System and method for biofilm remediation

Information

  • Patent Grant
  • 9555145
  • Patent Number
    9,555,145
  • Date Filed
    Monday, January 13, 2014
    11 years ago
  • Date Issued
    Tuesday, January 31, 2017
    8 years ago
Abstract
A method for removing biofilm from a lumen of a medical implant is disclosed. The method includes the steps of inserting a plasma applicator into a lumen defined in a medical implant, the lumen having a proximal end portion and a distal end portion having an opening therein, positioning the plasma applicator adjacent a biofilm formation, generating a selectively reactive plasma effluent at the plasma applicator and directing the selectively reactive plasma effluent at the biofilm formation.
Description
BACKGROUND

Technical Field


The present disclosure relates to plasma devices and processes for surface processing and tissue removal. More particularly, the disclosure relates to a system and method for generating and directing chemically reactive, plasma-generated species in a plasma device along with excited-state species (e.g., energetic photons) that are specific to the supplied feedstocks for treating tissue.


Background of Related Art


Electrical discharges in dense media, such as liquids and gases at or near atmospheric pressure, can, under appropriate conditions, result in plasma formation. Plasmas have the unique ability to create large amounts of chemical species, such as ions, radicals, electrons, excited-state (e.g., metastable) species, molecular fragments, photons, and the like. The plasma species may be generated in a variety of internal energy states or external kinetic energy distributions by tailoring plasma electron temperature and electron density. In addition, adjusting spatial, temporal and temperature properties of the plasma creates specific changes to the material being irradiated by the plasma species and associated photon fluxes. Plasmas are also capable of generating photons including energetic ultraviolet photons that have sufficient energy to initiate photochemical and photocatalytic reaction paths in biological and other materials that are irradiated by the plasma photons.


SUMMARY

Plasmas have broad applicability to provide alternative solutions to industrial, scientific and medical needs, especially workpiece surface processing at low temperature. Plasmas may be delivered to a workpiece, thereby affecting multiple changes in the properties of materials upon which the plasmas impinge. Plasmas have the unique ability to create large fluxes of radiation (e.g., ultraviolet), ions, photons, electrons and other excited-state (e.g., metastable) species which are suitable for performing material property changes with high spatial, material selectivity, and temporal control. Plasmas may also remove a distinct upper layer of a workpiece but have little or no effect on a separate underlayer of the workpiece or it may be used to selectively remove a particular tissue from a mixed tissue region or selectively remove a tissue with minimal effect to adjacent organs of different tissue type.


One suitable application of the unique chemical species is to drive non-equilibrium or selective chemical reactions at or within the workpiece to provide for selective removal of only certain types of materials. Such selective processes are especially sought in biological tissue processing (e.g., mixed or multi-layered tissue), which allows for cutting and removal of tissue at low temperatures with differential selectivity to underlayers and adjacent tissues. This is particularly useful for inactivation of biofilm-forming bacteria, removal of biofilms, mixtures of fatty and muscle tissue, debridement of surface layers and removing of epoxy and other non-organic materials during implantation procedures.


The plasma species are capable of modifying the chemical nature of tissue surfaces by breaking chemical bonds, substituting or replacing surface-terminating species (e.g., surface functionalization) through volatilization, gasification or dissolution of surface materials (e.g., etching). With proper techniques, material choices and conditions, one can remove one type of tissue entirely without affecting a nearby different type of tissue. Controlling plasma conditions and parameters (including S-parameters, V, I, Θ, and the like) allows for the selection of a set of specific particles, which, in turn, allows for selection of chemical pathways for material removal or modification as well as selectivity of removal of desired tissue type. The present disclosure provides for a system and method for creating plasma under a broad range of conditions including tailored geometries, various plasma feedstock media, number and location of electrodes and electrical excitation parameters (e.g., voltage, current, phase, frequency, pulse condition, etc.).


The supply of electrical energy that ignites and sustains the plasma discharge is delivered through substantially conductive electrodes that are in contact with the ionizable media and other plasma feedstocks. The present disclosure also provides for methods and apparatus that utilize specific electrode structures that improve and enhance desirable aspects of plasma operation such as higher electron temperature and higher secondary emission. In particular, the present disclosure provides for porous media for controlled release of chemical reactants.


Controlling plasma conditions and parameters allows for selection of a set of specific particles, which, in turn, allows for selection of chemical pathways for material removal or modification as well as selectivity of removal of desired tissue type. The present disclosure also provides for a system and method for generating plasmas that operate at or near atmospheric pressure. The plasmas include electrons that drive reactions at material surfaces in concert with other plasma species. Electrons delivered to the material surface can initiate a variety of processes including bond scission, which enables volatilization in subsequent reactions. The electron-driven reactions act synergistically with associated fluxes to achieve removal rates of material greater than either of the reactions acting alone.


A method for removing biofilm from a lumen of a medical implant is contemplated by the present disclosure. The method includes the steps of inserting a plasma applicator into a lumen defined in a medical implant, the lumen having a proximal end portion and a distal end portion having an opening defined therein, positioning the plasma applicator adjacent a biofilm formation, generating a selectively reactive plasma effluent at the plasma applicator and directing the selectively reactive plasma effluent at the biofilm formation. The plasma is further applied along the entire length of lumen to restore the lumen to a bacteria-free condition similar its new condition.


A method for removing biofilm from a lumen of an endotracheal tube is also contemplated by the present disclosure. The method includes the steps of inserting a plasma applicator into a lumen of an endotracheal tube and positioning the plasma applicator adjacent a biofilm formation. The plasma applicator includes a shaft having a proximal portion and a deflectable distal portion and a lumen defined therein terminating in an opening at a distal end of the distal portion, the lumen being in fluid communication with an ionizable media source and at least one electrode disposed at the distal portion and coupled to a power source. The method also includes the steps of generating a selectively reactive plasma effluent at the plasma applicator and directing the selectively reactive plasma effluent at the biofilm formation and applying the plasma along the full length of the lumen to inactivate remaining and dispersed biofilm-forming bacteria.


A method for removing biofilm from a lumen of an endotracheal tube is also disclosed. The method includes the steps of inserting a seal at a distal end portion of an endotracheal tube, inserting a plasma applicator into a lumen of an endotracheal tube and positioning the plasma applicator adjacent a biofilm formation. The method further includes the steps of supplying ionizable media and the at least one precursor feedstock to the plasma applicator, igniting the ionizable media and the at least one precursor feedstock at the plasma applicator to form a selectively reactive plasma effluent and directing the selectively reactive plasma effluent at the biofilm formation.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate exemplary embodiments of the disclosure and, together with a general description of the disclosure given above, and the detailed description of the embodiments given below, serve to explain the principles of the disclosure, wherein:



FIG. 1 is a schematic diagram of a plasma system according to the present disclosure;



FIG. 2 is a schematic view of a plasma device according to the present disclosure;



FIG. 3 is a cross-sectional view of the plasma device of FIG. 2 along lines 3-3;



FIG. 4 is an internal cross-sectional view of an implanted endotracheal tube;



FIG. 5 is an internal cross-sectional view of the endotracheal tube of FIG. 4 and the plasma device of FIG. 2 inserted therein according to the present disclosure; and



FIG. 6 is a flow chart of a method according to the present disclosure.





DETAILED DESCRIPTION

Plasmas are generated using electrical energy that is delivered as either direct current (DC) electricity or alternating current (AC) electricity at frequencies from about 0.1 hertz (Hz) to about 100 gigahertz (GHz), including radio frequency (“RF”, from about 0.1 MHz to about 100 MHz) and microwave (“MW”, from about 0.1 GHz to about 100 GHz) bands, using appropriate generators, electrodes, and antennas. Choice of excitation frequency, the workpiece, as well as the electrical circuit that is used to deliver electrical energy to the circuit affects many properties and requirements of the plasma. The performance of the plasma chemical generation, the delivery system and the design of the electrical excitation circuitry are interrelated as the choices of operating voltage, frequency and current levels (as well as phase) effect the electron temperature and electron density. Further, choices of electrical excitation and plasma device hardware also determine how a given plasma system responds dynamically to the introduction of new ingredients to the host plasma gas or liquid media. The corresponding dynamic adjustment of the electrical drive, such as via dynamic match networks or adjustments to voltage, current, or excitation frequency may be used to maintain controlled power transfer from the electrical circuit to the plasma.


Referring initially to FIG. 1, a plasma system 10 is disclosed. The system 10 includes a plasma device 12 that is coupled to a power source 14, an ionizable media source 16 and a precursor source 18. Power source 14 includes any suitable components for delivering power or matching impedance to plasma device 12. More particularly, the power source 14 may be any radio frequency generator or other suitable power source capable of producing power to ignite the ionizable media to generate plasma. The plasma device 12 may be utilized as an electrosurgical pencil for application of plasma to tissue and the power source 14 may be an electrosurgical generator that is adapted to supply the device 12 with electrical power at a frequency from about 0.1 MHz to about 2,450 MHz and in another embodiment from about 1 MHz to about 160 MHz. The plasma may also be ignited by using continuous or pulsed direct current (DC) electrical energy.


The precursor source 18 may be a bubbler or a nebulizer configured to aerosolize precursor feedstocks prior to introduction thereof into the device 12. The precursor source 18 may also be a micro droplet or injector system capable of generating predetermined refined droplet volume of the precursor feedstock from about 1 femtoliter to about 1 nanoliter in volume. The precursor source 18 may also include a microfluidic device, a piezoelectric pump, or an ultrasonic vaporizer.


The system 10 provides a flow of plasma through the device 12 to a workpiece “W” (e.g., tissue). Plasma feedstocks, which include ionizable media and precursor feedstocks, are supplied by the ionizable media source 16 and the precursor source 18, respectively, to the plasma device 12. During operation, the precursor feedstock and the ionizable media are provided to the plasma device 12 where the plasma feedstocks are ignited to form plasma effluent containing ions, radicals, photons from the specific excited species and metastables that carry internal energy to drive desired chemical reactions in the workpiece “W” (e.g., tissue) or at the surface thereof. The feedstocks may be mixed upstream from the ignition point or midstream thereof (e.g., at the ignition point) of the plasma effluent, as shown in FIG. 1 and described in more detail below.


The ionizable media source 16 provides ionizable feedstock to the plasma device 12. The ionizable media source 16 is coupled to the plasma device 12 and may include a storage tank and a pump (not explicitly shown). The ionizable media may be a liquid or a gas such as argon, helium, neon, krypton, xenon, radon, carbon dioxide, nitrogen, hydrogen, oxygen, etc. and their mixtures, and the like, or a liquid. These and other gases may be initially in a liquid form that is gasified during application.


The precursor source 18 provides precursor feedstock to the plasma device 12. The precursor feedstock may be either in solid, gaseous or liquid form and may be mixed with the ionizable media in any state, such as solid, liquid (e.g., particulates or droplets), gas, and the combination thereof. The precursor source 18 may include a heater, such that if the precursor feedstock is liquid, it may be heated into gaseous state prior to mixing with the ionizable media.


In one embodiment, the precursors may be any chemical species capable of forming reactive species such as ions, electrons, excited-state (e.g., metastable) species, molecular fragments (e.g., radicals) and the like, when ignited by electrical energy from the power source 14 or when undergoing collisions with particles (electrons, photons, or other energy-bearing species of limited and selective chemical reactivity) formed from ionizable media 16. More specifically, the precursors may include various reactive functional groups, such as acyl halide, alcohol, aldehyde, alkane, alkene, amide, amine, butyl, carhoxlic, cyanate, isocyanate, ester, ether, ethyl, halide, haloalkane, hydroxyl, ketone, methyl, nitrate, nitro, nitrile, nitrite, nitroso, peroxide, hydroperoxide, oxygen, hydrogen, nitrogen, and combination thereof. In embodiments, the chemical precursors may be water, halogenoalkanes, such as dichloromethane, tricholoromethane, carbon tetrachloride, difluoromethane, trifluoromethane, carbon tetrafluoride, and the like; peroxides, such as hydrogen peroxide, acetone peroxide, benzoyl peroxide, and the like; alcohols, such as methanol, ethanol, isopropanol, ethylene glycol, propylene glycol, alkalises such as NaOH, KOH, amines, alkyls, alkenes, and the like. Such chemical precursors may be applied in substantially pure, mixed, or soluble form.


The precursors and their functional groups may be delivered to a surface to react with the surface species (e.g., molecules) of the workpiece “W.” In other words, the functional groups may be used to modify or replace existing surface terminations of the workpiece “W” or materials disposed thereon. The functional groups react readily with the surface species due to their high reactivity and the reactivity imparted thereto by the plasma. In addition, the functional groups are also reacted within the plasma volume prior to delivering the plasma volume to the workpiece.


Some functional groups generated in the plasma can be reacted in situ to synthesize materials that subsequently form a deposition upon the surface. This deposition may be used for stimulating healing, killing bacteria, and increasing hydrophilic or hydroscopic properties. In addition, deposition of certain function groups may also allow for encapsulation of the surface to achieve predetermined gas/liquid diffusion, e.g., allowing gas permeation but preventing liquid exchange, to bond or stimulate bonding of surfaces, or as a physically protective layer.


With reference to FIGS. 1 and 2, the precursor source 18 and the ionizable media source 16 may be coupled to the plasma device 12 via tubing 114 and 113, respectively. The tubing 114 and 113 may be combined into unified tubing to deliver a mixture of the ionizable media and the precursor feedstock to the device 12 at a proximal end thereof. This allows for the plasma feedstocks, e.g., the precursor feedstock and the ionizable gas, to be delivered to the plasma device 12 simultaneously prior to ignition of the mixture therein.


In another embodiment, the ionizable media source 16 and the precursors source 18 may be coupled to the plasma device 12 via the tubing 114 and 113 at separate connections, such that the mixing of the feedstocks occurs within the plasma device 12 upstream from the ignition point. In other words, the plasma feedstocks are mixed proximally of the ignition point, which may be any point between the respective sources 16 and 18 and the plasma device 12, prior to ignition of the plasma feedstocks to create the desired mix of the plasma effluent species for each specific surface treatment on the workpiece “W.”


In a further embodiment, the plasma feedstocks may be mixed midstream, e.g., at the ignition point or downstream of the plasma effluent, directly into the plasma. It is also envisioned that the ionizable media may be supplied to the device 12 proximally of the ignition point, while the precursor feedstocks are mixed therewith at the ignition point. In a further illustrative embodiment, the ionizable media may be ignited in an unmixed state and the precursors may be mixed directly into the ignited plasma. Prior to mixing, the plasma feedstocks may be ignited individually. The plasma feedstock is supplied at a predetermined pressure to create a flow of the medium through the device 12, which aids in the reaction of the plasma feedstocks and produces a plasma effluent. The plasma according to the present disclosure is generated at or near atmospheric pressure under normal atmospheric conditions.


The system 10 further includes a suction source 15 (e.g., negative pressure source) configured to siphon tissue and unreacted components from the treatment site. The suction source 15 may be a vacuum pump, fan, circulator, and the like and is coupled to the device 12.


With reference to FIGS. 2 and 3, the device 12 is shown as a plasma applicator 100. The applicator 100 includes a handle 101 and a longitudinal shaft 102 coupled thereto. The shaft 102 includes a proximal portion 104 coupled to the handle 101 and a distal portion 106. The catheter shaft 102 includes a plasma lumen 103 defined therein and extending the entire length thereof and terminating in an opening 105 at distal end of the distal portion 106. The shaft 102 may have a diameter from about 5 mm to about 10 mm allowing the applicator 100 to be inserted through operating ports for application of the plasma effluent 32 at the operating site during laparascopic procedures or through natural body orifices. In another embodiment, the applicator 100 may be configured for use within or accompanied by a flexible endoscope.


The catheter shaft 102 may slidably disposed within the handle 101 allowing for the longitudinal movement of the catheter shaft 102 (e.g., extension and retraction). The catheter shaft 102 may include a stop or a shoulder at a proximal end thereof that abuts a complementary shoulder or stop disposed within the handle 101 to prevent further extension of the catheter shaft 102.


The device 12 also includes controls 111 (e.g., toggle switch, trigger, etc.) coupled to the power source 14 and the ionizable media source 16. Upon actuation, the controls 111 regulate the flow of ionizable media from the ionizable media source 16 and the precursors source 18 as well as the flow of power from the power source 14, such that the ionizable media flowing through the lumen 103 is ignited therein and is ejected from the opening 105 to form the plasma effluent 32.


The handle 101 includes a rotating assembly 123 for controlling the rotational movement of the distal portion 106 about a longitudinal axis of the catheter shaft 112. The rotating assembly 123 engages one or more gears (not shown) which are attached to the catheter shaft 112. In one embodiment, the ratio of rotation of rotating assembly 123 to distal portion 106 is 1:1, however, it is contemplated that a different gearing structure may be incorporated to increase or decrease the rotational ratio depending upon a particular purpose.


In one embodiment, the distal portion 106 is configured for controlled deflection. A pull-wire 107 (FIG. 3) or another suitable actuation mechanism extends from the handle 101 at the proximal end of the catheter 100 through a lumen in the catheter shaft 102 and is fastened to the distal portion 106. The pull-wire 107 is movable from a first generally relaxed position wherein the distal portion 106 is disposed in a generally longitudinally-aligned position relative to the proximal portion 104 to a second retracted or tensed position wherein the distal portion 106 flexes (e.g., deflects) from the proximal portion 104 at a desired angle as shown in FIG. 2.


The distal portion 106 is constructed to be more flexible than the proximal portion 104, such that when the handle 101 is pulled back or otherwise actuated, the pull-wire bends the distal portion 106 from an undeflected position to a deflected position. In particular, the proximal portion 104 may include a wire or other support materials (not shown) therein to provide tensile strength to the catheter shaft 102 while still maintaining flexibility for maneuvering through a vascular system. The distal portion 106 is formed from a flexible biocompatible material such as polytetrafluoroethylene, polyurethane, polyimide, and the like to allow for maneuverability thereof.


The applicator 100 includes two or more electrodes 108 and 110 disposed at the distal portion 106. The electrodes 108 and 110 may be formed from a conductive material and have a ring-like shape. The electrodes 108 and 110 may be disposed over the distal portion 106 to provide for capacitive coupling with the ionizable media. In another embodiment, the electrodes 108 and 110 may be formed as needle electrodes (e.g., pointed tip) and may be disposed within the distal portion 106.


The electrodes 108 and 110 are coupled to conductors (not shown) that extend through the catheter shaft 102 and are connected to the power source 14 via electrical connectors 112. The catheter shaft 102 is also coupled to the ionizable media source 16 via gas tubing 114 and to the precursors source 16 via tubing 113. The ionizable media source 16 and the precursors source 16 may include various flow sensors and controllers (e.g., valves, mass flow controllers, etc.) to control the flow of ionizable media to the applicator 100. In particular, the lumen 103 is in gaseous and/or liquid communication with the ionizable media source 16 and the precursors source 18 allowing for the flow of ionizable media and precursor feedstocks to flow through the catheter shaft 102 to the distal portion 106. The ionizable media in conjunction with the precursor feedstocks is ignited by application of energy through the electrodes 108 and 110 to form plasma effluent 32 exiting through the opening 105.


The applicator 100 also includes a suction lumen 150 coupled to the negative pressure source 19. This allows for the removal of unreacted feedstocks and debris particles to be removed from the application site. The lumen 150 may be incorporated into the shaft 102 (FIG. 3) or may be a separate tube 152 coupled in parallel to the shaft 102 (FIG. 2). The tube 152 may include a distal portion 128 that extends distally past the distal portion 106. The lumen 150 may be coupled to a suction source 15 via tubing 115.


The applicator 100 may also include a temperature sensor 130 at the distal portion 106. The temperature sensor 130 may be a thermistor, a thermocouple, or any other type of suitable temperature sensor that is coupled to the power source 14. The temperature sensor 130 provides continual temperature readings to the power source 14, which then adjusts the energy supplied to the plasma feedstocks to regulate the energy output of the plasma effluent 32.


The applicator 100 is suitable for removing biofilms from various type of medical implants, namely, lumens of various implants (e.g., endotracheal tubes). Tracheal tubes provide a source for bacterial growth within lumens where environment is warm and moist providing ideal conditions for bacterial growth. Since the lumens are inaccessible by the immune system the bacterial growth advances into biofilms that cannot be eliminated by conventional chemical treatments. Growth of the biofilms inside the tracheal tubes leads to costly tube replacement procedures. The applicator 100 generates the plasma effluent 32 that removes the biofilm and deactivates bacterial contamination within the endotracheal tube.



FIG. 4 shows an exemplary embodiment of an endotracheal tube 311 implanted in a trachea 319. The endotracheal tube 311 includes tubing 313 having a distal end portion 302 adapted to be orally inserted in a patient's trachea 319 and a proximal end portion 304 adapted to protrude from the patient's mouth. The tubing 313 defines a lumen 317 therethrough and is sufficiently flexible to bend and conform to the patient's anatomy, but has sufficient structural integrity to prevent kinking and collapsing during insertion. The lumen 317 terminates in an opening 303 at the distal end portion 302. The tubing 313 may be formed from a medical grade silicone plastic material that is stable at a temperature range from about 0° C. to about 60° C. Tube 313 may be formed from a single piece of silicone plastic of extruded construction.


As illustrated in FIG. 4, the tubing 313 is flexible and conforms to the patient's anatomy when inserted. The tubing 313 is resistant to collapse while being intubated or after being in place for great lengths of time. The distal portion 302 of the endotracheal tube 311 is provided with an expandable cuff or balloon 331 of a gas impervious material such as a thin sheet of silicone material of the type described above. Cuff 331 may be inflated by a pilot balloon or a syringe (not shown) in gaseous communication therewith (e.g., connected to the cuff 331 by an external tube and internal passage in the wall of tube 13). When the cuff 331 is inflated to engage the wall of trachea 319, air or other gases pass to and from a patient's lungs, 327, 329, through the bronchi 323, 325 and through the lumen 317 of the tube 311. The proximal end 304 of the tube 311 is adapted to be connected to a ventilator or oxygen source and/or a suction device.


With reference to FIGS. 5 and 6, a biofilm removal method using the applicator 100 is discussed. FIG. 5 illustrates the endotracheal tube 311 and FIG. 6 illustrates a flow chart of a method for removing the biofilm therefrom. In step 400, the opening 303 is selectively blocked using a seal 306, which may be temporarily adhered within the lumen 317. The seal 306 may be delivered to the distal end portion 302 using a variety of endoscopic instruments and techniques that provide for visual access to anatomical lumens. The seal 306 blocks the opening 303 to prevent bacteria released from the surface by the plasma effluent 32 to be introduced into the patient's lungs 327 and 329.


Seal 306 may have a profile configured to match the opening 303 thereby sealing the opening 303. The seal 306 may be disposed within the lumen 306. In embodiments, the seal 306 may abut against an interior lip of the opening 303 such that the seal 306 does not pass beyond opening 303. Seal 306 may be secured to the lumen 317 via a living hinge or any other pivotable attachment that enables the seal 306 to move within the lumen 317 with minimum contact. The seal 306 may be made of polypropylene or any other suitable polymer from which the living hinge element may be formed.


Forward movement/pressure by the applicator 100 holds seal 306 against the opening lip of 303. When plasma is deactivated, the applicator 100 may be withdrawn from the lumen 306 and/or away from the seal 306 to enable air to pass therethrough thereby allowing for intermittent respiration for the patient. In embodiments, the applicator 100 may include a contact sensor (e.g., pressure actuated limit switch) at the distal portion 106, which is coupled to the controls 111. The contact sensor acts as a safety lockout preventing plasma activation via the controls 111 when the contact sensor is disengaged from the seal 306. This ensures that the seal 306 is closed prior to activation and subsequent application of the plasma plume.


In step 402, the applicator 100 is inserted into the lumen 317. The distal portion 106 may be deflected to direct the plasma effluent 32 toward the biofilm. In one embodiment, the deflection may be from about 0° to about 45° with respect to a longitudinal axis defined by the shaft 102. In step 404, the ionizable media along with precursors is supplied to the applicator 100 and is ignited therein to form the plasma effluent 32. In one embodiment, the ionizable media may be argon, helium or a mixture thereof and the precursors may be hydrogen peroxide, water, oxygen, nitrogen or mixtures thereof.


In step 406, the applicator 100 is moved across the lumen 317 ensuring that the plasma effluent 32 is directed at walls thereof to remove the biofilm. As biofilm is removed, bacteria and other debris is removed from the treatment site through the suction lumen 150 via suction source 15. The temperature of the plasma effluent 32 is from about 60°, allowing the plasma to be used within the silicone tube 311 without damaging the walls thereof. The relatively low temperature of the plasma effluent 32 does not affect its ability to remove biofilm, since the primary effect on bacteria is due to the chemical reactivity of the plasma constituents (e.g., ionized plasma feedstocks). The precursors supplied to the applicator 100 are specifically chosen to generate a selectively reactive plasma effluent 32. In other words, the precursors, when ignited, produce a plasma effluent 32 that interacts with bacteria, and has little to no effect on material of the tube 311.


The emissions may be measured in the plasma effluent 32 by an optical spectrometer (not shown) including an optical fiber positioned to capture the emission from the plasma effluent 32 at the area of contact with the lumen 317. In embodiments, nuclear magnetic resonance (NMR) and/or laser induced florescence (LIF) devices may be used to evaluate the gas evacuated from the tube 128 at the location of suction source 15. In further embodiments, a second plasma ignition point in the effluent from tube 128 may be ignited enabling the emissions to be monitored in the plasma effluent 32 directly at the optical spectrometer at suction source 15.


In step 408, the effect of the plasma treatment is monitored by measuring the spectra of the application of the plasma effluent 32. The spectra are observed for specific emissions related to the destruction of the biofilms. The spectra are used to confirm the destruction of the biofilm and are used as a feedback mechanism for advancing of the applicator 100. In particular, the spectra are used by the user to determine when a specific region of the lumen 317 is substantially cleared of the biofilm allowing the user to determine when the applicator 100 may be advanced further into the lumen 317 and additional biofilm may be removed. The distal portion 106 may also be advanced by extending the catheter shaft 102 in a distal direction. Additionally, the spectra may be used to determine when the lumen 317 is substantially clear of the biofilm and application of the plasma effluent 32 may be terminated. In step 410, the applicator 100 is extracted from the lumen 317 and the seal 306 is removed, restoring the functionality of the tube 311.


Although the illustrative embodiments of the present disclosure have been described herein with reference to the accompanying drawings, it is to be understood that the disclosure is not limited to those precise embodiments, and that various other changes and modifications may be effected therein by one skilled in the art without departing from the scope or spirit of the disclosure. In particular, as discussed above this allows the tailoring of the relative populations of plasma species to meet needs for the specific process desired on the workpiece surface or in the volume of the reactive plasma.

Claims
  • 1. A method for eliminating biofilm from a lumen of a medical implant, the method comprising: inserting a plasma applicator into a lumen defined in a medical implant, the lumen having a proximal end portion and a distal end portion having an opening defined therein;positioning the plasma applicator adjacent a biofilm formation;generating a selectively reactive plasma effluent at the plasma applicator;directing the selectively reactive plasma effluent at the biofilm formation;completely blocking the opening of the lumen with a seal prior to generating the selectively reactive plasma effluent; andmoving the seal to open the opening, thereby allowing for air to pass through the lumen after stopping generation of the selectively reactive plasma effluent.
  • 2. A method according to claim 1, wherein positioning the plasma applicator adjacent the biofilm includes selectively deflecting a distal portion of the plasma applicator to direct the distal portion toward the biofilm formation.
  • 3. A method according to claim 1, wherein generating the selectively reactive plasma effluent includes: supplying ionizable media and at least one precursor feedstock to the plasma applicator; andigniting the ionizable media and the at least one precursor feedstock at the plasma applicator to form the selectively reactive plasma effluent.
  • 4. A method according to claim 3, wherein generating the selectively reactive plasma effluent includes selecting the at least one precursor feedstock having higher chemical reactivity with the biofilm formation than with the medical implant.
  • 5. A method according to claim 3, wherein the ionizable media is selected from the group consisting of argon and helium.
  • 6. A method according to claim 1, wherein the reactive plasma effluent has a maximum temperature of about 60° C.
  • 7. A method according to claim 1, further comprising measuring at least one spectrum of the reactive plasma effluent.
  • 8. A method according to claim 7, further comprising determining progression of biofilm removal based on the at least one spectrum.
  • 9. A method according to claim 1, further comprising moving the plasma applicator in a distal direction into engagement with the seal, thereby moving the seal into a position in which the seal is blocking the opening of the lumen.
  • 10. A method for removing biofilm from a lumen of an endotracheal tube, the method comprising: inserting a plasma applicator into a lumen of an endotracheal tube;positioning the plasma applicator within the lumen, the plasma applicator including: a shaft having a proximal portion, a deflectable distal portion, and a lumen defined in the shaft, the lumen terminating in an opening at a distal end of the distal portion, the lumen being in fluid communication with an ionizable media source; andat least one electrode disposed at the distal portion and coupled to a power source;generating a selectively reactive plasma effluent at the plasma applicator;moving the plasma applicator along at least a portion of the lumen to apply the selectively reactive plasma effluent at at least one biofilm formation within the lumen and inactivate dispersed biofilm forming bacteria;blocking the opening of the lumen with a seal prior to generating the selectively reactive plasma effluent, the seal being a solid, uninterrupted surface spanning an entirety of the opening of the lumen; andmoving the seal to open the opening of the lumen, thereby allowing for air to pass through the lumen after stopping generation of the selectively reactive plasma effluent.
  • 11. A method according to claim 10, wherein positioning the plasma applicator within the lumen includes selectively deflecting a distal portion of the plasma applicator to direct the distal portion toward the tissue formation.
  • 12. A method according to claim 10, wherein generating the selectively reactive plasma effluent includes selecting at least one precursor feedstock having higher chemical reactivity with the tissue formation than with the tissue cavity.
  • 13. A method according to claim 10, further comprising measuring at least one spectrum of the reactive plasma effluent.
  • 14. A method according to claim 13, further comprising determining progression of biofilm removal based on the at least one spectrum.
  • 15. A method for removing biofilm from a lumen of an endotracheal tube, the method comprising: inserting a plasma applicator into a lumen defined in an endotracheal tube;positioning the plasma applicator adjacent a biofilm formation;supplying ionizable media and at least one precursor feedstock to the plasma applicator;igniting the ionizable media and the at least one precursor feedstock at the plasma applicator to form a selectively reactive plasma effluent;directing the selectively reactive plasma effluent at the biofilm formation;blocking a distal opening of the lumen with a seal prior to forming the selectively reactive plasma effluent, the seal preventing air from passing through the distal opening along a central axis defined through the lumen; andmoving the seal to open the distal opening of the lumen, thereby allowing for air to pass through the lumen after stopping formation of the selectively reactive plasma effluent.
  • 16. A method according to claim 15, wherein positioning the plasma applicator adjacent the biofilm formation includes selectively deflecting a distal portion of the plasma applicator to direct the distal portion toward the biofilm formation.
  • 17. A method according to claim 15, further comprising measuring at least one spectrum of the reactive plasma effluent.
  • 18. A method according to claim 17, further comprising determining progression of biofilm removal based on the at least one spectrum.
  • 19. A method according to claim 1, further comprising preventing generating the selectively reactive plasma effluent upon a sensor of the plasma applicator sensing that the seal is moved to a position in which the opening is open.
  • 20. A method according to claim 10, further comprising: locking controls of the plasma applicator upon a sensor of the plasma applicator sensing that the seal is moved to a position in which the opening is open such that the selectively reactive plasma effluent is not generated in response to an actuation of the controls; andunlocking controls of the plasma applicator upon the sensor sensing that the seal is blocking the opening such that the selectively reactive plasma effluent is generated in response to an actuation of the controls.
CROSS REFERENCE TO RELATED APPLICATION

The present application claims the benefit of and priority to U.S. Provisional Application Ser. No. 61/780,369, filed on Mar. 13, 2013, the entire contents of which are incorporated herein by reference.

US Referenced Citations (549)
Number Name Date Kind
438257 Raquet Oct 1890 A
2213820 Maxson Sep 1940 A
2598301 Rajchman May 1952 A
3134947 Charasz May 1964 A
3434476 Shaw et al. Mar 1969 A
3492074 Rendina Jan 1970 A
3671195 Bersin Jun 1972 A
3687832 Fydelor et al. Aug 1972 A
3838242 Goucher Sep 1974 A
3903891 Brayshaw Sep 1975 A
3938525 Coucher Feb 1976 A
3948601 Fraser Apr 1976 A
3991764 Incropera et al. Nov 1976 A
4010400 Hollister Mar 1977 A
4017707 Brown et al. Apr 1977 A
4088926 Fletcher May 1978 A
4143337 Beaulieu Mar 1979 A
4177422 Deficis et al. Dec 1979 A
4181897 Miller Jan 1980 A
4188426 Auerbach Feb 1980 A
4207286 Gut Boucher Jun 1980 A
4274919 Jensen et al. Jun 1981 A
4337415 Durr Jun 1982 A
4517495 Piepmeier May 1985 A
4577165 Uehara et al. Mar 1986 A
4629887 Bernier Dec 1986 A
4629940 Gagne et al. Dec 1986 A
4665906 Jervis May 1987 A
4699082 Hakim Oct 1987 A
4780803 Dede Garcia-Santamaria Oct 1988 A
4781175 McGreevy et al. Nov 1988 A
4818916 Morrisroe Apr 1989 A
4837484 Eliasson et al. Jun 1989 A
4855563 Beresnev et al. Aug 1989 A
4877999 Knapp et al. Oct 1989 A
4901719 Trenconsky et al. Feb 1990 A
4922210 Flachenecker et al. May 1990 A
4956582 Bourassa Sep 1990 A
5013959 Kogelschatz May 1991 A
5025373 Keyser, Jr. et al. Jun 1991 A
5041110 Fleenor Aug 1991 A
5067957 Jervis Nov 1991 A
5088997 Delahuerga et al. Feb 1992 A
5098430 Fleenor Mar 1992 A
5117088 Stava May 1992 A
5120703 Snyder et al. Jun 1992 A
5124526 Muller et al. Jun 1992 A
5135604 Kumar et al. Aug 1992 A
5155547 Casper et al. Oct 1992 A
5157015 Snyder et al. Oct 1992 A
5159173 Frind et al. Oct 1992 A
5180949 Durr Jan 1993 A
5194740 Kogelschatz et al. Mar 1993 A
5217457 Delahuerga et al. Jun 1993 A
5223457 Mintz et al. Jun 1993 A
5256138 Burek et al. Oct 1993 A
5280154 Cuomo et al. Jan 1994 A
5300068 Rosar et al. Apr 1994 A
5304279 Coultas et al. Apr 1994 A
5320621 Gordon et al. Jun 1994 A
5334834 Ito et al. Aug 1994 A
RE34780 Trenconsky et al. Nov 1994 E
5383019 Farrell et al. Jan 1995 A
5384167 Nishiwaki et al. Jan 1995 A
5401350 Patrick et al. Mar 1995 A
5404219 D'Silva Apr 1995 A
5449356 Walbrink et al. Sep 1995 A
5449432 Hanawa Sep 1995 A
5466424 Kusano et al. Nov 1995 A
5505729 Rau Apr 1996 A
5526138 Sato Jun 1996 A
5534231 Savas Jul 1996 A
5554172 Horner et al. Sep 1996 A
5607509 Schumacher et al. Mar 1997 A
5618382 Mintz et al. Apr 1997 A
5656186 Mourou et al. Aug 1997 A
5669904 Platt, Jr. et al. Sep 1997 A
5669907 Platt, Jr. et al. Sep 1997 A
5683366 Eggers et al. Nov 1997 A
5688357 Hanawa Nov 1997 A
5697882 Eggers et al. Dec 1997 A
5707402 Heim Jan 1998 A
5708330 Rothenbuhler et al. Jan 1998 A
5720745 Farin et al. Feb 1998 A
5733511 De Francesco Mar 1998 A
5776255 Asaba et al. Jul 1998 A
5780862 Siess Jul 1998 A
5810764 Eggers et al. Sep 1998 A
5818581 Kurosawa et al. Oct 1998 A
5841531 Gliddon Nov 1998 A
5843019 Eggers et al. Dec 1998 A
5843079 Suslov Dec 1998 A
5845488 Hancock et al. Dec 1998 A
5849136 Mintz et al. Dec 1998 A
5855203 Matter Jan 1999 A
5858477 Veerasamy et al. Jan 1999 A
5865937 Shan et al. Feb 1999 A
5866871 Birx Feb 1999 A
5866985 Coultas et al. Feb 1999 A
5869832 Wang et al. Feb 1999 A
5892328 Shang et al. Apr 1999 A
5908441 Bare Jun 1999 A
5909086 Kim et al. Jun 1999 A
5945790 Schaefer Aug 1999 A
5961772 Selwyn Oct 1999 A
5977715 Li et al. Nov 1999 A
6013075 Avramenko et al. Jan 2000 A
6020794 Wilbur Feb 2000 A
6024733 Eggers et al. Feb 2000 A
6027601 Hanawa Feb 2000 A
6030667 Nakagawa et al. Feb 2000 A
6033582 Lee et al. Mar 2000 A
6036878 Collins Mar 2000 A
6046546 Porter et al. Apr 2000 A
6047700 Eggers et al. Apr 2000 A
6053172 Hovda et al. Apr 2000 A
6063079 Hovda et al. May 2000 A
6063084 Farin May 2000 A
6063937 Dlubala et al. May 2000 A
6066134 Eggers et al. May 2000 A
6074386 Goble et al. Jun 2000 A
6086585 Hovda et al. Jul 2000 A
6099523 Kim et al. Aug 2000 A
6102046 Weinstein et al. Aug 2000 A
6105581 Eggers et al. Aug 2000 A
6109268 Thapliyal et al. Aug 2000 A
6110395 Gibson, Jr. Aug 2000 A
6113597 Eggers et al. Sep 2000 A
6132575 Pandumsoporn et al. Oct 2000 A
6137237 MacLennan et al. Oct 2000 A
6142992 Cheng et al. Nov 2000 A
6149620 Baker et al. Nov 2000 A
6153852 Blutke et al. Nov 2000 A
6159208 Hovda et al. Dec 2000 A
6159531 Dang et al. Dec 2000 A
6170428 Redeker et al. Jan 2001 B1
6172130 Bellesort Jan 2001 B1
6172324 Birx Jan 2001 B1
6178918 van Os et al. Jan 2001 B1
6179836 Eggers et al. Jan 2001 B1
6182469 Campbell et al. Feb 2001 B1
6183655 Wang et al. Feb 2001 B1
6190381 Olsen et al. Feb 2001 B1
6197026 Farin et al. Mar 2001 B1
6203542 Ellsberry et al. Mar 2001 B1
6206871 Zanon et al. Mar 2001 B1
6206878 Bishop et al. Mar 2001 B1
6207924 Trassy Mar 2001 B1
6210402 Olsen et al. Apr 2001 B1
6210410 Farin et al. Apr 2001 B1
6213999 Platt, Jr. et al. Apr 2001 B1
6221094 Bare Apr 2001 B1
6222186 Li et al. Apr 2001 B1
6224592 Eggers et al. May 2001 B1
6225593 Howieson et al. May 2001 B1
6228078 Eggers et al. May 2001 B1
6228082 Baker et al. May 2001 B1
6228229 Raaijmakers et al. May 2001 B1
6235020 Cheng et al. May 2001 B1
6237526 Brcka May 2001 B1
6238391 Olsen et al. May 2001 B1
6242735 Li et al. Jun 2001 B1
6248250 Hanawa et al. Jun 2001 B1
6252354 Collins et al. Jun 2001 B1
6254600 Willink et al. Jul 2001 B1
6254738 Stimson et al. Jul 2001 B1
6264650 Hovda et al. Jul 2001 B1
6264651 Underwood et al. Jul 2001 B1
6264652 Eggers et al. Jul 2001 B1
6270687 Ye et al. Aug 2001 B1
6277112 Underwood et al. Aug 2001 B1
6277251 Hwang et al. Aug 2001 B1
6283961 Underwood et al. Sep 2001 B1
6287980 Hanazaki et al. Sep 2001 B1
6291938 Jewett et al. Sep 2001 B1
6296636 Cheng et al. Oct 2001 B1
6296638 Davison et al. Oct 2001 B1
6299948 Gherardi et al. Oct 2001 B1
6309387 Eggers et al. Oct 2001 B1
6313587 MacLennan et al. Nov 2001 B1
6326584 Jewett et al. Dec 2001 B1
6326739 MacLennan et al. Dec 2001 B1
6328760 James Dec 2001 B1
6329757 Morrisroe et al. Dec 2001 B1
6333481 Augeraud et al. Dec 2001 B2
6345588 Stimson Feb 2002 B1
6346108 Fischer Feb 2002 B1
6348051 Farin et al. Feb 2002 B1
6353206 Roderick Mar 2002 B1
6355032 Hovda et al. Mar 2002 B1
6363937 Hovda et al. Apr 2002 B1
6365063 Collins et al. Apr 2002 B2
6375750 van Os et al. Apr 2002 B1
6376972 Tarasenko et al. Apr 2002 B1
6379351 Thapliyal et al. Apr 2002 B1
6387088 Shattuck et al. May 2002 B1
6391025 Weinstein et al. May 2002 B1
6396214 Grosse et al. May 2002 B1
6401652 Mohn et al. Jun 2002 B1
6407513 Vollkommer et al. Jun 2002 B1
6409933 Holland et al. Jun 2002 B1
RE37780 Lanzani et al. Jul 2002 E
6416507 Eggers et al. Jul 2002 B1
6416508 Eggers et al. Jul 2002 B1
6416633 Spence Jul 2002 B1
6424099 Kirkpatrick et al. Jul 2002 B1
6424232 Mavretic et al. Jul 2002 B1
6432103 Ellsberry et al. Aug 2002 B1
6432260 Mahoney et al. Aug 2002 B1
6443948 Suslov Sep 2002 B1
6444084 Collins Sep 2002 B1
6445141 Kastner et al. Sep 2002 B1
6459066 Khater et al. Oct 2002 B1
6461350 Underwood et al. Oct 2002 B1
6461354 Olsen et al. Oct 2002 B1
6464695 Hovda et al. Oct 2002 B2
6464889 Lee et al. Oct 2002 B1
6464891 Druz et al. Oct 2002 B1
6468270 Hovda et al. Oct 2002 B1
6468274 Alleyne et al. Oct 2002 B1
6471822 Yin et al. Oct 2002 B1
6474258 Brcka Nov 2002 B2
6475217 Platt Nov 2002 B1
6482201 Olsen et al. Nov 2002 B1
6488825 Hilliard Dec 2002 B1
6497826 Li et al. Dec 2002 B2
6500173 Underwood et al. Dec 2002 B2
6501079 Furuya Dec 2002 B1
6502416 Kawasumi et al. Jan 2003 B2
6502588 Li et al. Jan 2003 B2
6507155 Barnes et al. Jan 2003 B1
6525481 Klima et al. Feb 2003 B1
6534133 Kaloyeros et al. Mar 2003 B1
6540741 Underwood et al. Apr 2003 B1
6544261 Ellsberry et al. Apr 2003 B2
6558383 Cunningham et al. May 2003 B2
6565558 Lindenmeier et al. May 2003 B1
6575968 Eggers et al. Jun 2003 B1
6579289 Schnitzler Jun 2003 B2
6579426 van Gogh et al. Jun 2003 B1
6582423 Thapliyal et al. Jun 2003 B1
6582427 Goble et al. Jun 2003 B1
6582429 Krishnan et al. Jun 2003 B2
6589237 Woloszko et al. Jul 2003 B2
6589437 Collins Jul 2003 B1
6595990 Weinstein et al. Jul 2003 B1
6617794 Barnes et al. Sep 2003 B2
6624583 Coll et al. Sep 2003 B1
6625555 Kuan et al. Sep 2003 B2
6629974 Penny et al. Oct 2003 B2
6632193 Davison et al. Oct 2003 B1
6632220 Eggers et al. Oct 2003 B1
6642526 Hartley Nov 2003 B2
6646386 Sirkis et al. Nov 2003 B1
6652717 Hong Nov 2003 B1
6653594 Nakamura et al. Nov 2003 B2
6657594 Anderson Dec 2003 B2
6659106 Hovda et al. Dec 2003 B1
6663017 Endres et al. Dec 2003 B2
6666865 Platt Dec 2003 B2
6685803 Lazarovich et al. Feb 2004 B2
6712811 Underwood et al. Mar 2004 B2
6719754 Underwood et al. Apr 2004 B2
6719883 Stimson Apr 2004 B2
6723091 Goble et al. Apr 2004 B2
6726684 Woloszko et al. Apr 2004 B1
6740842 Johnson et al. May 2004 B2
6746447 Davison et al. Jun 2004 B2
6763836 Tasto et al. Jul 2004 B2
6770071 Woloszko et al. Aug 2004 B2
6772012 Ricart et al. Aug 2004 B2
6773431 Eggers et al. Aug 2004 B2
6774569 de Vries et al. Aug 2004 B2
6780178 Palanker et al. Aug 2004 B2
6780184 Tanrisever Aug 2004 B2
6781317 Goodman Aug 2004 B1
6787730 Coccio et al. Sep 2004 B2
6805130 Tasto et al. Oct 2004 B2
6806438 Nakano et al. Oct 2004 B2
6815633 Chen et al. Nov 2004 B1
6818140 Ding Nov 2004 B2
6832996 Woloszko et al. Dec 2004 B2
6837884 Woloszko Jan 2005 B2
6837887 Woloszko et al. Jan 2005 B2
6837888 Ciarrocca et al. Jan 2005 B2
6840937 Van Wyk Jan 2005 B2
6849191 Ono et al. Feb 2005 B2
6852112 Platt Feb 2005 B2
6855143 Davison et al. Feb 2005 B2
6855225 Su et al. Feb 2005 B1
6861377 Hirai et al. Mar 2005 B1
6867859 Powell Mar 2005 B1
6876155 Howald et al. Apr 2005 B2
6890332 Truckai et al. May 2005 B2
6890346 Ganz May 2005 B2
6896672 Eggers et al. May 2005 B1
6896674 Woloszko et al. May 2005 B1
6896775 Chistyakov May 2005 B2
6909237 Park et al. Jun 2005 B1
6911029 Platt Jun 2005 B2
6915806 Pacek et al. Jul 2005 B2
6919527 Boulos et al. Jul 2005 B2
6920883 Bessette et al. Jul 2005 B2
6921398 Carmel et al. Jul 2005 B2
6922093 Kanda Jul 2005 B2
6924455 Chen et al. Aug 2005 B1
6929640 Underwood et al. Aug 2005 B1
6949096 Davison et al. Sep 2005 B2
6949887 Kirkpatrick et al. Sep 2005 B2
6958063 Soll et al. Oct 2005 B1
6974453 Woloszko et al. Dec 2005 B2
6991631 Woloszko et al. Jan 2006 B2
7004941 Tvinnereim et al. Feb 2006 B2
7019253 Johnson et al. Mar 2006 B2
7046088 Ziegler May 2006 B2
7048733 Hartley et al. May 2006 B2
7070596 Woloszko et al. Jul 2006 B1
7084832 Pribyl Aug 2006 B2
7090672 Underwood et al. Aug 2006 B2
7096819 Chen et al. Aug 2006 B2
7100532 Pribyl Sep 2006 B2
7104986 Hovda et al. Sep 2006 B2
7115185 Gonzalez et al. Oct 2006 B1
7122035 Canady Oct 2006 B2
7122965 Goodman Oct 2006 B2
7131969 Hovda et al. Nov 2006 B1
7132620 Coelho et al. Nov 2006 B2
7132996 Evans et al. Nov 2006 B2
7150745 Stern et al. Dec 2006 B2
7157857 Brouk et al. Jan 2007 B2
7160521 Porshnev et al. Jan 2007 B2
7161112 Smith et al. Jan 2007 B2
7164484 Takahashi et al. Jan 2007 B2
7165451 Brooks et al. Jan 2007 B1
7166816 Chen et al. Jan 2007 B1
7179255 Lettice et al. Feb 2007 B2
7186234 Dahla et al. Mar 2007 B2
7189939 Lee et al. Mar 2007 B2
7189940 Kumar et al. Mar 2007 B2
7192428 Eggers et al. Mar 2007 B2
7199399 Chin-Lung et al. Apr 2007 B2
7201750 Eggers et al. Apr 2007 B1
7214280 Kumar et al. May 2007 B2
7214934 Stevenson May 2007 B2
7217268 Eggers et al. May 2007 B2
7217903 Bayer et al. May 2007 B2
7220261 Truckai et al. May 2007 B2
7227097 Kumar et al. Jun 2007 B2
7238185 Palanker et al. Jul 2007 B2
7241293 Davison Jul 2007 B2
7270658 Woloszko et al. Sep 2007 B2
7270659 Ricart et al. Sep 2007 B2
7270661 Dahla et al. Sep 2007 B2
7271363 Lee et al. Sep 2007 B2
7275344 Woodmansee, III et al. Oct 2007 B2
7276063 Davison et al. Oct 2007 B2
7282244 Schaepkens et al. Oct 2007 B2
7292191 Anderson Nov 2007 B2
7297143 Woloszko et al. Nov 2007 B2
7297145 Woloszko et al. Nov 2007 B2
7298091 Pickard et al. Nov 2007 B2
7309843 Kumar et al. Dec 2007 B2
7311708 McClurken Dec 2007 B2
7316682 Konesky Jan 2008 B2
7318823 Sharps et al. Jan 2008 B2
7331957 Woloszko et al. Feb 2008 B2
7353771 Millner et al. Apr 2008 B2
7355379 Kitamura et al. Apr 2008 B2
7357798 Sharps et al. Apr 2008 B2
7361175 Suslov Apr 2008 B2
7382129 Mills Jun 2008 B2
7387625 Hovda et al. Jun 2008 B2
7393351 Woloszko et al. Jul 2008 B2
7399944 DeVries et al. Jul 2008 B2
7410669 Dieckhoff et al. Aug 2008 B2
7419488 Ciarrocca et al. Sep 2008 B2
7426900 Brcka Sep 2008 B2
7429260 Underwood et al. Sep 2008 B2
7429262 Woloszko et al. Sep 2008 B2
7431857 Shannon et al. Oct 2008 B2
7435247 Woloszko et al. Oct 2008 B2
7442191 Hovda et al. Oct 2008 B2
7445619 Auge, II et al. Nov 2008 B2
7449021 Underwood et al. Nov 2008 B2
7453403 Anderson Nov 2008 B2
7458973 Ouchi Dec 2008 B2
7459899 Mattaboni et al. Dec 2008 B2
7468059 Eggers et al. Dec 2008 B2
7480299 O'Keeffe et al. Jan 2009 B2
7489206 Kotani et al. Feb 2009 B2
7491200 Underwood Feb 2009 B2
7497119 Brooks et al. Mar 2009 B2
7498000 Pekshev et al. Mar 2009 B2
7506014 Drummond Mar 2009 B2
7507236 Eggers et al. Mar 2009 B2
7510665 Shannon et al. Mar 2009 B2
7511246 Morrisroe Mar 2009 B2
7549990 Canady Jun 2009 B2
7563261 Carmel et al. Jul 2009 B2
7566333 Van Wyk et al. Jul 2009 B2
7572255 Sartor et al. Aug 2009 B2
7578817 Canady Aug 2009 B2
7578818 Platt Aug 2009 B2
7589473 Suslov Sep 2009 B2
7601150 Farin Oct 2009 B2
7608839 Coulombe et al. Oct 2009 B2
7611509 Van Wyk Nov 2009 B2
7628787 Sartor et al. Dec 2009 B2
7632267 Dahla Dec 2009 B2
7633231 Watson Dec 2009 B2
7648503 Podhajsky Jan 2010 B2
7666478 Paulussen et al. Feb 2010 B2
7691101 Davison et al. Apr 2010 B2
7691102 Podhajsky et al. Apr 2010 B2
7708733 Sanders et al. May 2010 B2
7715889 Ito May 2010 B2
7758575 Beller Jul 2010 B2
7824398 Woloszko et al. Nov 2010 B2
7879034 Woloszko et al. Feb 2011 B2
7887891 Rius Feb 2011 B2
7892223 Geiselhart Feb 2011 B2
7892230 Woloszko Feb 2011 B2
7901403 Woloszko et al. Mar 2011 B2
7940008 Mattaboni et al. May 2011 B2
7949407 Kaplan et al. May 2011 B2
8585627 Dacey, Jr. Nov 2013 B2
8764701 Hicks Jul 2014 B1
8994270 Koo et al. Mar 2015 B2
20010025177 Woloszko et al. Sep 2001 A1
20010054601 Ding Dec 2001 A1
20020014832 Moradi et al. Feb 2002 A1
20020022836 Goble et al. Feb 2002 A1
20020022838 Cunningham et al. Feb 2002 A1
20020023899 Khater et al. Feb 2002 A1
20020092826 Ding Jul 2002 A1
20020125207 Ono et al. Sep 2002 A1
20020132380 Nakano et al. Sep 2002 A1
20020165594 Biel Nov 2002 A1
20030006019 Johnson et al. Jan 2003 A1
20030008327 Ornatskaia Jan 2003 A1
20030027186 Pierce Feb 2003 A1
20030036753 Morgan et al. Feb 2003 A1
20030038912 Broer et al. Feb 2003 A1
20030075522 Weichart et al. Apr 2003 A1
20030093073 Platt May 2003 A1
20030105456 Lin Jun 2003 A1
20030125727 Truckai et al. Jul 2003 A1
20030132198 Ono et al. Jul 2003 A1
20030158545 Hovda et al. Aug 2003 A1
20030208194 Hovda et al. Nov 2003 A1
20040007985 de Vries et al. Jan 2004 A1
20040022669 Ruan et al. Feb 2004 A1
20040027127 Mills Feb 2004 A1
20040075375 Miyashita et al. Apr 2004 A1
20040086434 Gadgil et al. May 2004 A1
20040111219 Gulati Jun 2004 A1
20040116918 Konesky Jun 2004 A1
20040120869 Ko Jun 2004 A1
20040129212 Gadgil et al. Jul 2004 A1
20040138658 Farin et al. Jul 2004 A1
20040140194 Taylor et al. Jul 2004 A1
20040181220 Farin Sep 2004 A1
20050015001 Lec et al. Jan 2005 A1
20050017646 Boulos et al. Jan 2005 A1
20050080413 Canady Apr 2005 A1
20050103748 Yamaguchi et al. May 2005 A1
20050107786 Canady May 2005 A1
20050118350 Koulik et al. Jun 2005 A1
20050149012 Penny et al. Jul 2005 A1
20050153159 Sugiyama et al. Jul 2005 A1
20050205212 Singh et al. Sep 2005 A1
20050234439 Underwood Oct 2005 A1
20050288665 Woloszko Dec 2005 A1
20060004354 Suslov Jan 2006 A1
20060011465 Burke et al. Jan 2006 A1
20060017388 Stevenson Jan 2006 A1
20060036239 Canady Feb 2006 A1
20060038992 Morrisroe Feb 2006 A1
20060052771 Sartor et al. Mar 2006 A1
20060065628 Vahedi et al. Mar 2006 A1
20060084154 Jones et al. Apr 2006 A1
20060091109 Partlo et al. May 2006 A1
20060127879 Fuccione Jun 2006 A1
20060172429 Nilsson et al. Aug 2006 A1
20060175015 Chen et al. Aug 2006 A1
20060200122 Sartor et al. Sep 2006 A1
20060224146 Lin Oct 2006 A1
20060253117 Hovda et al. Nov 2006 A1
20060266735 Shannon et al. Nov 2006 A1
20060278254 Jackson Dec 2006 A1
20070014752 Roy et al. Jan 2007 A1
20070021747 Suslov Jan 2007 A1
20070021748 Suslov Jan 2007 A1
20070027440 Altshuler et al. Feb 2007 A1
20070029292 Suslov et al. Feb 2007 A1
20070029500 Coulombe Feb 2007 A1
20070039389 Brooks et al. Feb 2007 A1
20070045561 Cooper Mar 2007 A1
20070068899 Yoon Mar 2007 A1
20070084563 Holland Apr 2007 A1
20070087455 Hoffman Apr 2007 A1
20070106288 Woloszko et al. May 2007 A1
20070149970 Schnitzler et al. Jun 2007 A1
20070210035 Twarog et al. Sep 2007 A1
20070213704 Truckai et al. Sep 2007 A1
20070251920 Hoffman Nov 2007 A1
20070255271 Dabney et al. Nov 2007 A1
20070258329 Winey Nov 2007 A1
20070282322 Dabney et al. Dec 2007 A1
20070292972 Paulussen et al. Dec 2007 A1
20080023443 Paterson et al. Jan 2008 A1
20080039832 Palanker et al. Feb 2008 A1
20080050291 Nagasawa Feb 2008 A1
20080083701 Shao et al. Apr 2008 A1
20080099434 Chandrachood et al. May 2008 A1
20080099435 Grimbergen May 2008 A1
20080099436 Grimbergen May 2008 A1
20080108985 Konesky May 2008 A1
20080122252 Corke et al. May 2008 A1
20080122368 Saito et al. May 2008 A1
20080125772 Stone et al. May 2008 A1
20080167398 Patil et al. Jul 2008 A1
20080179290 Collins et al. Jul 2008 A1
20080185366 Suslov Aug 2008 A1
20080268172 Fukuda et al. Oct 2008 A1
20080284506 Messer Nov 2008 A1
20080292497 Vangeneugden et al. Nov 2008 A1
20090039789 Nikolay Feb 2009 A1
20090048594 Sartor et al. Feb 2009 A1
20090054893 Sartor et al. Feb 2009 A1
20090054896 Fridman et al. Feb 2009 A1
20090064933 Liu et al. Mar 2009 A1
20090076505 Arts Mar 2009 A1
20090216226 Davison et al. Aug 2009 A1
20090275941 Sartor et al. Nov 2009 A1
20100016856 Platt, Jr. Jan 2010 A1
20100042094 Arts Feb 2010 A1
20100069902 Sartor et al. Mar 2010 A1
20100089742 Suslov Apr 2010 A1
20100114096 Podhajsky May 2010 A1
20100125267 Lee et al. May 2010 A1
20100130973 Choi et al. May 2010 A1
20100204690 Bigley et al. Aug 2010 A1
20110101862 Koo et al. May 2011 A1
20110139751 Koo et al. Jun 2011 A1
20120029506 Johnson Feb 2012 A1
20120095453 Cox Apr 2012 A1
20130053762 Rontal Feb 2013 A1
20130123756 Eberli May 2013 A1
Foreign Referenced Citations (56)
Number Date Country
2391565 Aug 2000 CN
3710489 Nov 1987 DE
4139029 Jun 1993 DE
4326037 Feb 1995 DE
9117019 Mar 1995 DE
19524645 Feb 1997 DE
19537897 Mar 1997 DE
9117299 Mar 2000 DE
19848784 May 2000 DE
29724247 Aug 2000 DE
0016542 Oct 1980 EP
0366876 May 1990 EP
0495699 Jul 1992 EP
0602764 Jun 1994 EP
0956827 Nov 1999 EP
1174901 Jan 2002 EP
1978038 Oct 2008 EP
1340509 Oct 1963 FR
61-159953 Jul 1986 JP
62-130777 Jun 1987 JP
03-149797 Jun 1991 JP
H06-119995 Apr 1994 JP
8-243755 Sep 1996 JP
2000286094 Oct 2000 JP
2001501485 Feb 2001 JP
2001332399 Nov 2001 JP
2003007497 Jan 2003 JP
2003049276 Feb 2003 JP
2003093869 Apr 2003 JP
2005-522824 Jul 2005 JP
2005-526904 Sep 2005 JP
2005-528737 Sep 2005 JP
2005276618 Oct 2005 JP
2006114450 Apr 2006 JP
2006310101 Sep 2006 JP
2006310101 Nov 2006 JP
2007188748 Jul 2007 JP
2007207540 Aug 2007 JP
2008041495 Feb 2008 JP
2008071656 Mar 2008 JP
2010-242857 Oct 2010 JP
1438745 Nov 1988 SU
9901887 Jan 1999 WO
9936940 Jul 1999 WO
0139555 May 2001 WO
03085693 Oct 2003 WO
2004032176 Apr 2004 WO
2004094306 Nov 2004 WO
2006116252 Nov 2006 WO
2009080273 Jul 2009 WO
2009146432 Dec 2009 WO
2009146439 Dec 2009 WO
2010008062 Jan 2010 WO
2010146438 Dec 2010 WO
2011123125 Oct 2011 WO
2012153332 Nov 2012 WO
Non-Patent Literature Citations (15)
Entry
European Communication and Search Report, corresponding to European Application No. 14154624.2, dated Oct. 28, 2015; 9 total pages.
Park et al., “Atmospheric-pressure plasma sources for biomedical applications”, Plasma sources Science and Technology, vol. 21, No. 4, Invited Review, Jun. 2012; 21 pages.
Japanese Office Action (with English translation), dated Nov. 17, 2015, corresponding to Japanese Application No. 2015-009663; 8 total pages.
European Search Report dated Dec. 9, 2014, corresponding to European Application No. 09 84 5329; 8 pages.
Y. Ushio, et al., “General Film Behaviour 299 Secondary Electron Emission Studies on Mg0 Films,” Thin Solid Films, Jan. 1, 1988; pp. 299-308.
Japanese Notice of Final Rejection and Denial of Entry of Amendment (with English translation), issued Apr. 2, 2015, corresponding to Japanese Patent Application No. 2012-513022; 10 total pages.
Extended European Search Report corresponding to European Application No. 09755793.8, dated Jul. 21, 2014; 8 pages.
Extended European Search Report issued in Appl. No. 10849146.5 dated Sep. 26, 2013; 6 pages.
Japanese Notice of Final Rejection and Denial of Entry of Amendment (with English translation), dated Jun. 2, 2015, corresponding to Japanese Patent Application No. 2013-502548; 15 total pages.
English translation of Japanese Notice of Reasons for Rejection, dated Feb. 18, 2014, corresponding to Japanese Patent Application No. 2013-502548; 6 pages.
English translation of Japanese Notice of Reasons for Rejection, dated Oct. 7, 2014, corresponding to Japanese Patent Application No. 2013-502548; 6 pages.
Australian Patent Examination Report No. 1, dated Apr. 17, 2014, corresponding to Australian Patent Application No. 2010349784; 3 pages.
European Communication dated Jun. 17, 2014, corresponding to European Patent Application No. 10849146.5; 6 pages.
European Communication/Examination Report dated Jul. 14, 2015, corresponding to European Patent Application No. 09 845 329.3; 8 pages.
European Communication dated Oct. 22, 2015, corresponding to European Patent Application No. 09755793.8; 9 pages.
Related Publications (1)
Number Date Country
20140276784 A1 Sep 2014 US
Provisional Applications (1)
Number Date Country
61780369 Mar 2013 US