The invention relates to communication systems and, more particularly, but not exclusively, to a call handling and routing associated with an urgent or emergency call.
With the explosive growth in mobile devices, many people are initiating call related to urgent or emergency services using a wireless device or mobile phone. As such, the information associated with the caller or the location of the caller needs to be accurately identified. Current approaches do not provide an accurate location or often fails to provide sufficient information regarding the location. Therefore what is needed is a system and method that provides as much information as possible about a caller and the location of the caller to the emergency call handler.
A system and method are provided in accordance with the various aspects of the invention that provide information regarding a caller and a call location to the urgent or emergency call handler, which call may be referred to as a distress call. The foregoing is a summary and thus contains, by necessity, simplifications, generalizations and omissions of detail. Those skilled in the art will appreciate that the summary is illustrative only and is not intended to be in any way limiting. The inventive techniques and concepts described herein apply to wireless communications systems including the radio access systems of GSM, UMTS, LTE, LTE-Advanced, IEEE 802 (WiFi, WiMAN, WiMAX), Bluetooth, UWB and NFC.
The foregoing summary, as well as the following detailed description, is better understood when read in conjunction with the appended drawings. For the purpose of illustrating the various aspects and embodiments of the invention, the drawings shown exemplary constructions of the aspects of the invention. However, the invention is not limited to the specific methods and instrumentalities disclosed in the drawings, which are as follows:
Illustrative embodiments as found in the various aspects of the invention are disclosed with reference to the figures, wherein like numerals refer to like features. Wireless devices have evolved in both operation and form-factors, converging the personal computer (PC) with the cellular phone, pager, and other communications devices. Besides communications functions (e.g. Voice Telephony, Short-message-service (SMS), Multi-media Messaging Service (MMS), TCP/IP data connectivity) and upgraded general processing power, sensors have been added to the wireless device. For instance, a wireless device (e.g. a smartphone, feature phone, netbook, Personal Digital assistant (PDA), tablet computer or PC with wireless LAN capability) may include:
Referring now to
The wireless device 10, as shown in
In addition, while several embodiments of the method of the invention are performed or used by a wireless device 10, the method may be employed by other than a mobile terminal. Moreover, while the system and method of embodiments of the invention will be primarily described in conjunction with mobile communications applications, it will be appreciated by one skilled in the art that the system and method of embodiments of the invention can be utilized in conjunction with a variety of other applications, both in the mobile communications industries and outside of the mobile communications industries.
Referring again to
Referring now to
For example, in accordance with the aspects of the invention, the message includes the location of the wireless device 10 based on or relative to a map. The dispatcher's system or computer runs an application or program that can receive the message, then the message is received by the dispatcher and the location of the wireless device 10 is shown on the map. Once the request from the wireless device 10 is initiated, identify information about the caller is retrieved from the memory of the wireless device 10. Additional information, in accordance with some aspects of the invention, including location and identity and coordinates is sent to the dispatcher's system from the wireless device 10. The call is initiated with the dispatcher and the dispatcher or call handler receives that call as well as the location and identity information. In accordance with some aspects of the invention, the caller's location is referenced with respect to a landmark or well known address. For example, the location is in relation to another object such as a landmark or address as “the caller is 100 feet north of the Statue of Liberty.” Thus, there are several aspects of the invention that relate to providing location information or locating the caller and the scope of the invention is not limited thereby.
As will be apparent to one skilled in the art, the information may be sent, in accordance with the aspects of the invention, from the wireless device 10 to a remote location that collects the information associated with the initiation of the message and the wireless device 10 and send that in the form of a message to the dispatcher's system.
Referring now to
The additional information, in accordance with some aspects of the invention, may include coordinates that are transformed into a local address via a database that is associated with the nearest Wi-Fi/Bluetooth network's physical location. This will help provide a higher degree of location information to the call handler. In accordance with further aspects of the invention, the SMS that is sent may include additional information, including the nature or reason for the call. In accordance with some aspects of the invention, the additional information includes specific information regarding the user. For example, the wireless devices 10 may have personal medical information for the caller, in the instance that the caller is the person in need of a medical assistance. In accordance with other aspects, the wireless device may include information—medical and non-medical—collected about the person in need of medical assistance. For example, the wireless device 10 may have captured a photo or a video—associated with the emergency situation or the location—that is provided as part of the additional information. In accordance with additional aspects of the invention the wireless device 10 can provide any other medical information or identifying information to allow the responder to better prepare for responding and easily locate or spot the message sender.
Referring now to
Referring now to
Once the call is initiated, the application on the wireless device 10 delays the call while the application on the wireless device 10 searches for location information based on nearby networks, such as Wi-Fi or Bluetooth based networks, as well as GPS location information. The application adds the additional information, as outlined in
In accordance with further aspects of the invention, the call that is initiated by the user at the touch screen may be routed to a remote server or location and any or all of the features performed at the wireless device 10, as outlined above, may be handled off the wireless device 10 by the remote location. Thus, when a request is received via user input on the touchscreen of the wireless device 10, this initiates the processor to look up in memory what to execute. The application and the user setting, in accordance with the various aspects of the invention, determine if the executed software application initiates the process of determining the smartphone's location or if that function is passed on to a remote server or location. For example, in accordance with one aspect of the invention, the GPS chipset 204 approximates position by continuously receiving the signal of the nearest satellites and then comparing signal strength. This provides initial latitude and longitudinal coordinates of the wireless device 10. In accordance with further aspects of the invention, the latitude and longitudinal coordinates are refined as the Wi-Fi radio processes the broadcast signal of the nearest access points. By comparing the relative strength of the nearby access point's signals to the known location of the access points, via software, a more accurate position is obtained. This further refines the given latitude and longitude coordinates.
In accordance with further aspects of the invention, if there is a nearby Bluetooth beacon, which is uniquely registered to a specific location or address, then that location is used to further enhance the location information for the initiated call and it is sent to the call handlers or emergency responders. If not, the Wi-Fi refined longitude and latitude GPS components are referenced against a database via an application programming interface to produce an identifiable address (reverse geo-coding).
Referring again to
By way of illustration, the wireless device 10 is capable of operating in accordance with any of a number of first, second, third and/or fourth-generation communication protocols or the like. For example, the wireless device 10 may be capable of operating in accordance with second-generation (2G) wireless communication protocols IS-136 (time division multiple access (TDMA)), GSM (global system for mobile communication), and IS-95 (code division multiple access (CDMA)), or with third-generation (3G) wireless communication protocols, such as Universal Mobile Telecommunications System (UMTS), CDMA2000, wideband CDMA (WCDMA) and time division-synchronous CDMA (TD-SCDMA), with fourth-generation (4G) wireless communication protocols or the like.
As an alternative (or additionally), the wireless device 10 may be capable of operating in accordance with non-cellular communication mechanisms. For example, the wireless device 10 may be capable of communication in a wireless local area network (WLAN) or other communication networks. The wireless device 10 can also have multiple networking capabilities including nomadic wired tethering, local-area-network transceivers (e.g. IEEE802 Wi-Fi), wide-area-network transceivers (IEEE 802.16 WiMAN/WiMAX, cellular data transceivers, (e.g. LTE) and short-range, data-only wireless protocols such as Ultra-wide-band (UWB), Bluetooth, RFID, Near-field-communications (NFC), etc.
A single site location based on the geographic location of the wireless network transmission antenna and the beacon ID (e.g. BTS ID, Cell ID, SSID) may be developed either by the wireless device 10, the remote location or the network; use of timing information of the signal path between the wireless device 10 and network may allow enhancement of the single site location. Using several beacon identities and power levels potentially may increase accuracy over a single site location using a power-difference-of-arrival technique.
Databases of beacon identifiers, beacon power levels, and network transmitter geographical locations may be uploaded to the wireless device 10 allowing for use of the aforementioned techniques using just the passive receiver(s) of the wireless device 10. A transmission (or series of transmissions) from the wireless device 10 is enough to localize a transmitter. An interaction of the wireless device 10 with the network where identifiers either physical (e.g. Electronic Serial Number, Media Access Control (MAC) address); or virtual (e.g. Temporary Mobile Station Identifier (TMSI) or IP address) can allow both localization and identification of the wireless device 10.
Referring again to
The wireless device 10 may also comprise a user interface including an output device such as a conventional earphone or speaker 24, a ringer 22, a microphone 26, a display or touch screen 28, and a user input interface, all of which are coupled to the controller 20. The user input interface, which allows the wireless device 10 to receive data, may include any of a number of devices allowing the wireless device 10 to receive data, such as a keypad 30, a touch display (not shown) or other input device. In embodiments including the keypad 30, the keypad 30 may include the conventional numeric (0-9) and related keys (#, *), and other hard and soft keys used for operating the wireless device 10. Alternatively, the keypad 30 may include a conventional QWERTY keypad arrangement. The keypad 30 may also include various soft keys with associated functions. In addition, or alternatively, the wireless device 10 may include an interface device such as a joystick or other user input interface. The wireless device 10 further includes a battery 34, such as a vibrating battery pack, for powering various circuits that are required to operate the wireless device 10, as well as optionally providing mechanical vibration as a detectable output.
The wireless device 10 may further include a user identity module (UIM) 42. The UIM 42 is typically a memory device having a processor built in. The UIM 42 may include, for example, a subscriber identity module (SIM), a universal integrated circuit card (UICC), a universal subscriber identity module (USIM), a removable user identity module (R-UIM), etc. The UIM 42 typically stores information elements related to a mobile subscriber. In addition to the UIM 42, the wireless device 10 may be equipped with memory. For example, the wireless device 10 may include volatile memory 40, such as volatile Random Access Memory (RAM) including a cache area for the temporary storage of data. The wireless device 10 may also include other non-volatile memory 38, which can be embedded and/or may be removable. The non-volatile memory 38 can additionally or alternatively comprise an electrically erasable programmable read only memory (EEPROM), flash memory or the like. The memories can store any of a number of pieces of information, and data, used by the wireless device 10 to implement the functions of the wireless device 10. For example, the memories can include an identifier, such as an international mobile equipment identification (IMEI) code, capable of uniquely identifying the wireless device 10. Furthermore, the memories may store instructions for determining cell id information. Specifically, the memories may store an application program for execution by the controller 20, which determines an identity of the current cell, i.e., cell id identity or cell id information, with which the wireless device 10 is in communication.
Although not every element of every possible mobile network is shown and described herein, it should be appreciated that the wireless device 10 may be coupled to one or more of any of a number of different networks through a base station (not shown). In this regard, the network(s) may be capable of supporting communication in accordance with any one or more of a number of first-generation (1G), second-generation (2G), 2.5G, third-generation (3G), 3.9G, fourth-generation (4G) mobile communication protocols or the like. For example, one or more of the network(s) can be capable of supporting communication in accordance with 2G wireless communication protocols IS-136 (TDMA), GSM, and IS-95 (CDMA). Also, for example, one or more of the network(s) can be capable of supporting communication in accordance with 2.5G wireless communication protocols GPRS, Enhanced Data GSM Environment (EDGE), or the like. Further, for example, one or more of the network(s) can be capable of supporting communication in accordance with 3G wireless communication protocols such as a UMTS network employing WCDMA radio access technology. Some narrow-band analog mobile phone service (NAMPS), as well as total access communication system (TACS), network(s) may also benefit from embodiments of the invention, as should dual or higher mode mobile stations (e.g., digital/analog or TDMA/CDMA/analog phones).
The wireless device 10 can further be coupled to one or more wireless access points (APs) (not shown). The APs may comprise access points configured to communicate with the wireless device 10 in accordance with techniques such as, for example, radio frequency (RF), infrared (IrDA) or any of a number of different wireless networking techniques, including WLAN techniques such as IEEE 802.11 (e.g., 802.11a, 802.11b, 802.11g, 802.11n, etc.), world interoperability for microwave access (WiMAX) techniques such as IEEE 802.16, and/or wireless Personal Area Network (WPAN) techniques such as IEEE 802.15, BlueTooth (BT), ultra wideband (UWB) and/or the like. The APs may be coupled to the Internet (not shown). The APs can be directly coupled to the Internet. In accordance with other aspects of the invention, the APs are indirectly coupled to the Internet. Furthermore, in one embodiment, the BS may be considered as another AP. As will be appreciated, by directly or indirectly connecting the wireless devices 10 to the Internet, the wireless device 10 can communicate with other devices, a computing system, etc., to thereby carry out various functions of the wireless device 10, such as to transmit data, content or the like to, and/or receive content, data or the like from other devices. As used herein, the terms “data,” “content,” “information” and similar terms may be used interchangeably to refer to data capable of being transmitted, received and/or stored in accordance with the various aspects and embodiments of the invention. Thus, use of any such terms should not be taken to limit the spirit and scope of embodiments of the invention.
Although not shown, the wireless device 10 may communicate in accordance with, for example, RF, BT, IrDA or any of a number of different wireline or wireless communication techniques, including LAN, WLAN, WiMAX, UWB techniques and/or the like. One or more of the computing systems that are in communication with the wireless device 10 can additionally, or alternatively, include a removable memory capable of storing content, which can thereafter be transferred to the wireless device 10. Further, the wireless device 10 can be coupled to one or more electronic devices, such as displays, printers, digital projectors and/or other multimedia capturing, producing and/or storing devices (e.g., other terminals). Furthermore, it should be understood that embodiments of the invention may be resident on a communication device such as the wireless device 10, or may be resident on a network device or other device accessible to the wireless device 10.
In accordance with the various aspects of the invention, the wireless device 10 includes on board location systems. While the on-board location systems (e.g. Global-Navigation-Satellite-System Receivers (GNSS)) may be used to develop a location estimate for the wireless device 10, the location of a wireless device 10 may be determined from the interaction (i.e. radio messaging) between the wires device 10 and the network (e.g. cellular system, WiMAN, WiMAX, WiFi, Bluetooth, NFC).
The true scope the invention is not limited to the various aspects of the invention or presently preferred embodiments disclosed herein and indeed could be applied to any reprogrammable remote sensing or other computing device with a wireless communications facility. For example, the foregoing disclosure of a presently preferred embodiment of the Intelligent Access Control System uses explanatory terms, such as mobile device, cellular system and wireless local area network and the like, which should not be construed so as to limit the scope of protection of the following claims, or to otherwise imply that the inventive aspects of the intelligent access control system are limited to the particular methods and apparatus disclosed. Moreover, as will be understood by those skilled in the art, many of the inventive aspects disclosed herein are based on software applications and operating systems running on generic hardware processing platforms. These functional entities are, in essence, programmable data collection, analysis, and storage devices that could take a variety of forms without departing from the inventive concepts disclosed herein. In many cases, the place of implementation (i.e., the functional element) described herein is merely a designer's preference and not a hard requirement. Accordingly, except as they may be expressly so limited, the scope of protection of the following claims is not intended to be limited to the specific embodiments described above.
It is noted that, as used in this description, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Reference throughout this specification to “one aspect,” “another aspect,” “one embodiment,” “an embodiment,” “certain embodiment,” or similar language means that a particular aspect, feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. Thus, appearances of the phrases “in one embodiment,” “in at least one embodiment,” “in an embodiment,” “in certain embodiments,” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment.
It will be apparent that various aspects of the invention as related to certain embodiments may be implemented in software, hardware, application logic, or a combination of software, hardware, and application logic. The software, application logic and/or hardware may reside on a server, an electronic device, or be a service. If desired, part of the software, application logic and/or hardware may reside on an electronic device and part of the software, application logic and/or hardware may reside on a remote location, such as server.
In accordance with the teaching of the invention and certain embodiments, a program or code may be noted as running on a computing device. A computing device is an article of manufacture. Examples of an article of manufacture include: a server, a mainframe computer, a mobile telephone, a multimedia-enabled smartphone, a tablet computer, a personal digital assistant, a personal computer, a laptop, or other special purpose computer each having one or more processors (e.g., a Central Processing Unit, a Graphical Processing Unit, or a microprocessor) that is configured to execute a computer readable program code (e.g., an algorithm, hardware, firmware, and/or software) to receive data, transmit data, store data, or perform methods. The article of manufacture (e.g., computing device) includes a non-transitory computer readable medium having a series of instructions, such as computer readable program steps encoded therein. In certain embodiments, the non-transitory computer readable medium includes one or more data repositories. The non-transitory computer readable medium includes corresponding computer readable program code and may include one or more data repositories. Processors access the computer readable program code encoded on the corresponding non-transitory computer readable mediums and execute one or more corresponding instructions.
Other hardware and software components and structures are also contemplated. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the invention, representative illustrative methods and materials are now described.
All publications and patents cited in this specification are herein incorporated by reference as if each individual publication or patent were specifically and individually indicated to be incorporated by reference and are incorporated herein by reference to disclose and describe the methods and/or system in connection with which the publications are cited. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.
All statements herein reciting principles, aspects, and embodiments of the invention as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure. The scope of the invention, therefore, is not intended to be limited to the exemplary embodiments shown and described herein. Rather, the scope and spirit of invention is embodied by the appended claims.
This application is a continuation of U.S. patent application Ser. No. 14/794,780 filed Jul. 8, 2015, which claims priority under 35 USC 119 from U.S. Provisional Application Ser. No. 62/021,709 filed on Jul. 8, 2014, titled SYSTEM AND METHOD FOR CALL MANAGEMENT, the entire disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5379337 | Castillo et al. | Jan 1995 | A |
5479482 | Grimes | Dec 1995 | A |
5563931 | Bishop et al. | Oct 1996 | A |
5596625 | Leblanc | Jan 1997 | A |
5710803 | Kowal et al. | Jan 1998 | A |
5742666 | Alpert | Apr 1998 | A |
6014555 | Tendler | Jan 2000 | A |
6249674 | Verdonk | Jun 2001 | B1 |
6252943 | Johnson et al. | Jun 2001 | B1 |
6477362 | Raith et al. | Nov 2002 | B1 |
6502030 | Hilleary | Dec 2002 | B2 |
6510315 | Arnson | Jan 2003 | B1 |
6556816 | Gafrick et al. | Apr 2003 | B1 |
6571092 | Faccin et al. | May 2003 | B2 |
6594666 | Biswas et al. | Jul 2003 | B1 |
6600812 | Gentillin et al. | Jul 2003 | B1 |
6628933 | Humes | Sep 2003 | B1 |
7058385 | Lauper | Jun 2006 | B2 |
7224773 | Croak et al. | May 2007 | B2 |
7324801 | Droste et al. | Jan 2008 | B2 |
7349706 | Kim et al. | Mar 2008 | B2 |
7409044 | Leduc | Aug 2008 | B2 |
7436938 | Savaglio et al. | Oct 2008 | B2 |
7437143 | Williams | Oct 2008 | B1 |
7469138 | Dayar et al. | Dec 2008 | B2 |
7483519 | Binning | Jan 2009 | B2 |
7519351 | Malone | Apr 2009 | B2 |
7519372 | MacDonald | Apr 2009 | B2 |
7548158 | Titus et al. | Jun 2009 | B2 |
7565131 | Rollender | Jul 2009 | B2 |
7646854 | Anderson | Jan 2010 | B2 |
7676215 | Chin et al. | Mar 2010 | B2 |
7684782 | Ashley, Jr. et al. | Mar 2010 | B2 |
7848733 | Bull et al. | Dec 2010 | B2 |
7949326 | Gallagher et al. | May 2011 | B2 |
8009810 | Seidberg et al. | Aug 2011 | B2 |
8041335 | Khetawat et al. | Oct 2011 | B2 |
8041341 | Malackowski et al. | Oct 2011 | B1 |
8045954 | Barbeau et al. | Oct 2011 | B2 |
8068881 | Schrager | Nov 2011 | B2 |
8102972 | Poremba | Jan 2012 | B2 |
8126424 | Piett et al. | Feb 2012 | B2 |
8150367 | Malladi et al. | Apr 2012 | B1 |
8165560 | Stenquist | Apr 2012 | B2 |
8165562 | Piett et al. | Apr 2012 | B2 |
8185087 | Mitchell, Jr. et al. | May 2012 | B2 |
8195121 | Dunn et al. | Jun 2012 | B2 |
8219135 | De Amorim et al. | Jul 2012 | B2 |
8244205 | Wu | Aug 2012 | B2 |
8249546 | Shah et al. | Aug 2012 | B1 |
8249547 | Fellner | Aug 2012 | B1 |
8289953 | Ray et al. | Oct 2012 | B2 |
8306501 | Moodbidri et al. | Nov 2012 | B2 |
8326260 | Bradish et al. | Dec 2012 | B1 |
8369488 | Sennett et al. | Feb 2013 | B2 |
8401565 | Sandberg et al. | Mar 2013 | B2 |
8417212 | Cepuran et al. | Apr 2013 | B2 |
8472973 | Lin et al. | Jun 2013 | B2 |
8484352 | Piett et al. | Jul 2013 | B2 |
8489062 | Ray et al. | Jul 2013 | B2 |
8509729 | Shaw | Aug 2013 | B2 |
8516122 | Piett et al. | Aug 2013 | B2 |
8538370 | Ray et al. | Sep 2013 | B2 |
8538468 | Daly | Sep 2013 | B2 |
8594015 | Dunn et al. | Nov 2013 | B2 |
8606218 | Ray et al. | Dec 2013 | B2 |
8625578 | Roy et al. | Jan 2014 | B2 |
8626112 | Ray et al. | Jan 2014 | B2 |
8630609 | Ray et al. | Jan 2014 | B2 |
8644301 | Tamhankar et al. | Feb 2014 | B2 |
8682279 | Rudolf et al. | Mar 2014 | B2 |
8682281 | Dunn et al. | Mar 2014 | B2 |
8682286 | Dickinson et al. | Mar 2014 | B2 |
8712366 | Greene et al. | Apr 2014 | B2 |
8747336 | Tran | Jun 2014 | B2 |
8751265 | Piett et al. | Jun 2014 | B2 |
8760290 | Piett et al. | Jun 2014 | B2 |
8811935 | Faccin et al. | Aug 2014 | B2 |
8825687 | Marceau et al. | Sep 2014 | B2 |
8866606 | Will et al. | Oct 2014 | B1 |
8868028 | Kaltsukis | Oct 2014 | B1 |
8880021 | Hawkins | Nov 2014 | B2 |
8890685 | Sookman et al. | Nov 2014 | B1 |
8948732 | Negahban et al. | Feb 2015 | B1 |
8971839 | Hong | Mar 2015 | B2 |
8984143 | Serra et al. | Mar 2015 | B2 |
9008078 | Kamdar et al. | Apr 2015 | B2 |
9019870 | Khan et al. | Apr 2015 | B2 |
9071643 | Saito et al. | Jun 2015 | B2 |
9077676 | Price et al. | Jul 2015 | B2 |
9078092 | Piett et al. | Jul 2015 | B2 |
9094816 | Maier | Jul 2015 | B2 |
9167379 | Hamilton et al. | Oct 2015 | B1 |
9244922 | Marceau et al. | Jan 2016 | B2 |
9258680 | Drucker | Feb 2016 | B2 |
9277389 | Saito et al. | Mar 2016 | B2 |
9351142 | Basore et al. | May 2016 | B2 |
9369847 | Borghei | Jun 2016 | B2 |
9402159 | Self et al. | Jul 2016 | B1 |
9503876 | Saito et al. | Nov 2016 | B2 |
9544750 | Self et al. | Jan 2017 | B1 |
9591467 | Piett et al. | Mar 2017 | B2 |
9635534 | Maier | Apr 2017 | B2 |
9693213 | Self et al. | Jun 2017 | B2 |
9805430 | Miasnik et al. | Oct 2017 | B2 |
20020001367 | Lee | Jan 2002 | A1 |
20020057678 | Jiang et al. | May 2002 | A1 |
20020120698 | Tamargo | Aug 2002 | A1 |
20030069035 | Shurvinton | Apr 2003 | A1 |
20040203572 | Aerrabotu et al. | Oct 2004 | A1 |
20040266390 | Faucher et al. | Dec 2004 | A1 |
20050085215 | Kokko et al. | Apr 2005 | A1 |
20050104745 | Bachelder et al. | May 2005 | A1 |
20050151642 | Tupler et al. | Jul 2005 | A1 |
20060293024 | Benco et al. | Dec 2006 | A1 |
20070030144 | Titus et al. | Feb 2007 | A1 |
20070033095 | Hodgin et al. | Feb 2007 | A1 |
20070049287 | Dunn | Mar 2007 | A1 |
20070053308 | Dumas et al. | Mar 2007 | A1 |
20070058528 | Massa et al. | Mar 2007 | A1 |
20070060097 | Edge et al. | Mar 2007 | A1 |
20070161383 | Caci | Jul 2007 | A1 |
20070218895 | Saito et al. | Sep 2007 | A1 |
20080019268 | Rollins | Jan 2008 | A1 |
20080063153 | Krivorot et al. | Mar 2008 | A1 |
20080081646 | Morin et al. | Apr 2008 | A1 |
20080194238 | Kwon | Aug 2008 | A1 |
20080294058 | Shklarski | Nov 2008 | A1 |
20090257345 | King | Oct 2009 | A1 |
20090322513 | Hwang et al. | Dec 2009 | A1 |
20100002846 | Ray et al. | Jan 2010 | A1 |
20100159976 | Marocchi et al. | Jun 2010 | A1 |
20100166153 | Guleria et al. | Jul 2010 | A1 |
20100202368 | Hans | Aug 2010 | A1 |
20100238018 | Kelly | Sep 2010 | A1 |
20110086607 | Wang et al. | Apr 2011 | A1 |
20110103266 | Andreasen et al. | May 2011 | A1 |
20110134897 | Montemurro et al. | Jun 2011 | A1 |
20110153368 | Pierre et al. | Jun 2011 | A1 |
20110201357 | Garrett | Aug 2011 | A1 |
20110263219 | Hasenfang et al. | Oct 2011 | A1 |
20120002792 | Chang | Jan 2012 | A1 |
20120029970 | Stiles et al. | Feb 2012 | A1 |
20120092161 | West | Apr 2012 | A1 |
20120144019 | Zhu | Jun 2012 | A1 |
20120202428 | Mirbaha et al. | Aug 2012 | A1 |
20120210325 | De Lind Van Wijngaarden et al. | Aug 2012 | A1 |
20120218102 | Bivens et al. | Aug 2012 | A1 |
20120257729 | Piett et al. | Oct 2012 | A1 |
20120289243 | Tarlow | Nov 2012 | A1 |
20120295575 | Nam | Nov 2012 | A1 |
20120309341 | Ward | Dec 2012 | A1 |
20130005295 | Park et al. | Jan 2013 | A1 |
20130030825 | Bagwandeen et al. | Jan 2013 | A1 |
20130084824 | Hursey | Apr 2013 | A1 |
20130122932 | Patel | May 2013 | A1 |
20130138791 | Thomas et al. | May 2013 | A1 |
20130183924 | Saigh | Jul 2013 | A1 |
20130203373 | Edge | Aug 2013 | A1 |
20130203376 | Maier | Aug 2013 | A1 |
20130226369 | Yorio et al. | Aug 2013 | A1 |
20130237175 | Piett | Sep 2013 | A1 |
20130331055 | McKown et al. | Dec 2013 | A1 |
20140051379 | Ganesh et al. | Feb 2014 | A1 |
20140087680 | Luukkala et al. | Mar 2014 | A1 |
20140113606 | Morken et al. | Apr 2014 | A1 |
20140126356 | Lee et al. | May 2014 | A1 |
20140148120 | Buck | May 2014 | A1 |
20140155018 | Fan et al. | Jun 2014 | A1 |
20140199959 | Hassan et al. | Jul 2014 | A1 |
20140248848 | Mufti et al. | Sep 2014 | A1 |
20140324351 | Dannevik et al. | Oct 2014 | A1 |
20150055453 | Chaki et al. | Feb 2015 | A1 |
20150081209 | Yeh et al. | Mar 2015 | A1 |
20150109125 | Kaib et al. | Apr 2015 | A1 |
20150111524 | South et al. | Apr 2015 | A1 |
20150137972 | Nepo et al. | May 2015 | A1 |
20150172897 | Mariathasan et al. | Jun 2015 | A1 |
20150289121 | Lesage et al. | Oct 2015 | A1 |
20150304827 | Price et al. | Oct 2015 | A1 |
20150350262 | Rainisto et al. | Dec 2015 | A1 |
20150358794 | Nokhoudian et al. | Dec 2015 | A1 |
20150365319 | Finn et al. | Dec 2015 | A1 |
20160004224 | Pi | Jan 2016 | A1 |
20160026768 | Singh et al. | Jan 2016 | A1 |
20160050550 | Anand et al. | Feb 2016 | A1 |
20160088455 | Bozik et al. | Mar 2016 | A1 |
20160219084 | Abiezzi | Jul 2016 | A1 |
20160219397 | Mayor et al. | Jul 2016 | A1 |
20160269535 | Balabhadruni et al. | Sep 2016 | A1 |
20160307436 | Nixon | Oct 2016 | A1 |
20160337831 | Piett et al. | Nov 2016 | A1 |
20160345171 | Kulkarni et al. | Nov 2016 | A1 |
20160363931 | Yang et al. | Dec 2016 | A1 |
20170004427 | Bruchal et al. | Jan 2017 | A1 |
20170140637 | Thurlow et al. | May 2017 | A1 |
20170142568 | Saito et al. | May 2017 | A1 |
20170150335 | Self et al. | May 2017 | A1 |
20170180963 | Cavendish et al. | Jun 2017 | A1 |
20170180966 | Piett et al. | Jun 2017 | A1 |
20170195475 | Mehta et al. | Jul 2017 | A1 |
20170213251 | Nunally et al. | Jul 2017 | A1 |
20170238129 | Maier et al. | Aug 2017 | A1 |
20170238136 | Smith | Aug 2017 | A1 |
20170245113 | Hooker | Aug 2017 | A1 |
20180020091 | Self et al. | Jan 2018 | A1 |
Number | Date | Country |
---|---|---|
2662606 | Oct 2009 | CA |
2697986 | Sep 2010 | CA |
2773749 | Oct 2012 | CA |
2773881 | Oct 2012 | CA |
2790501 | Mar 2013 | CA |
2809421 | Sep 2013 | CA |
2646607 | Sep 2016 | CA |
2012222443 | Nov 2012 | JP |
20090019606 | Feb 2009 | KR |
20090092900 | Sep 2009 | KR |
20100055746 | May 2010 | KR |
101305286 | Sep 2013 | KR |
20140052780 | May 2014 | KR |
20150097031 | Aug 2015 | KR |
101602482 | Mar 2016 | KR |
20160097933 | Aug 2016 | KR |
WO-0167419 | Sep 2001 | WO |
WO-2007109599 | Dec 2007 | WO |
WO-2012129561 | Sep 2012 | WO |
WO-2014025563 | Feb 2014 | WO |
WO-2014074420 | May 2014 | WO |
WO-2014176646 | Nov 2014 | WO |
WO-2015127867 | Sep 2015 | WO |
WO-2016044540 | Mar 2016 | WO |
WO-2017079354 | May 2017 | WO |
WO-2017100220 | Jun 2017 | WO |
WO-2017106775 | Jun 2017 | WO |
WO-2017112820 | Jun 2017 | WO |
Entry |
---|
Co-pending U.S. Appl. No. 15/342,093, filed Nov. 2, 2016. |
Co-pending U.S. Appl. No. 15/371,117, filed Dec. 6, 2016. |
Co-pending U.S. Appl. No. 15/382,097, filed Dec. 16, 2016. |
Co-pending U.S. Appl. No. 15/387,363, filed Dec. 21, 2016. |
Co-pending U.S. Appl. No. 15/436,379, filed Feb. 17, 2017. |
Co-pending U.S. Appl. No. 15/444,133, filed Feb. 27, 2017. |
PCT/US2015/050609 International Search Report and Written Opinion dated Dec. 16, 2015. |
PCT/US2016/060189 International Search Report and Written Opinion dated Feb. 24, 2017. |
PCT/US2016/065212 International Search Report and Written Opinion dated Feb. 20, 2017. |
U.S. Appl. No. 14/794,780 Office Action dated Feb. 2, 2016. |
U.S. Appl. No. 14/794,780 Office Action dated Mar. 7, 2017. |
U.S. Appl. No. 14/794,780 Office Action dated Nov. 15, 2016. |
Co-pending U.S. Appl. No. 15/497,067, filed Apr. 25, 2017. |
Co-pending U.S. Appl. No. 15/588,343, filed May 5, 2017. |
Co-pending U.S. Appl. No. 15/589,847, filed May 8, 2017. |
Co-pending U.S. Appl. No. 15/667,531, filed Aug. 2, 2017. |
PCT/US2015/050609 International Preliminary Report on Patentability dated Mar. 30, 2017. |
PCT/US2016/067366 International Search Report and Written Opinion dated Mar. 31, 2017. |
PCT/US2016/068134 International Search Report and Written Opinion dated Apr. 21, 2017. |
PCT/US2017/031605 International Search Report and Written Opinion dated Jul. 31, 2017. |
Tazaki. Floating Ground: An Architecture for Network Mobility and Ad Hoc Network Convergence. Thesis. Graduate School of Media and Governance Keio University 5322 Endo Fujisawa, Kanagawa, Japan 2520882 (pp. 1-162) (2010). |
U.S. Appl. No. 14/856,818 Office Action dated Apr. 12, 2017. |
U.S. Appl. No. 15/387,363 Office Action dated Jul. 6, 2017. |
U.S. Appl. No. 15/387,363 Office Action dated Mar. 15, 2017. |
U.S. Appl. No. 15/436,379 Office Action dated Apr. 6, 2017. |
U.S. Appl. No. 15/444,133 Office Action dated Apr. 4, 2017. |
U.S. Appl. No. 15/497,067 Office Action dated Jun. 23, 2017. |
U.S. Appl. No. 15/589,847 Office Action dated Jun. 23, 2017. |
Co-pending U.S. Appl. No. 15/682,440, filed Aug. 21, 2017. |
PCT/US2017/029465 International Search Report and Written Opinion dated Aug. 9, 2017. |
U.S. Appl. No. 15/444,133 Office Action dated Aug. 17, 2017. |
PCT/US2017/047854 International Search Report and Written Opinion dated Nov. 28, 2017. |
U.S. Appl. No. 15/589,847 Office Action dated Nov. 30, 2017. |
U.S. Appl. No. 15/436,379 Office Action dated Nov. 2, 2017. |
U.S. Appl. No. 15/667,531 Office Action dated Nov. 8, 2017. |
Co-pending U.S. Appl. No. 15/880,208, filed Jan. 25, 2018. |
National Emergency Number Association (Nena) Technical Committee Chairs: NENA Functional and Interface Standards for Next Generation 9-1-1 Version 1.0 (i3). (Dec. 18, 2017). Retrieved from the Internet: URL:https://c.ymcdn.com/sites/nena.site-ym.com/resource/collection/2851C951-69FF-40F0-A6B8-36A714CB085D/NENA_08-002-vl_Functional_Interface_Standards_NG911_i3.pdf [retrieved on Feb. 5, 2018] (121 pgs). |
U.S. Appl. No. 15/588,343 Office Action dated Feb. 26, 2018. |
U.S. Appl. No. 15/667,531 Office Action dated Apr. 5, 2018. |
Number | Date | Country | |
---|---|---|---|
20170171735 A1 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
62021709 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14794780 | Jul 2015 | US |
Child | 15436484 | US |