The present invention relates generally to a rail break or vehicle detection system and, more specifically, to a long-block multi-zone rail break or vehicle detection system, and a method for detecting a rail break and/or vehicle using such a system.
A conventional railway system employs a rail track as a part of a signal transmission path to detect existence of either a train or a rail break in a block section. In such a method, the track is electrically divided into a plurality of sections, each having a predetermined length. Each section forms a part of an electric circuit, and is referred to as a track circuit. A transmitter device and a receiver device are arranged respectively at either ends of the track circuit. The transmitter device transmits a signal for detecting a train or rail break continuously or at variable intervals and the receiver device receives the transmitted signal.
If a train or rail break is not present in the section formed by the track circuit, the receiver receives the signal transmitted by the transmitter. If a train or rail break is present, the receiver receives a modified signal transmitted by the transmitter, because of the change in the electrical circuit formed by the track and break, or track and train. In general, train presence modifies the track circuit through the addition of a shunt resistance from rail to rail. Break presence modifies the circuit through the addition of an increased resistance in the rail. Break or train detection is generally accomplished through a comparison of the signal received with a threshold value.
Conventional track circuits are generally applied to blocks of about 2.5 miles in length for detecting a train. In such a block, a train should exhibit a train shunt resistance of 0.06 ohms or less, and the ballast resistance or the resistance between the independent rails will generally be greater than 3 ohms/1000 feet. As the block length becomes longer, the overall resistance of a track circuit decreases due to the parallel addition of ballast resistance between the rails. Through this addition of parallel current paths, additional current flows through the ballast and ties and proportionally less through the receiver. Thus, the signal to noise ratio of the track circuits degrades with longer block lengths.
In one example, fiber optic-based track circuits may be employed for longer blocks (for example, greater than 3 miles) for detecting trains and rail breaks. However, cost for implementing the fiber optic based track circuit is relatively higher and durability may be lower. In yet another example, ballast resistance is increased and block length of the track circuit may be increased accordingly. However, maintenance cost for maintaining a relatively high ballast resistance is undesirably high.
An enhanced long block rail break or vehicle detection system and method is desirable. It would be beneficial and advantageous if the enhanced long block rail break or vehicle detection system and method compensated for variations in source and track wire resistance while simultaneously improving functional reliability to decrease false positive signals that indicate the presence of a break or train that does not exist and false negative signals that fail to indicate the presence of a break or train that does in fact exist.
In accordance with one embodiment of the present invention, a method for detecting a rail break or presence of a rail vehicle in a block of a rail track comprises: applying a plurality of voltage patterns across a block of track having a plurality of zones via a plurality of voltage sources; determining a plurality of signatures based on the plurality of voltage patterns; and comparing the plurality of signatures with a predetermined criteria to detect the presence of a rail break or rail vehicle in the block of rail track.
In accordance with another embodiment of the present invention, a system for detecting a rail break or presence of a rail vehicle in a block of a rail track in which the block of the rail track comprises a plurality of zones, comprises: a plurality of voltage sources, each coupled to one of the plurality of zones; and a plurality of current sensors, each coupled to a respective voltage source and configured to sense current flowing through the current sensor in response to changing voltage patterns generated by the plurality of voltage sources, and further configured to generate and compare a plurality of signatures based on the sensed current to a predetermined criteria to detect the presence of a rail break or rail vehicle in the block of rail track.
In accordance with yet another embodiment, a method of in-rail communication in a block of rail track devoid of insulated joints comprises: transmitting and receiving via a rail track, communication frames in a synchronized format between a plurality of sensors that are responsive to voltage pattern changes along desired portions of the block of rail track; and monitoring the communication frames to determine the presence of a rail break or rail vehicle in the block of rail track.
In accordance with still another embodiment of the present invention, a method for communicating the presence of a rail break or a rail vehicle in a block of a rail track having a plurality of zones comprises: in a block of rail track devoid of insulated joints, synchronizing via a communication scheme, communication between a plurality of sensors disposed along the block of rail track; applying a plurality of voltage patterns across the block of track having a plurality of zones via a plurality of voltage sources; monitoring a change in the plurality of voltage patterns via the plurality of sensors to detect the presence of a rail break or rail vehicle in one or more zones of the block of rail track; and communicating in a time division multiplexed access (TDMA) format between the plurality of sensors, sensor IDs that indicate the presence or absence of a rail break or rail vehicle within one or more zones of the block of rail track.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
While the above-identified drawing figures set forth alternative embodiments, other embodiments of the present invention are also contemplated, as noted in the discussion. In all cases, this disclosure presents illustrated embodiments of the present invention by way of representation and not limitation. Numerous other modifications and embodiments can be devised by those skilled in the art which fall within the scope and spirit of the principles of this invention.
Referring generally to
In the illustrated embodiment, a plurality (N) of voltage sources 20 with sense leads 21, 23 and voltage source resistance 22 provide 4-wire sensing to mitigate source resistance and create a desired source impedance at positions 11, 13, 15, 17, and 19 along a block section 24 formed between two pairs of insulated joints 26, 28 of the railway track 10. Source resistance 22 is not fixed, and varies with the type of voltage source 20, connections, track interface panels, and the like. Each voltage source 20 then includes a corresponding source resistance 22 and is provided between the rails 14, 16. Resultantly, the block section 24 is divided into a plurality of zones 30, 32, 34, and 36. In the illustrated example, the block section 24 of the railway track 12 has a length of about 10 miles. Each zone of the block section has a length of 2.5 miles. Those of ordinary skill in the art, however, will appreciate that the specific length of the block section 24 and the zones 30, 32, 34, and 36 are not an essential feature of the present invention. Similarly, the number of zones, resistors, and voltage sources are not an essential feature of the invention. Examples of voltage sources may include static or coded DC voltage source, static or coded AC voltage source, or the like. In the illustrated embodiment, the voltage sources 20 are configured to apply voltages across the block section 24 of the railway track 12. The summation of currents flowing through each source resistance 22 represents total ballast leakage current, when polarities of the voltage sources 20 are the same.
The system 10 further includes a plurality of current sensors 38, each current sensor 38 coupled in series with the corresponding voltage source 20. The current sensors 38 are configured to detect the current flowing through the current sensor in response to changing voltage patterns generated by the corresponding voltage source(s) 20. In another exemplary embodiment, the system 10 may include a plurality of voltage sensors, each voltage sensor coupled across the corresponding voltage source 20 and its respective source resistance 22. As known to those skilled in the art, current flowing through the source resistance 22 may be determined based on the detected voltage and the actual source resistance 22. A control unit 42 is in communication with the voltage sources 20, and the current sensors 38. In one embodiment, the control unit 42 is adapted to receive input from the current sensors 38 and monitor variation in current flow through each zone to detect a rail break or presence of a rail vehicle on the block section 24 of the railway track 12. In alternate exemplary embodiments, a plurality of control units may be used to receive inputs from the current sensors 38 and monitor variation in current flow through each zone to detect a rail break or presence of a rail vehicle on the block section 24 of the railway track 12.
One embodiment includes a control unit within each current sensor 38. Each current sensor 38 is configured to communicate directly with its adjacent current sensors 38 via these internal control units using the railway track 12 as a communication medium, as described in further detail herein below. An external control unit 42 is not required in this embodiment, since these internal control units are themselves configured to determine one or more signatures based on the sensed current flowing through the current sensors 38 in response to changing voltage patterns generated via the voltage sources 20. These signatures, in one embodiment, are compared with a predetermined decision surface to determine the presence of a rail break or rail vehicle within the block section 24
In one embodiment, the control unit 42 is configured to switch the plurality (N) of voltage sources 20 sequentially from a first end 44 towards a second end 46 of the block section 24. In another exemplary embodiment, the control unit 42 is configured to switch the plurality of voltage sources 20 sequentially from a second end 46 towards a first end 44 of the block section 24. In yet another exemplary embodiment, the control unit 42 is configured to switch the plurality of voltage sources 20 randomly or in any predefined order. This switching can also be controlled by the internal current source control units described above for one embodiment, that are configured to communicate in synchronization with one another, without need for the external control unit 42.
The plurality (N) of voltage sources 20 are switched during one time period, for example, such that all of the voltage sources 20 are set simultaneously to a desired positive voltage level. A first signature is determined for each current sensor 38 by measuring the current passing through the current sensor 38 when all voltage sources 20 are sourcing the desired positive voltage level. The plurality of voltage sources 20 can also be switched, for example, such that only one voltage source 20 is set to a desired voltage level while all remaining voltage sources 20 remain at zero volts during a desired time period. This process is repeated until each voltage source 20 applies a desired voltage level during a respective time period, while all other voltage sources 20 apply zero volts, resulting in N-measurements for N-voltage sources 20. A second signature associated with each current sensor 38 is formed from the N-measurements. The second signature, in one embodiment, is the current passing through a current sensor 38 in response to its respective voltage source 20 that is generating a positive voltage while all remaining voltage sources 20 are at zero volts. A third signature, in one embodiment, is the current passing through a current sensor 38 while its respective voltage source 20 is set to zero volts and while no more than one different voltage source 20 on either side of the current sensor 38 is simultaneously set to a desired voltage level. Those of ordinary skill in the art will readily appreciate that any number of signatures can be employed, depending only upon the desired type, level of accuracy and reliability of the measurements to be achieved. The desired voltage level can also be, for example, one volt or any combination of suitable voltage levels that can be scaled to form a relationship between the signatures.
When the block section 24 of the railway track 12 is unoccupied by the rail vehicle or a rail break is not detected, a specific current is detected in a particular zone having voltage sources 20 sequenced as described herein before, and located respectively at either ends of the zone. For example, if the zone 30 has voltage sources 20 at its ends at a particular instant during the voltage sequencing process, a specific current is detected in the zone 30, when the block section 24 of the railway track 12 is unoccupied by a rail vehicle or a rail break is not detected. When the block section 24 of the railway track 12 is occupied by wheels of a rail vehicle or a rail break is detected, a negligible change in current is detected in a particular zone having sequenced voltage sources 20 located respectively at either ends of the zone. For example, if the zone 30 has voltage sources 20 at its ends at a particular instant during the voltage sequencing process, a negligible change in current is detected in the zone 30, when the block section 24 of the railway track 12 is occupied by the rail vehicle or a rail break is detected.
In another exemplary embodiment, the control unit 42 is adapted to detect presence of a rail break or vehicle in the block section 24, when the change in current at a particular instant of a particular zone having sequenced voltage sources 20 located respectively at either ends of the zone, is greater than a predetermined threshold limit. The predetermined threshold limit can be dependent on, but not limited to, a variation in a ballast resistance value of the block. The control unit 42 or the current source controllers are configured to determine a plurality of signature values such as described herein before, for the block section 24 and then determine the presence of a break or vehicle based within the block section 24 by comparing the signature values with a predetermined decision surface. Optimization processes, neural networks, and classification algorithms, among other techniques, may be used to create the decision surface that can be used to differentiate between a rail break and the presence of a rail vehicle on the block section 24 of the railway track 12. Differentiation between a break in the track and the presence of a rail vehicle in accordance with aspects of the present invention is described in further detail below with reference to subsequent figures.
The control unit 42 or the current source controllers, in one embodiment, each includes a processor 48 having hardware circuitry and/or software that facilitates the processing of signals from the current sensors 38 and the voltage sources 20. As will be appreciated by those skilled in the art, the processor 48 may include, but is not limited to, a computer, microprocessor, a programmable logic controller, digital signal processor, a logic module, or the like. As discussed previously, in the illustrated embodiment, the control unit 42 or the current source controllers are adapted to sequentially switch the voltage sources 20 from the first end 44 towards the second end 46 of the block section 24 and vice versa (i.e. from the second end 46 to the first end 44) or randomly. The values and/or polarities of the voltage sources 20 may also be varied and/or switched respectively; and the measurements of the respective current sensors 38 may then be averaged to mitigate systematic and galvanic errors.
In certain embodiments, the control unit 42 or current source controllers may further include a database, and an algorithm implemented as a computer program executed by the control unit computer or the processor 48. The database may be configured to store predefined information about the rail break or vehicle detection system 10 and rail vehicles. The database may also include instruction sets, maps, lookup tables, variables or the like. Such maps, lookup tables, and instruction sets, are operative to correlate characteristics of current flowing through the plurality of zones to detect rail break or presence of a rail vehicle. The database may also be configured to store actual sensed or detected information pertaining to the current, voltage across the rails 14, 16, polarities of the voltage sources 20, ballast resistance values of the block section 24, predetermined threshold limit(s) for the change in current, rail vehicles, and so forth. The algorithm may facilitate the processing of sensed information pertaining to the current, voltage, and rail vehicle. Any of the above mentioned parameters may be selectively and/or dynamically adapted or altered relative to time. In one example, the control unit 42 or current source controllers are configured to update a predetermined threshold limit based on a ballast resistance value of the block section 24, since the ballast resistance value varies due to changes in environmental conditions, such as humidity, precipitations, or the like. The processor 48 transmits indication signals to an output unit 50 via a wired connection port or a short range wireless link such as infrared protocol, bluetooth protocol, I.E.E.E 802.11 wireless local area network or the like. In general, the indication signal may provide a simple status output, or may be used to activate or set a flag, such as an alert based on the detected current in the plurality of zones of the block section 24. The status output can be a discrete output, an indication, or some type of communication message, or the like.
Referring now to
The control unit 42 or current controllers may be configured to average different sets of values (signatures) for each zone in order to mitigate systematic and galvanic errors. In one example, the current values (signatures) of the sensors 38 having positive values during one time period are averaged with the absolute values of current values (signatures) of the same sensors 38 having negative values during a different time period, to mitigate systematic and galvanic errors. Similarly, any number of examples is envisaged.
In accordance with aspects of the present invention, the zone length of each zone of the block section is determined based on the resolution of the current sensors 38. As discussed previously, when the block section of the railway track 12 is occupied by wheels of a rail vehicle or a rail break is detected, a negligible increase in current is detected in a particular zone having voltage sources located respectively at either ends. The current sensor 38 in accordance with aspects of the present invention is capable of resolving changes in current measurements, when a rail break or train presence is detected in the block section. The greater the zone length, the smaller the changes become in the current measurements.
Each voltage source 20 is then controlled in sequence to generate a positive voltage while all other voltage sources apply zero volts, as represented by step 106. Again, the current sensors 38 detect the current flowing through their corresponding voltage source resistance 22. The current sensors 38 in this instance measure a second set of values indicative of current flowing through each source resistance 22 while a corresponding voltage source generates the positive voltage for the zone, and while all other voltage sources associated with the other zones apply zero source voltage, as represented by step 108.
A third set of values is also measured by the current sensors 38, as represented by step 110. This third set of values indicates the current flowing through each source resistance 22 while its corresponding voltage source is set to generate zero volts, during which time no more than one different voltage source 20 is generating the positive source voltage, to form the third set of current values.
Three signatures are then determined for each current sensor 38 based on the foregoing current measurements as represented in step 112. These signatures are compared in one embodiment, to a predetermined decision surface that is determined via an optimization algorithm, a neural network, or other appropriate scheme. Signature variations from the decision surface are monitored via control unit 42 or the internal current source controllers to determine the presence of a vehicle or the presence of a rail break, as represented by step 114.
Another embodiment showing a method 900 of detecting the presence of a rail break or vehicle is shown in
The sets of first signatures, second signatures, and third signatures determined in step 906 can be compared, for example, with a predetermined decision surface that is determined via an optimization algorithm, a neural network, or other appropriate scheme. Signature variations from the decision surface are then monitored by the current sensor controllers or other desired monitoring unit(s) to determine the presence of a vehicle or the presence of a rail break.
Keeping the foregoing principles in mind, a method of detecting the presence of a broken rail or a rail vehicle in or more particular zones without the necessity for insulated joints in a desired section of track rails is described below with reference to
Although timing of voltage polarities between sensors 38 can be implemented via radio or by using GPS, communication in the track rails was recognized by the present inventors to advantageously reduce the cost of the communication system. The foregoing synchronization scheme discussed above thus provides a common timebase between sensors 38 to know when they should apply a particular voltage polarity as stated herein before.
Since there are no insulated joints in the section of rail track, any information that is transmitted or received may travel further than desired (if concerned about rail vehicle detection) or potentially not far enough (if concerned about cascading information between sensors about broken rails and/or vehicle detection). A need therefore exists for each sensor 38 to know to whom it is speaking with (transmitting or receiving). Sensor IDs can be incorporated in the message bits to achieve this task. Established communication timeslots can be employed during the communication phase such that the message structure provides the sensor ID bits to make sure that each sensor 38 knows who it is communicating with. The above synchronization and communications schemes are implemented in one embodiment that is described herein below with reference to
Moving now to
Following initialization 502, the system sensors 38 enter a synchronization phase 600. Block 510 illustrates sequential synchronization of the current sensors 38 in which, according to one embodiment, sensor number 1 includes a master clock that is used to synchronize operation of all the current sensors 38. While the master clock is running, it is also waiting in one embodiment for example, for a command signal sent by a dispatcher, or the presence of a train, or some other desired signal (e.g. RF signal, direct wired signal, etc.). Upon receipt of this master clock command signal, the master clock transmits a sync signal on the rail track 14, 16, allowing each sensor 38 to sequentially synchronize its respective timer with the master clock during a synch frame such as shown in block 510.
Upon completion of the synchronization phase 600, the system sensors 38 enter a test phase 700. During this test phase 700, each sensor operates sequentially as shown in block 512, with respect to the remaining sensors 38 in the system, such as described herein before with reference to
When a sensor 38 detects the presence of a rail break or a rail vehicle within its zone, it then transmits this information out to the ends of the zone such as shown in block 514 during a communication phase 800, thus providing a safety signal to indicate such presence. Another rail vehicle outside the zone, upon receiving the sensor safety signal, may not enter the zone if such entry presents a safety hazard.
If the sensor is not sensor number 1 as represented by step 603, it then transmits its own synch ID as represented by step 607, and allows its countdown timer to continue its countdown cycle to the test phase 700, as represented by step 609.
If, during step 612, the sensor did not receive a synch ID from an adjacent upstream sensor, as represented by step 622, the sensor starts its own countdown timer including a buffer period of sufficient length to allow all remaining sensors to complete their respective synchronization cycles as represented in step 624, and then continues to listen for an adjacent upstream synch ID as represented in step 626. If an adjacent sensor synch ID is not heard, as represented in step 628 the sensor continues to listen for an adjacent sensor synch ID as represented in step 626. If an adjacent sensor synch ID is heard as represented by step 630, the sensor then makes a determination as to whether it is the last sensor to be synchronized as represented by step 632. If the sensor is the last sensor to be synchronized as represented by step 634, it updates its own internal countdown timer to the start of the test phase 700, as represented by step 636.
If the sensor is not the last sensor to be synchronized as represented by step 638, it then transmits its own synch ID as represented by step 640, and updates its countdown timer to the start of the test phase 700, as represented by step 642.
Moving now to
If during step 804 of the communication phase 800, the sensor determines that it is not the lowest sensor in the zone, it enters a different portion of the communication phase as represented by steps 828-848 where it awaits reception of an adjacent upstream sensor ID including bits that communicate the presence or absence of a rail break or rail vehicle that it then transmits onto the communication rail bus.
If the entire communication phase is complete, as represented in step 850, then the presence or absence of a rail break or rail vehicle is transmitted to a desired destination via a desired communication protocol as represented in steps 852-854. If the entire communication phase is not yet complete, the process continues by looping back to step 802 where each sensor continues to await its timeslot at which time the entire process described herein above continues until it is complete as represented in step 850. Upon completion of the communication phase 800, the sensors can repeat the foregoing process or enter a sleep mode to once again await a command signal from a dispatcher, a trigger signal, etc.
While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4022408 | Staples | May 1977 | A |
4622522 | Alt | Nov 1986 | A |
4728063 | Petit et al. | Mar 1988 | A |
4886226 | Frielinghaus | Dec 1989 | A |
5743495 | Welles et al. | Apr 1998 | A |
5769364 | Cippolone | Jun 1998 | A |
5868360 | Bader et al. | Feb 1999 | A |
6102340 | Peek et al. | Aug 2000 | A |
6655639 | Grappone | Dec 2003 | B2 |
7226021 | Anderson et al. | Jun 2007 | B1 |
7268565 | Anderson | Sep 2007 | B2 |
20030038216 | Holgate | Feb 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20080296441 A1 | Dec 2008 | US |