresponding to European Patent Application No. 09755793.8; 9 pages. |
Number | Date | Country | |
---|---|---|---|
20140276784 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
61780369 | Mar 2013 | US |