System and method for broadband digital broadcasting

Information

  • Patent Grant
  • 8233839
  • Patent Number
    8,233,839
  • Date Filed
    Thursday, January 14, 2010
    14 years ago
  • Date Issued
    Tuesday, July 31, 2012
    12 years ago
Abstract
A system and method are disclosed for providing streaming data information to a receiver. The system accesses one or more information service providers for providing respective information signals, input buffers for storing portions of the streaming information, a digital broadcast transmitter for broadcasting the contents of the input buffers as transmission bursts, a digital broadcast receiver for receiving the transmission bursts for storage in a receiver input buffer, and an application processor for converting the transmission bursts to an information transmission stream. The digital broadcast receiver is synchronized with the transmitter broadcasts to allow for powering down between selected transmission bursts.
Description
FIELD OF THE INVENTION

This invention relates to transmission of audio data, video data, control data, or other information and, in particular, to a method for efficiently using information broadcasting resources.


BACKGROUND

Video streaming, data streaming, and broadband digital broadcast programming is increasing in popularity in network applications. One system currently in use in Europe and elsewhere world-wide is Digital Video Broadcast (DVB) which provides capabilities for delivering data in addition to televisual content. The Advanced Television Systems Committee (ATSC) has also defined a digital broadband broadcast network. Both ATSC and DVB use a containerization technique in which content for transmission is placed into MPEG-2 packets serving as data containers which can be used to transport suitably digitized data including, but not limited to, High Definition television, multiple channel Standard Definition television such as PAL/NTSC and SECAM, and broadband multimedia data and interactive services. Transmitting and receiving such programming usually requires that the equipment utilized be powered up continuously so as to be able to send or receive all the streaming information. However, in the current state of the art, power consumption levels, especially in the front end of a digital broadcast receiver or mobile terminal, are relatively high and need to be reduced to improve the operating efficiency of the broadcasting equipment.


What is needed is a system and method for more efficiently utilizing efficiently using data broadcasting resources for transmitting and receiving functions.


SUMMARY

In a preferred embodiment, the present invention provides a system and method for providing streaming information in the form of a data signal to a mobile terminal receiver. The broadcasting system includes one or more service providers for providing streaming information, input buffers for storing successive portions of the streaming information, a digital broadcast transmitter for broadcasting the contents of the input buffers as transmission bursts, a digital broadcast receiver for receiving and storing the transmission bursts in a receiver buffer, and an application processor in the mobile terminal for converting the stored transmission bursts into an information data stream.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention description below refers to the accompanying drawings, of which:



FIG. 1 shows a simplified diagram of a conventional streaming digital broadcasting system;



FIG. 2 shows a waveform of the streaming signal output by the conventional digital broadcasting system of FIG. 1;



FIG. 3 shows a time-slicing digital broadcasting system in accordance with one embodiment of the present invention;



FIG. 4 is a graph showing changes over time in the contents of a service input buffer in the broadcasting system of FIG. 3 in accordance with one embodiment of the present invention;



FIG. 5 shows the transmission waveform of a signal output by the digital broadcast transmitter in the system of FIG. 3 in accordance with one embodiment of the present invention, the signal including information obtained from one of the information service providers;



FIG. 6 is a graph showing changes over time in the contents of the receiver input buffer in the broadcasting system of FIG. 3 in accordance with one embodiment of the present invention;



FIG. 7 shows the transmission waveform of a time-division multiplexed signal output by the digital broadcast transmitter in the system of FIG. 3 in accordance with one embodiment of the present invention, the multiplexed signal including information obtained from both of the information service providers;



FIG. 8 shows an alternative preferred embodiment of a time-slicing digital broadcasting system;



FIG. 9 is a graph showing changes over time in the contents of a service input buffer in the broadcasting system of FIG. 8 in accordance with one embodiment of the present invention;



FIG. 10 is a series of graphs showing transmission waveforms of signals output by the multi-protocol encapsulators in the broadcasting system of FIG. 8 in accordance with one embodiment of the present invention; and



FIG. 11 shows the transmission waveform of a time-division multiplexed signal output by the digital broadcast transmitter in the system of FIG. 8 in accordance with one embodiment of the present invention.





DETAILED DESCRIPTION


FIG. 1 is a simplified block diagram of a conventional streaming digital broadcasting system 10 in which an information signal 21 originating at an information service provider 11 is transmitted to a client accessing a digital broadcast receiver 15. The information signal 21 is typically sent from the service provider 11 to a transmitter 13 over a link, which can be an Internet link. The transmitter 13 broadcasts the information signal to the receiver 15 as a streaming signal 23, typically by means of a broadcast antenna (not shown).


In a conventional signal transmission application, the transmitter 13 provides a continuous or a slowly-varying data stream having a bit rate of approximately 100 Kbit/sec, such as shown in FIG. 2. The streaming signal 23 thus exhibits the same transmission rate of 100 Kbit/sec as the information signal 21 originating at the service provider 11. The digital broadcast receiver 15 necessarily operates in a constant powered-on mode in order to receive all the information provided by the streaming signal 23, which may also include one or more other data streams provided by one or more other information service providers (not shown).


There is shown in FIG. 3 a first preferred embodiment of a time-slicing digital broadcasting system 30 including a transmitter system 20 and a mobile terminal 40. A first data signal 25 originating at a first information service provider 17 in the transmitter system 20 is made available over a network link (not shown) for downstream transmittal to a client using a digital broadcast receiver 41 in the mobile terminal 40. A predetermined interval of the streaming information in the data signal 25 is initially buffered in a first service input buffer 35 as buffered data 27. The first service input buffer 35 may be, for example, a first-in, first-out (FIFO) buffer, an elastic buffer, a ring buffer, or a dual buffer having separate input and output sections.


In a preferred embodiment, the buffered data 27 is then formatted by using, for example, a multi-protocol encapsulator 37 in accordance with Section 7 of European Standard EN 301192 “Digital Video Broadcasting (DVB); DVB specification for data broadcasting.” In an alternative embodiment, the first service input buffer 35 is integrated with the multi-protocol encapsulator 37 to comprise a single input device 39. Encapsulated data 29 is sent by the multi-protocol encapsulator 37 to a digital broadcast transmitter 31 for broadcast to the digital broadcast receiver 41 as a time-slicing signal 51 described in greater detail below.


The amount of information retained in the first service input buffer 35 as a function of time can be represented by a sawtooth waveform 71 shown in the graph of FIG. 4. As the first service provider 17 supplies the data signal 25, the data information present in the first service input buffer 35 increases to a buffer maximum level, here denoted by a first local maximum value 73. The first local maximum value 73 is a function of the amount of memory designated in the first service input buffer 35 for storing the first information signal.


The size of the first service input buffer 35 is generally specified to be large enough to store the data received from an information stream in the time interval between successive waveform maxima (e.g., data received in the time interval between the first local maximum value 73 and a second local maximum value 75). The buffered data 27 stored in the first service input buffer 35 is periodically sent via the multi-protocol encapsulator 37 to the digital broadcast transmitter 31. Because the contents of the first service input buffer 35 is thus periodically transferred, subsequent incoming data will not cause the specified memory capacity to be exceeded. When the buffered data 27 is sent to the digital broadcast transmitter 31, the quantity of buffered information remaining in the first service input buffer 35 drops to a local minimum value 74, which can be zero.


The first service input buffer 35 may include an ‘AF’ flag which can be set when an “almost full” byte count 79 is reached to indicate when the first service input buffer 35 is about to exceed the designated memory capacity. Preferably, the process of outputting the buffered data 27 begins when the AF flag is set. This serves to provide storage capacity for a subsequent interval of the streaming information sent by the service provider 17 (here represented by the next part of the waveform 71). When the next streaming data information interval has been inputted, the buffered information in the first service input buffer 35 reaches a second local maximum value 75 which is subsequently outputted when the AF flag is set, resulting in a second local minimum value 76. The process is repeated, yielding a third local maximum value 77 and a third local minimum value 78.


Each subsequent portion of the streaming data buffered in the first service input buffer 35 is thus successively outputted to the digital broadcast transmitter 31 for transmission to the digital broadcast receiver 41. This action produces the time-slicing signal 51, a portion of which is shown in FIG. 5. The time-slicing signal 51 comprises a continuous series of transmission bursts, exemplified by transmission bursts 53, 55, and 57. In the example provided, the transmission burst 53 corresponds to the buffered information transfer represented by the transition of the waveform 71 from the local maximum value 73 to the local minimum value 74. Likewise, the next transmission burst 55 corresponds to the buffered information transfer represented by the transition of the waveform 71 from the local maximum value 75 to the local minimum value 76, and the transmission burst 57 corresponds to the buffered information transfer represented by the transition from the local maximum value 77 to the local minimum value 78.


In a preferred embodiment, each of the transmission bursts 53, 55, and 57 is a 4-Mbit/sec pulse approximately one second in duration to provide a transfer of four Mbits of buffered information per transmission burst. The transmission bursts 53, 55, and 57 are spaced at approximately 40-second intervals such that the time-slicing signal 51 effectively broadcasts at an average signal information transmittal rate of 100 Kbits per second (i.e., the same as the transmittal rate of the incoming streaming signal 23). The 40-second signal segment stored in the input buffer 35 comprises the signal information to be broadcast to the digital broadcast receiver 41 as any one of the transmission bursts 53, 55, and 57, for example.


In FIG. 3, the digital broadcast receiver 41 sends the time-slicing signal 51 to a stream filter 43 to strip the encapsulation from the information signal which had been added by the multi-protocol encapsulator 37. The encapsulation may conform to Internet Protocol (IP) standards, for example. In a preferred embodiment, Boolean protocol filtering is used to minimize the amount of logic needed for filtering operations performed by the stream filter 43, and thus optimize the capacity of the digital broadcast receiver 41.


Filtered data is then sent to a receiver input buffer 45. The receiver input buffer 45 functions to temporarily store filtered data, which may comprise any one of the transmission bursts 53, 55, and 57, before being sent downstream to an application processor 47 for conversion into an information data stream 49. This process can be illustrated with reference to the graph of FIG. 6 in which sawtooth waveform 81 diagrammatically represents as a function of time the quantity of filtered data stored in the receiver input buffer 45. Preferably, the size of the receiver input buffer 45 in the mobile terminal 40 is substantially the same as the size of the first service input buffer 35 in the transmitter system 20.


In an alternative preferred embodiment, the receiver input buffer 45 adapts to the configuration of the service input buffer 35, wherein the portion of the service input buffer 35 designated for storage of the incoming data stream may vary according to the characteristics of the streaming information selected from a particular information service provider. That is, the selected information service provider may be supplying a data stream that can be stored using only a part of the storage resources available in the service input buffer 35 (i.e. a ‘usage factor’ of less than unity). In one alternative embodiment, this usage factor information is provided to the mobile terminal 40 as part of the time-slicing signal 51 to allow the receiver input buffer 45 to anticipate and adapt to the smaller quantity of transmitted data to be provided in a transmittal. In another alternative embodiment, the usage factor information is not provided to the mobile terminal 40 as part of the time-slicing signal 51. Rather, the mobile terminal 40 continues to receive data from the transmitter system 20 and, over a period of time, derives the usage factor by determining the portion of storage resources needed in the receiver input buffer 45 for the data being provided by the selected service provider.


When turning on the digital broadcast receiver 41 for the purpose of initially receiving a service which has a small bit rate, the digital broadcast receiver 41 will experience a relatively long period between subsequent bursts. Because the actual bit rate is not initially known, the digital broadcast receiver 41 may remain powered up for a period of time beyond that required for receipt of the initial small-bit-rate service signal burst. The consumer may then need to wait for the requested service to ‘start up.’ However, when a smaller quantity of data is designated for storage in the receiver input buffer 45 (i.e., when the usage factor is less than unity), the digital broadcast receiver 41 can receive the first burst earlier, that is with a minimum of delay, and service start-up time can be reduced accordingly by utilizing the usage factor information.


When the transmission burst 53 has been received in the receiver input buffer 45, the waveform 81 reaches a first local maximum 83. The byte count stored in the receiver input buffer 45 then decreases from the first local maximum 83 to a first local minimum 84 as corresponding data is transferred from the receiver input buffer 45 to the application processor 47. Preferably, the rate at which the contents of the receiver input buffer 45 is transferred to the application processor 47 is at least as great as the rate at which data information is placed into the first service input buffer 35. This serves to insure that the receiver input buffer 45 is available to store the next transmission burst 55. When the next transmission burst 55 is received at the receiver input buffer 45, the waveform 81 increases to a second local maximum 85 which decreases to a second local minimum 86 as the received information interval is transferred from the receiver input buffer 45 to the application processor 47 for conversion to a data packet.


The process continues with the next transmission burst 57 producing a third local maximum 87 which decreases to a third local minimum 88. Preferably, the receiver input buffer 45 includes an ‘AE’ flag to indicate when an “almost empty” byte count 82 has been reached and an AF flag to indicate when an “almost full” byte count 89 has been reached. As explained in greater detail below, the AE and AF flags can be advantageously utilized to synchronize the powering up and the powering down respectively of the digital broadcast receiver 41 to correspond with the timing of incoming transmission bursts, such as the transmission bursts 53, 55, and 57.


The application processor 47 functions to continuously input buffer data from the receiver input buffer 45 and to continuously reformat the buffered data into the information data stream 49. As can be appreciated by one skilled in the relevant art, while the digital broadcast transmitter 31 remains powered-up in a transmission mode during each transmission burst 53, 55, and 57, the digital broadcast transmitter 31 can be advantageously powered down in the ‘idle’ time intervals between the transmission bursts 53 and 55, and between the transmission bursts 55 and 57 to reduce operational power requirements. Powering down can be accomplished, for example, by a controlled switch as is well-known in the relevant art.


In particular, the digital broadcast transmitter 31 can be powered down after termination point 61 of transmission burst 53 (shown at t=1 sec), and can remain powered-down until just before initiation point 63 of transmission burst 55 (shown at t=40 sec). Similarly, the digital broadcast transmitter 31 can power down after termination point 65 of transmission burst 55 (shown at t=41 sec), and can remain powered-down until just before initiation point 67 of transmission burst 57 (shown at t=80 sec). At the completion of the transmission burst 57, indicated as termination point 69 (shown at t=81 sec), the digital broadcast transmitter 31 can again be powered down if desired.


In an alternative preferred embodiment, the time-slicing digital broadcasting system 30 includes one or more additional service providers, exemplified by a second service provider 18, shown in FIG. 3. The second service provider 18 sends a second data signal 26 to the digital broadcast transmitter 31 over a network link (not shown). The second data signal 26 received from the second service provider 18 is placed into a second service input buffer 36 and encapsulated using, for example, a multi-protocol encapsulator 38, as described above. A multiplexer 33 processes the encapsulated signals 29 from the first service input buffer 35 with encapsulated signals 19 from the second service input buffer 36 into a time-division multiplexed (TDM) signal 91, described in greater detail below, for broadcast to the digital broadcast receiver 41. As used herein, broadcasting may include multicasting or unicasting.


It should be understood that if only one service provider is sending information to the digital broadcast transmitter 31, the first service provider 17 for example, the multiplexer 33 is not required for operation of the time-slicing digital broadcasting system 30. Accordingly, in the first preferred embodiment, above, the signal in the first service input buffer 35 can be provided directly to the digital broadcast transmitter 31 via the multi-protocol encapsulator 37.


For the alternative preferred embodiment shown in FIG. 3, in which two service providers are supplying information signals, the TDM signal 91, shown in FIG. 7, comprises a continuous series of transmission bursts, including transmission bursts 53, 55, and 57 resulting from information signals provided by the first service input buffer 35, interlaced with transmission bursts 93, 95, and 97 resulting from information signals provided by the second service input buffer 36. In the example provided, each of the transmission bursts 93, 95, and 97 occurs approximately ten seconds after a corresponding transmission burst 53, 55, or 57. As can be appreciated by one skilled in the relevant art, the disclosed method is not limited to this ten-second spacing and other transmission intervals can be used as desired. In particular, the transmission interval between the transmission bursts 93, 95, and 97 can be greater or less than ten seconds. Moreover, if additional service providers are included in the time-slicing digital broadcasting system 30, one or more sets of interlaced transmission bursts (not shown) will be included in the TDM signal 91.


In a preferred embodiment, the powered-up receive mode of the digital broadcast receiver 41, in FIG. 3, is synchronized with a transmission window during which period the digital broadcast transmitter 31 is transmitting. Thus, for receipt of the time-slicing signal 51, for example, the digital broadcast receiver 41 remains powered-up in a receive mode during each incoming transmission burst 53, 55, and 57 and can be powered down in the time intervals between the transmission bursts 53 and 55, and between the transmission bursts 55 and 57. In an alternative embodiment, the stream filter 43 is also synchronized to maintain a powered-up mode with the transmission window.


In way of example, such synchronization can be achieved by using burst sizes of either fixed or programmable size, and by using the AE flag and “almost empty” byte count 82, above, as a criterion to power up the digital broadcast receiver 41 and prepare to receive the next transmission burst after fixed or slowly-varying time intervals. That is, the digital broadcast receiver 41 acquires information intermittently broadcast as described above. The client may also configure the digital broadcast receiver 41 to take into account any transmission delays resulting from, for example, a bit rate adaptation time, a receiver switch-on time, a receiver acquisition time, and/or a bit-rate variation time interval. A typical value for the adaptation time may be about 10 μsec, and for the switch-on times or acquisition times a typical value may be about 200 msec. The digital broadcast receiver 41 is thus configured to power-up sufficiently in advance of an incoming burst to accommodate the applicable delay factors. Similarly, the AF flag and the “almost full” byte count 89, above, can be used as a criterion to power-up the digital broadcast receiver 41.


In yet another alternative preferred embodiment, a TDM digital broadcasting system 100 includes a transmitter system 130 and the mobile terminal 40, shown in FIG. 8. The digital broadcasting system 100 further includes a plurality of service providers 101-107 sending respective information streams to corresponding service input buffers 111-117. The outputs of each of the service input buffers 111-117 are formatted by means of a plurality of multi-protocol encapsulators 109 as described above. The encapsulated data 121-127 output from the respective multi-protocol encapsulators 109 are provided to a network operator input buffer 131 as shown. The size of the data stored in any of the service input buffers 111-117 is a function of time, as represented by sawtooth waveform 121 in FIG. 9.


The network operator input buffer 131 stores a predetermined amount of buffered data from each of the service input buffers 111-117. The data is provided to a multiplexer 133 and sent to a digital broadcast transmitter 135 for broadcast as a TDM signal 137. The network operator input buffer 131 functions to receive and store multiple inputs from each of the service input buffers 111-117 before outputting to the multiplexer 133. For example, FIG. 10 illustrates the data input to the network operator input buffer 131 where the encapsulated data 121 is received from the service input buffer 111, the encapsulated data 123 is received from the service input buffer 113, the encapsulated data 125 is received from the service input buffer 115, and the encapsulated data 127 is received from the service input buffer 117. It should be understood that while the encapsulated data 121-127 waveforms are shown as being spaced at regular intervals for clarity of illustration, the invention is not limited to this transmission mode. Accordingly, other various transmission intervals can be used and the transmission rates of the encapsulated data 121-127 waveforms can be dissimilar from one another.


One example of a TDM signal 137 broadcast by the digital broadcast transmitter 135 is shown in FIG. 11 where the information stream provided by the service provider 101 appears as transmission bursts 141, 143, and 145 (here shown with solid fill for clarity). In an embodiment having a multiplexer bandwidth of approximately 12 Mbit/sec, the transmission bursts 141, 143, and 145 can be configured as 12-Mbit/sec bursts of approximately one-second duration. The transmission burst 141, for example, may comprises three 4-Mbit/sec transmission bursts provided to the network operator input buffer 131 by the service input buffer 111. A subsequent 12-Mbit/sec transmission burst 151 may comprise three 4-Mbit/sec transmission bursts provided to the network operator input buffer 131 by the service input buffer 113. In an alternative embodiment, the transmission burst 141, for example, can have a duration of greater or less than one second, and can comprise more or less than three incoming transmission bursts. If additional bandwidth is required because additional service providers are included, or if the amount of data being transmitted by the service providers 101-107 increases substantially, additional transmission channels (not shown) can be provided for use in the TDM digital broadcasting system 100.


In a preferred embodiment, the transmission bursts originating with a particular service provider may comprise a unique data stream. For example, the transmission bursts 141, 143, and 145 may comprise a first data stream, originating at the service provider 101, where the data stream has a burst-on time of about 333 msec and a burst-off time of about 39.667 sec. The first data stream comprises subsequent transmission bursts occurring precisely every forty seconds (not shown), each transmission burst including information originating at the service provider 101. Similarly, the transmission burst 151 comprises a second data stream along with transmission bursts 153, 155, and subsequent transmission bursts (not shown) occurring every forty seconds, where the second data stream includes information originating at the service provider 103. In one alternative embodiment, the digital broadcast receiver 41 is synchronized to selectively receive only the first data stream, for example. Accordingly, in this embodiment the digital broadcast receiver 41 is powered-up for at least 333 msec every forty seconds to receive the transmission bursts 141, 143, 145, and subsequent first-data-stream transmission bursts, and powered down in the interval time periods.


While the invention has been described with reference to particular embodiments, it will be understood that the present invention is by no means limited to the particular constructions and methods herein disclosed and/or shown in the drawings, but also comprises any modifications or equivalents within the scope of the claims.

Claims
  • 1. An apparatus comprising: a processor configured to: receive streaming information from a service provider; andtransmit, from the apparatus, said streaming information in a digital video broadcast transmission burst to a remote mobile terminal at a higher bit rate than the rate at which said streaming information is received from the service provider, wherein the digital video broadcast transmission burst is transmitted as a time sliced signal and wherein the transmission is synchronized with a powering-up of the remote mobile terminal.
  • 2. The apparatus of claim 1, wherein at least one service is provided by the information service provider via at least one information stream.
  • 3. The apparatus of claim 1, wherein the transmission of the digital video broadcast transmission burst is synchronized with the powering-up of a digital video broadcast receiver of the remote mobile terminal based on a pre-determined powered-up time.
  • 4. The apparatus of claim 3, wherein said pre-determined powered-up time occurs an incremental period of time prior to the transmission of said digital video broadcast transmission burst.
  • 5. The apparatus of claim 3, wherein said pre-determined powered-up time occurs a specified period of time subsequent to said pre-determined powered-down time.
  • 6. The apparatus of claim 1, wherein the remote mobile terminal comprises an application processor configured to convert said digital video broadcast transmission burst into an information data stream.
  • 7. The apparatus of claim 1, further comprising a multi-protocol encapsulator for encapsulating at least a portion of said streaming information.
  • 8. The apparatus of claim 7, wherein the encapsulation is removable using an Internet protocol (IP) filter.
  • 9. The apparatus of claim 1 further comprising: a service input buffer for storing at least an interval of second streaming information provided by a second information service provider, wherein the apparatus broadcasts the contents of said second service input buffer as a second digital video broadcast transmission burst.
  • 10. The apparatus of claim 9, further comprising a multiplexer for multiplexing said digital video broadcast transmission burst and said second transmission burst such that said apparatus broadcasts said digital video broadcast transmission burst and said second transmission burst as a time-division multiplexed signal.
  • 11. The apparatus of claim 9, further comprising a network operator input buffer.
  • 12. A method comprising: receiving streaming information from a service provider; andtransmitting, from a digital video broadcast transmitter, said streaming information in a digital video broadcast transmission burst to a remote mobile terminal at a higher bit rate than the rate at which said streaming information is received from the service provider, wherein the digital video broadcast transmission burst is transmitted as a time sliced signal and wherein the transmission is synchronized with a powering-up of the remote mobile terminal.
  • 13. The method of claim 12, further comprising encapsulating the streaming information.
  • 14. The method of claim 12 further comprising: receiving second streaming information supplied by a second service provider; andencapsulating said second streaming information.
  • 15. The method of claim 14, further comprising multiplexing the digital video broadcast transmission burst and the second streaming information such that the digital video broadcast transmission burst and the second streaming information are transmitted as a time division multiplexed signal.
  • 16. The method of claim 13, wherein the digital video broadcast transmission burst is transmitted a predefined period of time prior to the powering-up of the remote mobile terminal.
  • 17. The method of claim 12, wherein a size of the digital video broadcast transmission burst is defined independently of a receiver bandwidth allocation.
  • 18. The method of claim 12, wherein at least one service is provided by the information service provider via at least one information stream.
  • 19. The method of claim 12, wherein the transmission of the digital video broadcast transmission burst is synchronized with the powering-up of a digital video broadcast receiver of the remote mobile terminal based on a pre-determined powered-up time.
  • 20. The method as in claim 12, wherein said pre-determined powered-up time occurs an incremental period of time prior to the transmission of said digital video broadcast transmission burst.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. application Ser. No. 10/087,437 filed on Mar. 2, 2002, now U.S. Pat. No. 7,844,214 which is related to U.S. application Ser. No. 10/085,910, filed on Feb. 28, 2002 and is related to U.S. application Ser. No. 10/075,150, filed on Feb. 14, 2002, now U.S. Pat. No. 7,130,313, and is related to U.S. patent Ser. No. 10/075,434, filed on Feb. 14, 2002, now U.S. Pat. No. 6,907,028 the entire disclosures of which are hereby incorporated by reference.

US Referenced Citations (77)
Number Name Date Kind
4449248 Leslie May 1984 A
4601586 Bahr Jul 1986 A
4995099 Davis Feb 1991 A
5070329 Jasinaki Dec 1991 A
5115431 Williams et al. May 1992 A
5224152 Harte Jun 1993 A
5241568 Fernandez et al. Aug 1993 A
5251325 Davis et al. Oct 1993 A
5307376 Castelain Apr 1994 A
5359607 Nguyen Oct 1994 A
5371734 Fischer Dec 1994 A
5382949 Mock Jan 1995 A
5513246 Jonsson Apr 1996 A
5535239 Padovani et al. Jul 1996 A
5539925 Yli-Kotila Jul 1996 A
5542117 Hendricks et al. Jul 1996 A
5568513 Croft Oct 1996 A
5613235 Kivari Mar 1997 A
5657313 Takahashi Aug 1997 A
5684791 Raychaudhuri et al. Nov 1997 A
5710756 Pasternak Jan 1998 A
5732068 Takahashi Mar 1998 A
5745860 Kallin Apr 1998 A
5764700 Makinen Jun 1998 A
5799033 Baggen Aug 1998 A
5812545 Liebowitz et al. Sep 1998 A
5822310 Chennakeshu Oct 1998 A
5870675 Tuutijarvi Feb 1999 A
5883899 Dahlman Mar 1999 A
5886995 Arsenault Mar 1999 A
5915210 Cameron Jun 1999 A
5936965 Doshi Aug 1999 A
5970059 Ahopelto Oct 1999 A
5995845 Lardennois Nov 1999 A
6047181 Suonvieri Apr 2000 A
6088412 Ott Jul 2000 A
6167248 Hamalainen Dec 2000 A
6175557 Diachina Jan 2001 B1
6226278 Bursztejn May 2001 B1
6256357 Oshima Jul 2001 B1
6262982 Donahue Jul 2001 B1
6262990 Ejiri Jul 2001 B1
6266385 Roy et al. Jul 2001 B1
6266536 Janky Jul 2001 B1
6282209 Kataoka Aug 2001 B1
6285686 Sharma Sep 2001 B1
6295450 Lyer Sep 2001 B1
6298225 Tat Oct 2001 B1
6335766 Twitchell Jan 2002 B1
6339713 Hansson Jan 2002 B1
6356555 Rakib Mar 2002 B1
6434395 Lubin Aug 2002 B1
6438141 Hanko Aug 2002 B1
6456845 Drum Sep 2002 B1
6477382 Mansfield Nov 2002 B1
6480912 Safi Nov 2002 B1
6490727 Nazarathy Dec 2002 B1
6539237 Sayers Mar 2003 B1
6574213 Anandakumar Jun 2003 B1
6891852 Cloutier May 2005 B1
7003796 Humpleman Feb 2006 B1
7130313 Pekonen Oct 2006 B2
20010023184 Kalveram Sep 2001 A1
20020010763 Salo Jan 2002 A1
20020025777 Kawamata Feb 2002 A1
20020133647 Kasper Sep 2002 A1
20030054760 Karabinis Mar 2003 A1
20030067943 Arsenault Apr 2003 A1
20030067979 Takahashi et al. Apr 2003 A1
20030110233 Prall Jun 2003 A1
20030112821 Cleveland Jun 2003 A1
20030152107 Pekonen Aug 2003 A1
20040097194 Karr May 2004 A1
20040102213 Karr May 2004 A1
20040102214 Karr May 2004 A1
20040102215 Karr May 2004 A1
20040242163 Karr Dec 2004 A1
Foreign Referenced Citations (29)
Number Date Country
19910023 Sep 2000 DE
10164665 Aug 2002 DE
0577322 Jan 1994 EP
0959574 Nov 1999 EP
975109 Jan 2000 EP
1107626 Jun 2001 EP
1444786 Aug 2004 EP
1474883 Nov 2004 EP
1071221 Jul 2010 EP
62049738 Mar 1987 JP
62166628 Jul 1987 JP
4013390 Jan 1992 JP
09037344 Feb 1997 JP
11331002 Nov 1999 JP
2001211267 Aug 2001 JP
2001245339 Sep 2001 JP
2002016581 Jan 2002 JP
06284041 Jul 2010 JP
0036861 Jun 2000 WO
0036861 Jun 2000 WO
0041511 Jul 2000 WO
0067449 Nov 2000 WO
0131963 May 2001 WO
0160104 Aug 2001 WO
0172076 Sep 2001 WO
0201879 Jan 2002 WO
0203728 Jan 2002 WO
0203729 Jan 2002 WO
03069885 Aug 2003 WO
Related Publications (1)
Number Date Country
20100135217 A1 Jun 2010 US
Divisions (1)
Number Date Country
Parent 10087437 Mar 2002 US
Child 12687592 US