The foregoing summary, as well as the following detailed description of certain embodiments of the present invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, certain embodiments are shown in the drawings. It should be understood, however, that the present invention is not limited to the arrangements and instrumentality shown in the attached drawings.
Certain embodiments of the present invention provide an electrophysiology and hemodynamic (EP/Hemo) recording or monitoring system with an ability to exchange physiological signal data with an ultrasound system. Certain embodiments provide methods for exchanging physiologic signal data between an EP/Hemo recording system and an ultrasound system or other similar system. The signal data may be electrocardiogram (ECG) and/or intracardiac waveform data, for example. In certain embodiments, EP/Hemo recording systems are tightly integrated with ultrasound systems. Such tight integration allows information, such as physiological waveform information, to be exchanged. The waveform information is thus available both in the EP/Hemo System and in the ultrasound system (e.g., the GE Vivid-I system) simultaneously or substantially simultaneously (due to some inherent delay). Both systems are displaying the same signal, which allows signal information to be correlated with image information (e.g., correlation of ECG/intracardiac waveform data with an ultrasound image).
Certain embodiments of the EP/Hemo data acquisition system provide an analog physiological signal to the ultrasound system. The connection from the EP/Hemo data acquisition system to the ultrasound system may be implemented using an ECG or other waveform input port, for example. In an embodiment, an ECG input port is used with a two-wire cable (one wire for an ECG electric signal and one wire for ground) having an input level of plus or minus 1 V, an input impedance of great that 10 megaohms, and a source-dependent bandwidth and dynamic range. Of course, details of the port and connecting cable may vary greatly depending upon system, data and operating conditions. This is but one illustrative example.
As described above, data, such as physiological waveform data 220, is acquired from a patient or external system at the EP/Hemo system 210. The data 220 is transmitted from the EP/Hemo system 210 via the signal output port 215. The waveform data 220 is transmitted to the ultrasound system 230 via the cable connection 220. Note that the cable connection 220 may encompass a variety of cable connections, as well as non-cable connections such as wireless, infrared, etc. The data 220 is received at the signal input port 235 of the ultrasound system 230. Similarly, data 220 may be communicated from the ultrasound system 230 to the EP/Hemo system 210 via the connection 225 and ports 235, 215.
One or more of the steps of the method 300 may be implemented alone or in combination in hardware, firmware, and/or as a set of instructions in software, for example. Certain embodiments may be provided as a set of instructions residing on a computer-readable medium, such as a memory, hard disk, DVD, or CD, for execution on a general purpose computer or other processing device.
Certain embodiments of the present invention may omit one or more of these steps and/or perform the steps in a different order than the order listed. For example, some steps may not be performed in certain embodiments of the present invention. As a further example, certain steps may be performed in a different temporal order, including simultaneously, than listed above.
Certain embodiments provide biometric authentication in a physiological monitoring system, such as an integrated EP/Hemo system. Integrating a biometric scan into physiological monitoring systems allows a user to enter the system and access controlled sections without manual entry of a password, pass code or other identifier. An example of a biometric scanner may be a finger print reader built into a system keyboard that would allow the user to use a finger touch on a sensor when prompted for password access into the system. Other examples may include eye (retina) scanners and hand print scanners. System access may be improved through biometric scanning as additional typing and memorization of alphanumeric codes by a user are reduced. A biometric scan provides a unique identifier for a user and reduces management and updating of passwords and/or access codes, for example. That is, a biometric scan helps eliminate periodic management and updating of passwords for system access. In certain embodiments, a radio frequency identifier (RFID) and/or other identification device may be used for identification, for example.
The biometric scanner 430 may be a fingerprint scanner, an eye (e.g., retina) scanner, a hand print scanner, and/or a voice recognition scanner, for example. As shown in
The components of the system 400 may be implemented in software, hardware and/or firmware, for example. The components of the system 400 may be implemented separately and/or integrated in a plurality of forms.
At step 530, the biometric data is compared to stored biometric identification data for the user. For example, the user's fingerprint is compared against a stored fingerprint record for that user. Additionally, a level of privilege or access to system(s) and/or functionality may also be verified. At step 540, if a user is verified, then the user is allowed access. For example, if a user's fingerprint matches the record, then the user is allowed to log in to the system.
One or more of the steps of the method 500 may be implemented alone or in combination in hardware, firmware, and/or as a set of instructions in software, for example. Certain embodiments may be provided as a set of instructions residing on a computer-readable medium, such as a memory, hard disk, DVD, or CD, for execution on a general purpose computer or other processing device.
Thus, certain embodiments provide biometric scanning integrated into a computerized clinical system that is being utilized to care for patients during complex invasive cardiac and radiological procedures. Certain embodiments help to provide improved security from copying and tampering, as well as improved user workflow and procedure time. Certain embodiments provide biometric scanning with several levels of security. Certain embodiments provide an integrated combination of a biometric scan with a physiological monitoring and recording system for hemodynamic and electrophysiology procedures.
Certain embodiments help improve ease of use of physiological diagnostic monitoring systems through biometric scanning. Certain embodiments help eliminate a need for a user to remember and manage multiple alphanumeric passwords. Certain embodiments help increase efficiency and decrease case time by eliminating a need to type multiple keystrokes instead of a ‘swipe’ of a finger on a finger print reader or other biometric scanner. Certain embodiments also provide a unique identifier for tracking and auditing access to the system. For example, biometric authentication helps eliminate password theft.
While the invention has been described with reference to certain embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.
This application claims priority to a provisional application entitled “System and Method for Biometric Scan Integrated Electrophysiology and Hemodynamic Physiological Diagnostic Monitoring During Clinical Invasive Procedure,” filed on Sep. 1, 2006, as Ser. No. 60/824,397, which is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60824397 | Sep 2006 | US |