SYSTEM AND METHOD FOR CALL MANAGEMENT

Abstract
A system and method are provided in accordance with the various aspects of the invention that enhance the information regarding a caller and a call location. Such calls are typically sent to a dispatcher that handles urgent or emergency calls. The information provided can be in the form of a message that is includes specifics about the call initiator and the nature of and/or reason for the call; a message that is converted to verbal form from text-to-speech; and/or the message may include location information, especially as it relates to representing a wireless device as a landline location based on nearby communication options, such as Wi-Fi or Bluetooth beacons.
Description
FIELD OF THE INVENTION

The invention relates to communication systems and, more particularly, but not exclusively, to a call handling and routing associated with an urgent or emergency call.


BACKGROUND OF THE INVENTION

With the explosive growth in mobile devices, many people are initiating call related to urgent or emergency services using a wireless device or mobile phone. As such, the information associated with the caller or the location of the caller needs to be accurately identified. Current approaches do not provide an accurate location or often fails to provide sufficient information regarding the location. Therefore what is needed is a system and method that provides as much information as possible about a caller and the location of the caller to the emergency call handler.


SUMMARY OF THE INVENTION

A system and method are provided in accordance with the various aspects of the invention that provide information regarding a caller and a call location to the urgent or emergency call handler, which call may be referred to as a distress call. The foregoing is a summary and thus contains, by necessity, simplifications, generalizations and omissions of detail. Those skilled in the art will appreciate that the summary is illustrative only and is not intended to be in any way limiting. The inventive techniques and concepts described herein apply to wireless communications systems including the radio access systems of GSM, UMTS, LTE, LTE-Advanced, IEEE 802 (WiFi, WiMAN, WiMAX), Bluetooth, UWB and NFC.





BRIEF DESCRIPTION OF THE DRAWING

The foregoing summary, as well as the following detailed description, is better understood when read in conjunction with the appended drawings. For the purpose of illustrating the various aspects and embodiments of the invention, the drawings shown exemplary constructions of the aspects of the invention. However, the invention is not limited to the specific methods and instrumentalities disclosed in the drawings, which are as follows:



FIG. 1 shows a device within a wireless environment in accordance with the various aspects and embodiments of the invention.



FIG. 2 shows functional elements of a device in accordance with the various aspects and embodiments of the invention.



FIG. 3 shows a flow process that includes steps in initiating a call and routing the call in accordance with the various aspects and embodiments of the invention.



FIG. 4 shows a flow process for delivering a message in accordance with the various aspects and embodiments of the invention.



FIG. 5 shows a flow process that includes steps in initiating a call and routing the call to simulating a landline in accordance with the various aspects and embodiments of the invention.



FIG. 6 shows a flow process that includes steps in initiating a call and routing the call to a call handler and a third party in accordance with the various aspects and embodiments of the invention.





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

Illustrative embodiments as found in the various aspects of the invention are disclosed with reference to the figures, wherein like numerals refer to like features. Wireless devices have evolved in both operation and form-factors, converging the personal computer (PC) with the cellular phone, pager, and other communications devices. Besides communications functions (e.g. Voice Telephony, Short-message-service (SMS), Multi-media Messaging Service (MMS), TCP/IP data connectivity) and upgraded general processing power, sensors have been added to the wireless device. For instance, a wireless device (e.g. a smartphone, feature phone, netbook, Personal Digital assistant (PDA), tablet computer or PC with wireless LAN capability) may include:

    • Camera/Video functions;
    • Location data (Satellite-based);
    • Location data (Mobile-based);
    • Location data (Network-based);
    • Motion data (e.g. compass, accelerometer);
    • Capacitive Sensors;
    • Address Book, Contacts lists, recent called/emailed data; and
    • Application specific sensing, reading and monitoring capabilities.


Referring now to FIG. 1 and FIG. 2, based on the various aspects of the invention, illustrates a block diagram of a wireless device 10, which may also be a mobile telephone or a mobile terminal. It should be understood, however, that the wireless device 10, as illustrated and hereinafter described, is merely illustrative of one type of wireless device and/or mobile device that would benefit from embodiments of the invention and, therefore, should not be taken to limit the scope of embodiments of the invention. While several aspects and embodiments of the wireless and mobile device are illustrated and will be hereinafter described for purposes of example, other types of mobile terminals, such as portable digital assistants (PDAs), pagers, mobile televisions, gaming devices, laptop computers, cameras, video recorders, audio/video player, radio, GPS devices, or any combination of the aforementioned, and other types of voice and text communications systems, can readily employ aspects and embodiments of the invention.


The wireless device 10, as shown in FIG. 2, includes a processor module 200 and a memory module 202. Additionally, In accordance with some aspects of the invention, the wireless device 10 also includes a GPS module or chip 204 that is in communication with a GPS system or satellite. In accordance with some further aspects of the invention, the wireless device 10 includes a Wi-Fi communication module 206 capable of communicating with a nearby Wi-Fi access point or hotspot. In accordance with further aspects of the invention, the wireless device 10 includes a Bluetooth communication module 208 capable of initiating a Bluetooth communication session when a nearby Bluetooth beacon is detected. In accordance with aspects of the invention, the wireless device 10 also includes a display or touch screen 210 that is in communication with the processor module 200.


In addition, while several embodiments of the method of the invention are performed or used by a wireless device 10, the method may be employed by other than a mobile terminal. Moreover, while the system and method of embodiments of the invention will be primarily described in conjunction with mobile communications applications, it will be appreciated by one skilled in the art that the system and method of embodiments of the invention can be utilized in conjunction with a variety of other applications, both in the mobile communications industries and outside of the mobile communications industries.


Referring again to FIG. 1, the wireless device 10 includes an antenna 12 (or multiple antennae) in operable connection or communication with a transmitter 14 and a receiver 16 in accordance with one aspect of the invention. In accordance with other aspects of the invention, the transmitter 14 and the receiver 16 may be part of a transceiver 15. The wireless device 10 may further include an apparatus, such as a controller 20 or other processing element, which provides signals to and receives signals from the transmitter 14 and receiver 16, respectively. The signals include signaling information in accordance with the air interface standard of the applicable cellular system, and also user speech, received data and/or user generated data. In this regard, the wireless device 10 is capable of operating with one or more air interface standards, communication protocols, modulation types, and access types.


Referring now to FIG. 3 a process of sending a message to an urgent or emergency call handler is shown. The process is initiated, in accordance with some aspects of the invention, through a touch screen or display of the wireless device 10. The user initiates the process by pressing an icon or some specific location on the screen of the wireless device 10. The wireless device 10 sends a message, such as an SMS message, to a dispatcher or call handler. The dispatcher may also receive a call that is related to or associated with the message being delivered to the call handler. The message sent to the dispatcher or call handler may include information about the location of the caller.


For example, in accordance with the aspects of the invention, the message includes the location of the wireless device 10 based on or relative to a map. The dispatcher's system or computer runs an application or program that can receive the message, then the message is received by the dispatcher and the location of the wireless device 10 is shown on the map. Once the request from the wireless device 10 is initiated, identify information about the caller is retrieved from the memory of the wireless device 10. Additional information, in accordance with some aspects of the invention, including location and identity and coordinates is sent to the dispatcher's system from the wireless device 10. The call is initiated with the dispatcher and the dispatcher or call handler receives that call as well as the location and identity information. In accordance with some aspects of the invention, the caller's location is referenced with respect to a landmark or well known address. For example, the location is in relation to another object such as a landmark or address as “the caller is 100 feet north of the Statue of Liberty.” Thus, there are several aspects of the invention that relate to providing location information or locating the caller and the scope of the invention is not limited thereby.


As will be apparent to one skilled in the art, the information may be sent, in accordance with the aspects of the invention, from the wireless device 10 to a remote location that collects the information associated with the initiation of the message and the wireless device 10 and send that in the form of a message to the dispatcher's system.


Referring now to FIG. 4, a process is shown for initiating a call. This time the message is delayed by an application running on the wireless device 10 while the application on the wireless device 10 searches for location information based on nearby networks, such as Wi-Fi or Bluetooth based networks, as well as GPS location information. The application can then add the additional information, as outlined below, to the message in the form of information or an SMS message.


The additional information, in accordance with some aspects of the invention, may include coordinates that are transformed into a local address via a database that is associated with the nearest Wi-Fi/Bluetooth network's physical location. This will help provide a higher degree of location information to the call handler. In accordance with further aspects of the invention, the SMS that is sent may include additional information, including the nature or reason for the call. In accordance with some aspects of the invention, the additional information includes specific information regarding the user. For example, the wireless devices 10 may have personal medical information for the caller, in the instance that the caller is the person in need of a medical assistance. In accordance with other aspects, the wireless device may include information—medical and non-medical—collected about the person in need of medical assistance. For example, the wireless device 10 may have captured a photo or a video—associated with the emergency situation or the location—that is provided as part of the additional information. In accordance with additional aspects of the invention the wireless device 10 can provide any other medical information or identifying information to allow the responder to better prepare for responding and easily locate or spot the message sender.


Referring now to FIG. 5, in accordance with some aspects of the invention, a call is initiated through the touch screen of the wireless device 10 using a quick access simple tap or button selection. The call is delayed by the wireless device while the application on the device searches for location information based on nearby networks, such as Wi-Fi or Bluetooth based networks, as well as GPS location information. The application adds the additional information, as outlined in FIG. 5, to the call details. The additional information, in accordance with some aspects of the invention, may include coordinates that are transformed into a local address via a database that stores lookup information that is associated with the nearest Wi-Fi/Bluetooth network's physical location. This additional information is provided to the call handler such that the call handler detects a call and can retrieve address information that was written to the emergency database associated with this call before the call was routed to the call handler.


Referring now to FIG. 6, in accordance with some aspects of the invention, a call is initiated through the touch screen of the wireless device 10 using a tap or button selection features on the touch screen for the purpose of initiating the call. In accordance with one aspect of the invention, the access button may be designed to initiate both an emergency call and a call to a location's private security. In accordance with other aspects and feature of the embodiments of the invention, there may be provided separate call initiation features on the touch screen that each provide a call to a respective call handler, with one being for 911 emergency call and the other being for a private call handler for help that does not rise to the level of 911 emergencies, such as assistance with automobile failure or other similar forms of help.


Once the call is initiated, the application on the wireless device 10 delays the call while the application on the wireless device 10 searches for location information based on nearby networks, such as Wi-Fi or Bluetooth based networks, as well as GPS location information. The application adds the additional information, as outlined in FIG. 5, to the call details. The additional information, in accordance with some aspects of the invention, may include coordinates that are transformed into a local address via a database that stores lookup information associated with the nearest Wi-Fi/Bluetooth network's physical location. This additional information is provided to the call handler, such that the call handler detects a call and can retrieve address information that was written to the emergency database associated with this call before the call was routed to the call handler. The call handler may receive the information in text form, on a display, as a text-to-speech file, or any other format that is required by the call handler. Once the information associated with the call is provided, the user is then bridged onto the call with the dispatcher.


In accordance with further aspects of the invention, the call that is initiated by the user at the touch screen may be routed to a remote server or location and any or all of the features performed at the wireless device 10, as outlined above, may be handled off the wireless device 10 by the remote location. Thus, when a request is received via user input on the touchscreen of the wireless device 10, this initiates the processor to look up in memory what to execute. The application and the user setting, in accordance with the various aspects of the invention, determine if the executed software application initiates the process of determining the smartphone's location or if that function is passed on to a remote server or location. For example, in accordance with one aspect of the invention, the GPS chipset 204 approximates position by continuously receiving the signal of the nearest satellites and then comparing signal strength. This provides initial latitude and longitudinal coordinates of the wireless device 10. In accordance with further aspects of the invention, the latitude and longitudinal coordinates are refined as the Wi-Fi radio processes the broadcast signal of the nearest access points. By comparing the relative strength of the nearby access point's signals to the known location of the access points, via software, a more accurate position is obtained. This further refines the given latitude and longitude coordinates.


In accordance with further aspects of the invention, if there is a nearby Bluetooth beacon, which is uniquely registered to a specific location or address, then that location is used to further enhance the location information for the initiated call and it is sent to the call handlers or emergency responders. If not, the Wi-Fi refined longitude and latitude GPS components are referenced against a database via an application programming interface to produce an identifiable address (reverse geo-coding).


Referring again to FIG. 4, in accordance with the various aspects of the invention, the address, either from the Bluetooth network or Wi-Fi refined GPS lookup, is then added to or inserted, by the software, into a programmatically created short message (SMS) along with user's name and a standard message. This programmatically created SMS is then sent to 911, dispatcher, call handler, and/or the emergency services, unless the user cancels the alert during the built in delay timer.


By way of illustration, the wireless device 10 is capable of operating in accordance with any of a number of first, second, third and/or fourth-generation communication protocols or the like. For example, the wireless device 10 may be capable of operating in accordance with second-generation (2G) wireless communication protocols IS-136 (time division multiple access (TDMA)), GSM (global system for mobile communication), and IS-95 (code division multiple access (CDMA)), or with third-generation (3G) wireless communication protocols, such as Universal Mobile Telecommunications System (UMTS), CDMA2000, wideband CDMA (WCDMA) and time division-synchronous CDMA (TD-SCDMA), with fourth-generation (4G) wireless communication protocols or the like.


As an alternative (or additionally), the wireless device 10 may be capable of operating in accordance with non-cellular communication mechanisms. For example, the wireless device 10 may be capable of communication in a wireless local area network (WLAN) or other communication networks. The wireless device 10 can also have multiple networking capabilities including nomadic wired tethering, local-area-network transceivers (e.g. IEEE802 Wi-Fi), wide-area-network transceivers (IEEE 802.16 WiMAN/WiMAX, cellular data transceivers, (e.g. LTE) and short-range, data-only wireless protocols such as Ultra-wide-band (UWB), Bluetooth, RFID, Near-field-communications (NFC), etc.


A single site location based on the geographic location of the wireless network transmission antenna and the beacon ID (e.g. BTS ID, Cell ID, SSID) may be developed either by the wireless device 10, the remote location or the network; use of timing information of the signal path between the wireless device 10 and network may allow enhancement of the single site location. Using several beacon identities and power levels potentially may increase accuracy over a single site location using a power-difference-of-arrival technique.


Databases of beacon identifiers, beacon power levels, and network transmitter geographical locations may be uploaded to the wireless device 10 allowing for use of the aforementioned techniques using just the passive receiver(s) of the wireless device 10. A transmission (or series of transmissions) from the wireless device 10 is enough to localize a transmitter. An interaction of the wireless device 10 with the network where identifiers either physical (e.g. Electronic Serial Number, Media Access Control (MAC) address); or virtual (e.g. Temporary Mobile Station Identifier (TMSI) or IP address) can allow both localization and identification of the wireless device 10.


Referring again to FIG. 1 and now to FIG. 2, in accordance with the aspects of the invention, an exemplary instance of a system is shown. It is understood that the apparatus, such as the controller 20, may include circuitry desirable for implementing audio and logic functions of the wireless device 10. For example, the controller 20 may include a digital signal processor device, a microprocessor device, and various analog to digital converters, digital to analog converters, and other support circuits including digital signal processors. Control and signal processing functions of the wireless device 10 are allocated between these devices according to their respective capabilities and design. The controller 20 may also include the functionality to convolutionally encode and interleave message and data prior to modulation and transmission. The controller 20 can additionally include an internal voice coder, and may include an internal data modem. Further, the controller 20 may include functionality to operate one or more software programs, which may be stored in memory. For example, the controller 20 may be capable of operating a connectivity program, such as a conventional Web browser. The connectivity program may then allow the wireless device 10 to transmit and receive Web content, such as location-based content and/or other web page content, according to a Wireless Application Protocol (WAP), Hypertext Transfer Protocol (HTTP) and/or the like, for example.


The wireless device 10 may also comprise a user interface including an output device such as a conventional earphone or speaker 24, a ringer 22, a microphone 26, a display or touch screen 28, and a user input interface, all of which are coupled to the controller 20. The user input interface, which allows the wireless device 10 to receive data, may include any of a number of devices allowing the wireless device 10 to receive data, such as a keypad 30, a touch display (not shown) or other input device. In embodiments including the keypad 30, the keypad 30 may include the conventional numeric (0-9) and related keys (#, *), and other hard and soft keys used for operating the wireless device 10. Alternatively, the keypad 30 may include a conventional QWERTY keypad arrangement. The keypad 30 may also include various soft keys with associated functions. In addition, or alternatively, the wireless device 10 may include an interface device such as a joystick or other user input interface. The wireless device 10 further includes a battery 34, such as a vibrating battery pack, for powering various circuits that are required to operate the wireless device 10, as well as optionally providing mechanical vibration as a detectable output.


The wireless device 10 may further include a user identity module (UIM) 42. The UIM 42 is typically a memory device having a processor built in. The UIM 42 may include, for example, a subscriber identity module (SIM), a universal integrated circuit card (UICC), a universal subscriber identity module (USIM), a removable user identity module (R-UIM), etc. The UIM 42 typically stores information elements related to a mobile subscriber. In addition to the UIM 42, the wireless device 10 may be equipped with memory. For example, the wireless device 10 may include volatile memory 40, such as volatile Random Access Memory (RAM) including a cache area for the temporary storage of data. The wireless device 10 may also include other non-volatile memory 38, which can be embedded and/or may be removable. The non-volatile memory 38 can additionally or alternatively comprise an electrically erasable programmable read only memory (EEPROM), flash memory or the like. The memories can store any of a number of pieces of information, and data, used by the wireless device 10 to implement the functions of the wireless device 10. For example, the memories can include an identifier, such as an international mobile equipment identification (IMEI) code, capable of uniquely identifying the wireless device 10. Furthermore, the memories may store instructions for determining cell id information. Specifically, the memories may store an application program for execution by the controller 20, which determines an identity of the current cell, i.e., cell id identity or cell id information, with which the wireless device 10 is in communication.


Although not every element of every possible mobile network is shown and described herein, it should be appreciated that the wireless device 10 may be coupled to one or more of any of a number of different networks through a base station (not shown). In this regard, the network(s) may be capable of supporting communication in accordance with any one or more of a number of first-generation (1G), second-generation (2G), 2.5G, third-generation (3G), 3.9G, fourth-generation (4G) mobile communication protocols or the like. For example, one or more of the network(s) can be capable of supporting communication in accordance with 2G wireless communication protocols IS-136 (TDMA), GSM, and IS-95 (CDMA). Also, for example, one or more of the network(s) can be capable of supporting communication in accordance with 2.5G wireless communication protocols GPRS, Enhanced Data GSM Environment (EDGE), or the like. Further, for example, one or more of the network(s) can be capable of supporting communication in accordance with 3G wireless communication protocols such as a UMTS network employing WCDMA radio access technology. Some narrow-band analog mobile phone service (NAMPS), as well as total access communication system (TACS), network(s) may also benefit from embodiments of the invention, as should dual or higher mode mobile stations (e.g., digital/analog or TDMA/CDMA/analog phones).


The wireless device 10 can further be coupled to one or more wireless access points (APs) (not shown). The APs may comprise access points configured to communicate with the wireless device 10 in accordance with techniques such as, for example, radio frequency (RF), infrared (IrDA) or any of a number of different wireless networking techniques, including WLAN techniques such as IEEE 802.11 (e.g., 802.11a, 802.11b, 802.11g, 802.11n, etc.), world interoperability for microwave access (WiMAX) techniques such as IEEE 802.16, and/or wireless Personal Area Network (WPAN) techniques such as IEEE 802.15, BlueTooth (BT), ultra wideband (UWB) and/or the like. The APs may be coupled to the Internet (not shown). The APs can be directly coupled to the Internet. In accordance with other aspects of the invention, the APs are indirectly coupled to the Internet. Furthermore, in one embodiment, the BS may be considered as another AP. As will be appreciated, by directly or indirectly connecting the wireless devices 10 to the Internet, the wireless device 10 can communicate with other devices, a computing system, etc., to thereby carry out various functions of the wireless device 10, such as to transmit data, content or the like to, and/or receive content, data or the like from other devices. As used herein, the terms “data,” “content,” “information” and similar terms may be used interchangeably to refer to data capable of being transmitted, received and/or stored in accordance with the various aspects and embodiments of the invention. Thus, use of any such terms should not be taken to limit the spirit and scope of embodiments of the invention.


Although not shown, the wireless device 10 may communicate in accordance with, for example, RF, BT, IrDA or any of a number of different wireline or wireless communication techniques, including LAN, WLAN, WiMAX, UWB techniques and/or the like. One or more of the computing systems that are in communication with the wireless device 10 can additionally, or alternatively, include a removable memory capable of storing content, which can thereafter be transferred to the wireless device 10. Further, the wireless device 10 can be coupled to one or more electronic devices, such as displays, printers, digital projectors and/or other multimedia capturing, producing and/or storing devices (e.g., other terminals). Furthermore, it should be understood that embodiments of the invention may be resident on a communication device such as the wireless device 10, or may be resident on a network device or other device accessible to the wireless device 10.


In accordance with the various aspects of the invention, the wireless device 10 includes on board location systems. While the on-board location systems (e.g. Global-Navigation-Satellite-System Receivers (GNSS)) may be used to develop a location estimate for the wireless device 10, the location of a wireless device 10 may be determined from the interaction (i.e. radio messaging) between the wires device 10 and the network (e.g. cellular system, WiMAN, WiMAX, WiFi, Bluetooth, NFC).


The true scope the invention is not limited to the various aspects of the invention or presently preferred embodiments disclosed herein and indeed could be applied to any reprogrammable remote sensing or other computing device with a wireless communications facility. For example, the foregoing disclosure of a presently preferred embodiment of the Intelligent Access Control System uses explanatory terms, such as mobile device, cellular system and wireless local area network and the like, which should not be construed so as to limit the scope of protection of the following claims, or to otherwise imply that the inventive aspects of the intelligent access control system are limited to the particular methods and apparatus disclosed. Moreover, as will be understood by those skilled in the art, many of the inventive aspects disclosed herein are based on software applications and operating systems running on generic hardware processing platforms. These functional entities are, in essence, programmable data collection, analysis, and storage devices that could take a variety of forms without departing from the inventive concepts disclosed herein. In many cases, the place of implementation (i.e., the functional element) described herein is merely a designer's preference and not a hard requirement. Accordingly, except as they may be expressly so limited, the scope of protection of the following claims is not intended to be limited to the specific embodiments described above.


It is noted that, as used in this description, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Reference throughout this specification to “one aspect,” “another aspect,” “one embodiment,” “an embodiment,” “certain embodiment,” or similar language means that a particular aspect, feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. Thus, appearances of the phrases “in one embodiment,” “in at least one embodiment,” “in an embodiment,” “in certain embodiments,” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment.


It will be apparent that various aspects of the invention as related to certain embodiments may be implemented in software, hardware, application logic, or a combination of software, hardware, and application logic. The software, application logic and/or hardware may reside on a server, an electronic device, or be a service. If desired, part of the software, application logic and/or hardware may reside on an electronic device and part of the software, application logic and/or hardware may reside on a remote location, such as server.


In accordance with the teaching of the invention and certain embodiments, a program or code may be noted as running on a computing device. A computing device is an article of manufacture. Examples of an article of manufacture include: a server, a mainframe computer, a mobile telephone, a multimedia-enabled smartphone, a tablet computer, a personal digital assistant, a personal computer, a laptop, or other special purpose computer each having one or more processors (e.g., a Central Processing Unit, a Graphical Processing Unit, or a microprocessor) that is configured to execute a computer readable program code (e.g., an algorithm, hardware, firmware, and/or software) to receive data, transmit data, store data, or perform methods. The article of manufacture (e.g., computing device) includes a non-transitory computer readable medium having a series of instructions, such as computer readable program steps encoded therein. In certain embodiments, the non-transitory computer readable medium includes one or more data repositories. The non-transitory computer readable medium includes corresponding computer readable program code and may include one or more data repositories. Processors access the computer readable program code encoded on the corresponding non-transitory computer readable mediums and execute one or more corresponding instructions.


Other hardware and software components and structures are also contemplated. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the invention, representative illustrative methods and materials are now described.


All publications and patents cited in this specification are herein incorporated by reference as if each individual publication or patent were specifically and individually indicated to be incorporated by reference and are incorporated herein by reference to disclose and describe the methods and/or system in connection with which the publications are cited. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.


All statements herein reciting principles, aspects, and embodiments of the invention as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure. The scope of the invention, therefore, is not intended to be limited to the exemplary embodiments shown and described herein. Rather, the scope and spirit of invention is embodied by the appended claims.

Claims
  • 1. A computer-implemented method for determining a location of a wireless device and providing the location to an emergency service, the method comprising: (a) receiving a user request from the wireless device to send an emergency communication;(b) obtaining location information for the wireless device;(c) determining a location of the wireless device based on the location information, wherein initial latitude and longitude coordinates of the device are refined by referencing nearby access points to obtain a more accurate location; and(d) providing the location of the wireless device to the emergency service by writing the location to an emergency database associated with the emergency communication.
  • 2. The method of claim 1, wherein the location information for the wireless device comprises a geographical location and a beacon ID of a wireless network transmitter (beacon), wherein the location of the wireless device is enhanced using timing information of a signal path between the wireless device and the wireless network transmitter.
  • 3. The method of claim 1, wherein the coordinates of the wireless device are enhanced using a power-difference-of-arrival technique with multiple beacons, each beacon comprising a beacon ID and signal power level.
  • 4. The method of claim 1, wherein obtaining location information comprises accessing a database comprising beacon IDs, beacon power levels, beacon geographical locations, or any combination thereof.
  • 5. The method of claim 4, wherein the beacon ID comprises a Media Access Control (MAC) address, a Temporary Mobile Station Identifier, or an Internet Protocol address.
  • 6. The method of claim 1, wherein the location of the wireless device is written to the emergency database associated with the emergency communication before the emergency communication is routed to the emergency service.
  • 7. The method of claim 1, wherein the initial latitude and longitudinal coordinates are GPS coordinates.
  • 8. The method of claim 7, wherein in (c), determining a location comprises referencing Wi-Fi refined longitude and latitude GPS coordinates against a database that stores lookup information to obtain an address by reverse geo-coding.
  • 9. The method of claim 1, wherein the location information comprises coordinates that are transformed into an address via a database that stores lookup information, wherein the database that stores lookup information comprises physical locations of nearby Wi-Fi and Bluetooth networks.
  • 10. The method of claim 1, wherein the location of the wireless device is determined using radio messaging between the wireless device and nearby networks, wherein the networks are selected from a the group consisting of cellular system, WiMAN, WiMAX, Wi-Fi, Bluetooth, NFC, and any combination thereof.
  • 11. The method of claim 1, wherein the location information and an identity of the wireless device is determined from physical or virtual network identifiers.
  • 12. The method of claim 1, wherein the wireless device is identified by USIM, IMEI, Cell ID, or a telephone number.
  • 13. The method of claim 1, wherein the wireless device transmits and receives the location as web content information using WAP or HTTP technology.
  • 14. The method of claim 1, wherein the emergency communication is routed to the emergency service and a third party.
  • 15. A non-transitory computer readable medium having a series of instructions that, when executed by a processor, cause the processor to: (a) receive a user request from a wireless device to send an emergency communication to an emergency service;(b) obtain location information for the wireless device;(c) determine a location of the wireless device based on the location information, wherein initial latitude and longitude coordinates of the device are refined by referencing nearby access points to obtain a more accurate location; and(d) provide the location of the wireless device to the emergency service by writing the location to an emergency database associated with the emergency communication.
  • 16. The medium of claim 15, wherein the location is written to the emergency database associated with the emergency communication before the emergency communication is routed to the emergency service.
  • 17. The medium of claim 15, wherein the location information for the wireless device comprises a geographical location and a beacon ID of a wireless network transmitter (beacon), wherein the location of the wireless device is enhanced using timing information of a signal path between the wireless device and the wireless network transmitter.
  • 18. The medium of claim 15, wherein the coordinates of the wireless device are enhanced using a power-difference-of-arrival technique with multiple beacons, each beacon comprising a beacon ID and signal power level.
  • 19. The medium of claim 15, wherein the series of instructions cause the processor to obtain location information by accessing a database comprising beacon IDs, beacon power levels, beacon geographical locations, or any combination thereof.
  • 20. The medium of claim 15, wherein in (c), determining a location comprises referencing Wi-Fi refined longitude and latitude GPS coordinates against a database that stores lookup information to obtain an identifiable address by reverse geo-coding.
  • 21. The medium of claim 15, wherein the series of instructions cause the processor to update the location in the emergency database.
  • 22. A wireless device for providing information regarding a user and a user location to an emergency service, the device comprising at least one processor, at least one receiver operably connected to the at least one processor, and at least one memory, wherein the device further comprises: (a) an interface module receiving a request from a user to send an emergency communication to an emergency service;(b) a control module obtaining location information for the wireless device and determining a location of the device based on the location information; and(c) a communication module providing the location of the wireless device to the emergency service by writing the location to an emergency database associated with the emergency communication.
  • 23. The device of claim 22, wherein the location information comprises a geographical location and a beacon ID of a wireless network transmitter (beacon), wherein the location of the wireless device is enhanced using timing information of a signal path between the wireless device and the wireless network transmitter.
  • 24. The device of claim 22, wherein the coordinates of the wireless device are enhanced using a power-difference-of-arrival technique with multiple beacons, each beacon comprising a beacon ID and signal power level.
  • 25. The device of claim 22, the control module obtains location information by accessing a database comprising beacon IDs, beacon power levels, network transmitter geographical locations, or any combination thereof.
  • 26. The device of claim 22, wherein the beacon is configured to communicate with the wireless device using IEEE 802.11, IEEE 802.16, IEEE 802.15, Bluetooth, ultra wideband, RF, RFID, IRDA, WLAN, WiMax, or WPAN.
  • 27. The device of claim 22, wherein in (c), determining a location comprises referencing Wi-Fi refined longitude and latitude coordinates against a database that stores lookup information to obtain an identifiable address by reverse geo-coding.
  • 28. The device of claim 22, wherein the location is written to the emergency database associated with the emergency communication before the emergency communication is routed to the emergency service.
  • 29. The device of claim 22, wherein the communication module updates the location of the wireless device on the emergency database.
  • 30. A system for providing information regarding a caller and a call location to an emergency service, the system comprising: (a) a wireless device comprising a user interface for receiving a request to send an emergency communication to an emergency service;(b) a database storing location information for the wireless device, the location information comprising latitude and longitudinal coordinates of the wireless device; and(c) a computing device configured for: i) receiving a request to send an emergency communication to the emergency service;ii) determining a location based on the location information, wherein initial latitude and longitude coordinates of the device are refined by referencing nearby access points to obtain a more accurate location; andiii) providing the location of the wireless device to the emergency service by writing the location to an emergency database associated with the emergency communication.
RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 14/794,780 filed Jul. 8, 2015, which claims priority under 35 USC 119 from U.S. Provisional Application Ser. No. 62/021,709 filed on Jul. 8, 2014, titled SYSTEM AND METHOD FOR CALL MANAGEMENT, the entire disclosures of which are incorporated herein by reference.

Provisional Applications (1)
Number Date Country
62021709 Jul 2014 US
Continuations (1)
Number Date Country
Parent 14794780 Jul 2015 US
Child 15436484 US