The invention relates to communication systems and, more particularly, but not exclusively, to a call handling and routing associated with an urgent or emergency call.
With the explosive growth in mobile devices, many people are initiating call related to urgent or emergency services using a wireless device or mobile phone. As such, the information associated with the caller or the location of the caller needs to be accurately identified. Current approaches do not provide an accurate location or often fails to provide sufficient information regarding the location. Therefore what is needed is a system and method that provides as much information as possible about a caller and the location of the caller to the emergency call handler.
A system and method are provided in accordance with the various aspects of the invention that provide information regarding a caller and a call location to the urgent or emergency call handler, which call may be referred to as a distress call. The foregoing is a summary and thus contains, by necessity, simplifications, generalizations and omissions of detail. Those skilled in the art will appreciate that the summary is illustrative only and is not intended to be in any way limiting. The inventive techniques and concepts described herein apply to wireless communications systems including the radio access systems of GSM, UMTS, LTE, LTE-Advanced, IEEE 802 (WiFi, WiMAN, WiMAX), Bluetooth, UWB and NFC.
The foregoing summary, as well as the following detailed description, is better understood when read in conjunction with the appended drawings. For the purpose of illustrating the various aspects and embodiments of the invention, the drawings shown exemplary constructions of the aspects of the invention. However, the invention is not limited to the specific methods and instrumentalities disclosed in the drawings, which are as follows:
Illustrative embodiments as found in the various aspects of the invention are disclosed with reference to the figures, wherein like numerals refer to like features. Wireless devices have evolved in both operation and form-factors, converging the personal computer (PC) with the cellular phone, pager, and other communications devices. Besides communications functions (e.g. Voice Telephony, Short-message-service (SMS), Multi-media Messaging Service (MMS), TCP/IP data connectivity) and upgraded general processing power, sensors have been added to the wireless device. For instance, a wireless device (e.g. a smartphone, feature phone, netbook, Personal Digital assistant (PDA), tablet computer or PC with wireless LAN capability) may include:
Referring now to
The wireless device 10, as shown in
In addition, while several embodiments of the method of the invention are performed or used by a wireless device 10, the method may be employed by other than a mobile terminal. Moreover, while the system and method of embodiments of the invention will be primarily described in conjunction with mobile communications applications, it will be appreciated by one skilled in the art that the system and method of embodiments of the invention can be utilized in conjunction with a variety of other applications, both in the mobile communications industries and outside of the mobile communications industries.
Referring again to
Referring now to
For example, in accordance with the aspects of the invention, the message includes the location of the wireless device 10 based on or relative to a map. The dispatcher's system or computer runs an application or program that can receive the message, then the message is received by the dispatcher and the location of the wireless device 10 is shown on the map. Once the request from the wireless device 10 is initiated, identify information about the caller is retrieved from the memory of the wireless device 10. Additional information, in accordance with some aspects of the invention, including location and identity and coordinates is sent to the dispatcher's system from the wireless device 10. The call is initiated with the dispatcher and the dispatcher or call handler receives that call as well as the location and identity information. In accordance with some aspects of the invention, the caller's location is referenced with respect to a landmark or well known address. For example, the location is in relation to another object such as a landmark or address as “the caller is 100 feet north of the Statue of Liberty.” Thus, there are several aspects of the invention that relate to providing location information or locating the caller and the scope of the invention is not limited thereby.
As will be apparent to one skilled in the art, the information may be sent, in accordance with the aspects of the invention, from the wireless device 10 to a remote location that collects the information associated with the initiation of the message and the wireless device 10 and send that in the form of a message to the dispatcher's system.
Referring now to
The additional information, in accordance with some aspects of the invention, may include coordinates that are transformed into a local address via a database that is associated with the nearest Wi-Fi/Bluetooth network's physical location. This will help provide a higher degree of location information to the call handler. In accordance with further aspects of the invention, the SMS that is sent may include additional information, including the nature or reason for the call. In accordance with some aspects of the invention, the additional information includes specific information regarding the user. For example, the wireless devices 10 may have personal medical information for the caller, in the instance that the caller is the person in need of a medical assistance. In accordance with other aspects, the wireless device may include information—medical and non-medical—collected about the person in need of medical assistance. For example, the wireless device 10 may have captured a photo or a video—associated with the emergency situation or the location—that is provided as part of the additional information. In accordance with additional aspects of the invention the wireless device 10 can provide any other medical information or identifying information to allow the responder to better prepare for responding and easily locate or spot the message sender.
Referring now to
Referring now to
Once the call is initiated, the application on the wireless device 10 delays the call while the application on the wireless device 10 searches for location information based on nearby networks, such as Wi-Fi or Bluetooth based networks, as well as GPS location information. The application adds the additional information, as outlined in
In accordance with further aspects of the invention, the call that is initiated by the user at the touch screen may be routed to a remote server or location and any or all of the features performed at the wireless device 10, as outlined above, may be handled off the wireless device 10 by the remote location. Thus, when a request is received via user input on the touchscreen of the wireless device 10, this initiates the processor to look up in memory what to execute. The application and the user setting, in accordance with the various aspects of the invention, determine if the executed software application initiates the process of determining the smartphone's location or if that function is passed on to a remote server or location. For example, in accordance with one aspect of the invention, the GPS chipset 204 approximates position by continuously receiving the signal of the nearest satellites and then comparing signal strength. This provides initial latitude and longitudinal coordinates of the wireless device 10. In accordance with further aspects of the invention, the latitude and longitudinal coordinates are refined as the Wi-Fi radio processes the broadcast signal of the nearest access points. By comparing the relative strength of the nearby access point's signals to the known location of the access points, via software, a more accurate position is obtained. This further refines the given latitude and longitude coordinates.
In accordance with further aspects of the invention, if there is a nearby Bluetooth beacon, which is uniquely registered to a specific location or address, then that location is used to further enhance the location information for the initiated call and it is sent to the call handlers or emergency responders. If not, the Wi-Fi refined longitude and latitude GPS components are referenced against a database via an application programming interface to produce an identifiable address (reverse geo-coding).
Referring again to
By way of illustration, the wireless device 10 is capable of operating in accordance with any of a number of first, second, third and/or fourth-generation communication protocols or the like. For example, the wireless device 10 may be capable of operating in accordance with second-generation (2G) wireless communication protocols IS-136 (time division multiple access (TDMA)), GSM (global system for mobile communication), and IS-95 (code division multiple access (CDMA)), or with third-generation (3G) wireless communication protocols, such as Universal Mobile Telecommunications System (UMTS), CDMA2000, wideband CDMA (WCDMA) and time division-synchronous CDMA (TD-SCDMA), with fourth-generation (4G) wireless communication protocols or the like.
As an alternative (or additionally), the wireless device 10 may be capable of operating in accordance with non-cellular communication mechanisms. For example, the wireless device 10 may be capable of communication in a wireless local area network (WLAN) or other communication networks. The wireless device 10 can also have multiple networking capabilities including nomadic wired tethering, local-area-network transceivers (e.g. IEEE802 Wi-Fi), wide-area-network transceivers (IEEE 802.16 WiMAN/WiMAX, cellular data transceivers, (e.g. LTE) and short-range, data-only wireless protocols such as Ultra-wide-band (UWB), Bluetooth, RFID, Near-field-communications (NFC), etc.
A single site location based on the geographic location of the wireless network transmission antenna and the beacon ID (e.g. BTS ID, Cell ID, SSID) may be developed either by the wireless device 10, the remote location or the network; use of timing information of the signal path between the wireless device 10 and network may allow enhancement of the single site location. Using several beacon identities and power levels potentially may increase accuracy over a single site location using a power-difference-of-arrival technique.
Databases of beacon identifiers, beacon power levels, and network transmitter geographical locations may be uploaded to the wireless device 10 allowing for use of the aforementioned techniques using just the passive receiver(s) of the wireless device 10. A transmission (or series of transmissions) from the wireless device 10 is enough to localize a transmitter. An interaction of the wireless device 10 with the network where identifiers either physical (e.g. Electronic Serial Number, Media Access Control (MAC) address); or virtual (e.g. Temporary Mobile Station Identifier (TMSI) or IP address) can allow both localization and identification of the wireless device 10.
Referring again to
The wireless device 10 may also comprise a user interface including an output device such as a conventional earphone or speaker 24, a ringer 22, a microphone 26, a display or touch screen 28, and a user input interface, all of which are coupled to the controller 20. The user input interface, which allows the wireless device 10 to receive data, may include any of a number of devices allowing the wireless device 10 to receive data, such as a keypad 30, a touch display (not shown) or other input device. In embodiments including the keypad 30, the keypad 30 may include the conventional numeric (0-9) and related keys (#, *), and other hard and soft keys used for operating the wireless device 10. Alternatively, the keypad 30 may include a conventional QWERTY keypad arrangement. The keypad 30 may also include various soft keys with associated functions. In addition, or alternatively, the wireless device 10 may include an interface device such as a joystick or other user input interface. The wireless device 10 further includes a battery 34, such as a vibrating battery pack, for powering various circuits that are required to operate the wireless device 10, as well as optionally providing mechanical vibration as a detectable output.
The wireless device 10 may further include a user identity module (UIM) 42. The UIM 42 is typically a memory device having a processor built in. The UIM 42 may include, for example, a subscriber identity module (SIM), a universal integrated circuit card (UICC), a universal subscriber identity module (USIM), a removable user identity module (R-UIM), etc. The UIM 42 typically stores information elements related to a mobile subscriber. In addition to the UIM 42, the wireless device 10 may be equipped with memory. For example, the wireless device 10 may include volatile memory 40, such as volatile Random Access Memory (RAM) including a cache area for the temporary storage of data. The wireless device 10 may also include other non-volatile memory 38, which can be embedded and/or may be removable. The non-volatile memory 38 can additionally or alternatively comprise an electrically erasable programmable read only memory (EEPROM), flash memory or the like. The memories can store any of a number of pieces of information, and data, used by the wireless device 10 to implement the functions of the wireless device 10. For example, the memories can include an identifier, such as an international mobile equipment identification (IMEI) code, capable of uniquely identifying the wireless device 10. Furthermore, the memories may store instructions for determining cell id information. Specifically, the memories may store an application program for execution by the controller 20, which determines an identity of the current cell, i.e., cell id identity or cell id information, with which the wireless device 10 is in communication.
Although not every element of every possible mobile network is shown and described herein, it should be appreciated that the wireless device 10 may be coupled to one or more of any of a number of different networks through a base station (not shown). In this regard, the network(s) may be capable of supporting communication in accordance with any one or more of a number of first-generation (1G), second-generation (2G), 2.5G, third-generation (3G), 3.9G, fourth-generation (4G) mobile communication protocols or the like. For example, one or more of the network(s) can be capable of supporting communication in accordance with 2G wireless communication protocols IS-136 (TDMA), GSM, and IS-95 (CDMA). Also, for example, one or more of the network(s) can be capable of supporting communication in accordance with 2.5G wireless communication protocols GPRS, Enhanced Data GSM Environment (EDGE), or the like. Further, for example, one or more of the network(s) can be capable of supporting communication in accordance with 3G wireless communication protocols such as a UMTS network employing WCDMA radio access technology. Some narrow-band analog mobile phone service (NAMPS), as well as total access communication system (TACS), network(s) may also benefit from embodiments of the invention, as should dual or higher mode mobile stations (e.g., digital/analog or TDMA/CDMA/analog phones).
The wireless device 10 can further be coupled to one or more wireless access points (APs) (not shown). The APs may comprise access points configured to communicate with the wireless device 10 in accordance with techniques such as, for example, radio frequency (RF), infrared (IrDA) or any of a number of different wireless networking techniques, including WLAN techniques such as IEEE 802.11 (e.g., 802.11a, 802.11b, 802.11g, 802.11n, etc.), world interoperability for microwave access (WiMAX) techniques such as IEEE 802.16, and/or wireless Personal Area Network (WPAN) techniques such as IEEE 802.15, BlueTooth (BT), ultra wideband (UWB) and/or the like. The APs may be coupled to the Internet (not shown). The APs can be directly coupled to the Internet. In accordance with other aspects of the invention, the APs are indirectly coupled to the Internet. Furthermore, in one embodiment, the BS may be considered as another AP. As will be appreciated, by directly or indirectly connecting the wireless devices 10 to the Internet, the wireless device 10 can communicate with other devices, a computing system, etc., to thereby carry out various functions of the wireless device 10, such as to transmit data, content or the like to, and/or receive content, data or the like from other devices. As used herein, the terms “data,” “content,” “information” and similar terms may be used interchangeably to refer to data capable of being transmitted, received and/or stored in accordance with the various aspects and embodiments of the invention. Thus, use of any such terms should not be taken to limit the spirit and scope of embodiments of the invention.
Although not shown, the wireless device 10 may communicate in accordance with, for example, RF, BT, IrDA or any of a number of different wireline or wireless communication techniques, including LAN, WLAN, WiMAX, UWB techniques and/or the like. One or more of the computing systems that are in communication with the wireless device 10 can additionally, or alternatively, include a removable memory capable of storing content, which can thereafter be transferred to the wireless device 10. Further, the wireless device 10 can be coupled to one or more electronic devices, such as displays, printers, digital projectors and/or other multimedia capturing, producing and/or storing devices (e.g., other terminals). Furthermore, it should be understood that embodiments of the invention may be resident on a communication device such as the wireless device 10, or may be resident on a network device or other device accessible to the wireless device 10.
In accordance with the various aspects of the invention, the wireless device 10 includes on board location systems. While the on-board location systems (e.g. Global-Navigation-Satellite-System Receivers (GNSS)) may be used to develop a location estimate for the wireless device 10, the location of a wireless device 10 may be determined from the interaction (i.e. radio messaging) between the wires device 10 and the network (e.g. cellular system, WiMAN, WiMAX, WiFi, Bluetooth, NFC).
The true scope the invention is not limited to the various aspects of the invention or presently preferred embodiments disclosed herein and indeed could be applied to any reprogrammable remote sensing or other computing device with a wireless communications facility. For example, the foregoing disclosure of a presently preferred embodiment of the Intelligent Access Control System uses explanatory terms, such as mobile device, cellular system and wireless local area network and the like, which should not be construed so as to limit the scope of protection of the following claims, or to otherwise imply that the inventive aspects of the intelligent access control system are limited to the particular methods and apparatus disclosed. Moreover, as will be understood by those skilled in the art, many of the inventive aspects disclosed herein are based on software applications and operating systems running on generic hardware processing platforms. These functional entities are, in essence, programmable data collection, analysis, and storage devices that could take a variety of forms without departing from the inventive concepts disclosed herein. In many cases, the place of implementation (i.e., the functional element) described herein is merely a designer's preference and not a hard requirement. Accordingly, except as they may be expressly so limited, the scope of protection of the following claims is not intended to be limited to the specific embodiments described above.
It is noted that, as used in this description, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Reference throughout this specification to “one aspect,” “another aspect,” “one embodiment,” “an embodiment,” “certain embodiment,” or similar language means that a particular aspect, feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. Thus, appearances of the phrases “in one embodiment,” “in at least one embodiment,” “in an embodiment,” “in certain embodiments,” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment.
It will be apparent that various aspects of the invention as related to certain embodiments may be implemented in software, hardware, application logic, or a combination of software, hardware, and application logic. The software, application logic and/or hardware may reside on a server, an electronic device, or be a service. If desired, part of the software, application logic and/or hardware may reside on an electronic device and part of the software, application logic and/or hardware may reside on a remote location, such as server.
In accordance with the teaching of the invention and certain embodiments, a program or code may be noted as running on a computing device. A computing device is an article of manufacture. Examples of an article of manufacture include: a server, a mainframe computer, a mobile telephone, a multimedia-enabled smartphone, a tablet computer, a personal digital assistant, a personal computer, a laptop, or other special purpose computer each having one or more processors (e.g., a Central Processing Unit, a Graphical Processing Unit, or a microprocessor) that is configured to execute a computer readable program code (e.g., an algorithm, hardware, firmware, and/or software) to receive data, transmit data, store data, or perform methods. The article of manufacture (e.g., computing device) includes a non-transitory computer readable medium having a series of instructions, such as computer readable program steps encoded therein. In certain embodiments, the non-transitory computer readable medium includes one or more data repositories. The non-transitory computer readable medium includes corresponding computer readable program code and may include one or more data repositories. Processors access the computer readable program code encoded on the corresponding non-transitory computer readable mediums and execute one or more corresponding instructions.
Other hardware and software components and structures are also contemplated. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the invention, representative illustrative methods and materials are now described.
All publications and patents cited in this specification are herein incorporated by reference as if each individual publication or patent were specifically and individually indicated to be incorporated by reference and are incorporated herein by reference to disclose and describe the methods and/or system in connection with which the publications are cited. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.
All statements herein reciting principles, aspects, and embodiments of the invention as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure. The scope of the invention, therefore, is not intended to be limited to the exemplary embodiments shown and described herein. Rather, the scope and spirit of invention is embodied by the appended claims.
This application is a continuation of U.S. patent application Ser. No. 15/958,186, filed Apr. 20, 2018, which is a continuation of U.S. patent application Ser. No. 15/436,484, filed Feb. 17, 2017, now U.S. Pat. No. 9,992,655, which is a continuation of U.S. patent application Ser. No. 14/794,780 filed Jul. 8, 2015, now U.S. Pat. No. 9,838,858, which claims priority under 35 USC 119 from U.S. Provisional Application Ser. No. 62/021,709 filed on Jul. 8, 2014, titled SYSTEM AND METHOD FOR CALL MANAGEMENT, the entire disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5379337 | Castillo et al. | Jan 1995 | A |
5479482 | Grimes | Dec 1995 | A |
5563931 | Bishop et al. | Oct 1996 | A |
5596625 | Leblanc | Jan 1997 | A |
5710803 | Kowal et al. | Jan 1998 | A |
5742666 | Alpert | Apr 1998 | A |
6014555 | Tendler | Jan 2000 | A |
6133853 | Obradovich et al. | Oct 2000 | A |
6167255 | Kennedy et al. | Dec 2000 | A |
6249674 | Verdonk | Jun 2001 | B1 |
6252943 | Johnson et al. | Jun 2001 | B1 |
6256489 | Lichter et al. | Jul 2001 | B1 |
6262655 | Yoshioka et al. | Jul 2001 | B1 |
6292687 | Lowell et al. | Sep 2001 | B1 |
6363138 | Aprile | Mar 2002 | B1 |
6459782 | Bedrosian et al. | Oct 2002 | B1 |
6477362 | Raith et al. | Nov 2002 | B1 |
6502030 | Hilleary | Dec 2002 | B2 |
6510315 | Arnson | Jan 2003 | B1 |
6556816 | Gafrick et al. | Apr 2003 | B1 |
6571092 | Faccin et al. | May 2003 | B2 |
6574323 | Manuel et al. | Jun 2003 | B1 |
6587545 | Antonucci et al. | Jul 2003 | B1 |
6594666 | Biswas et al. | Jul 2003 | B1 |
6600812 | Gentillin et al. | Jul 2003 | B1 |
6628933 | Humes | Sep 2003 | B1 |
6680998 | Bell et al. | Jan 2004 | B1 |
6707421 | Drury et al. | Mar 2004 | B1 |
6731610 | Sajikawa et al. | May 2004 | B2 |
6993118 | Antonucci et al. | Jan 2006 | B2 |
7054611 | Eisner et al. | May 2006 | B2 |
7058385 | Lauper | Jun 2006 | B2 |
7177400 | Eisner et al. | Feb 2007 | B2 |
7224773 | Croak et al. | May 2007 | B2 |
7271704 | McSheffrey et al. | Sep 2007 | B2 |
7313402 | Rahman | Dec 2007 | B1 |
7324801 | Droste et al. | Jan 2008 | B2 |
7349706 | Kim et al. | Mar 2008 | B2 |
7409044 | Leduc | Aug 2008 | B2 |
7409428 | Brabec et al. | Aug 2008 | B1 |
7436938 | Savaglio et al. | Oct 2008 | B2 |
7437143 | Williams | Oct 2008 | B1 |
7469138 | Dayar et al. | Dec 2008 | B2 |
7483519 | Binning | Jan 2009 | B2 |
7519351 | Malone, III | Apr 2009 | B2 |
7519372 | MacDonald et al. | Apr 2009 | B2 |
7548158 | Titus et al. | Jun 2009 | B2 |
7565131 | Rollender | Jul 2009 | B2 |
7646854 | Anderson | Jan 2010 | B2 |
7676215 | Chin et al. | Mar 2010 | B2 |
7684782 | Ashley, Jr. et al. | Mar 2010 | B2 |
7848733 | Bull et al. | Dec 2010 | B2 |
7937067 | Maier et al. | May 2011 | B2 |
7949326 | Gallagher et al. | May 2011 | B2 |
8009810 | Seidberg et al. | Aug 2011 | B2 |
8041335 | Khetawat et al. | Oct 2011 | B2 |
8041341 | Malackowski et al. | Oct 2011 | B1 |
8045954 | Barbeau et al. | Oct 2011 | B2 |
8068881 | Schrager | Nov 2011 | B2 |
8102972 | Poremba | Jan 2012 | B2 |
8126424 | Piett et al. | Feb 2012 | B2 |
8150367 | Malladi et al. | Apr 2012 | B1 |
8165560 | Stenquist | Apr 2012 | B2 |
8165562 | Piett et al. | Apr 2012 | B2 |
8185087 | Mitchell, Jr. et al. | May 2012 | B2 |
8195121 | Dunn et al. | Jun 2012 | B2 |
8219135 | De Amorim et al. | Jul 2012 | B2 |
8244205 | Wu | Aug 2012 | B2 |
8249546 | Shah et al. | Aug 2012 | B1 |
8249547 | Fellner | Aug 2012 | B1 |
8289953 | Ray et al. | Oct 2012 | B2 |
8306501 | Moodbidri et al. | Nov 2012 | B2 |
8326260 | Bradish et al. | Dec 2012 | B1 |
8369488 | Sennett et al. | Feb 2013 | B2 |
8396970 | Black et al. | Mar 2013 | B2 |
8401565 | Sandberg et al. | Mar 2013 | B2 |
8417090 | Fleming | Apr 2013 | B2 |
8417212 | Cepuran et al. | Apr 2013 | B2 |
8442481 | Maier et al. | May 2013 | B2 |
8442482 | Maier et al. | May 2013 | B2 |
8472973 | Lin et al. | Jun 2013 | B2 |
8484352 | Piett et al. | Jul 2013 | B2 |
8489062 | Ray et al. | Jul 2013 | B2 |
8494868 | Saalsaa | Jul 2013 | B2 |
8509729 | Shaw | Aug 2013 | B2 |
8516122 | Piett et al. | Aug 2013 | B2 |
8538370 | Ray et al. | Sep 2013 | B2 |
8538468 | Daly | Sep 2013 | B2 |
8588733 | Ferguson et al. | Nov 2013 | B2 |
8594015 | Dunn et al. | Nov 2013 | B2 |
8606218 | Ray et al. | Dec 2013 | B2 |
8625578 | Roy et al. | Jan 2014 | B2 |
8626112 | Ray et al. | Jan 2014 | B2 |
8630609 | Ray et al. | Jan 2014 | B2 |
8644301 | Tamhankar et al. | Feb 2014 | B2 |
8649806 | Cuff et al. | Feb 2014 | B2 |
8682279 | Rudolf et al. | Mar 2014 | B2 |
8682281 | Dunn et al. | Mar 2014 | B2 |
8682286 | Dickinson et al. | Mar 2014 | B2 |
8712366 | Greene et al. | Apr 2014 | B2 |
8747336 | Tran | Jun 2014 | B2 |
8751265 | Piett et al. | Jun 2014 | B2 |
8755767 | Maier et al. | Jun 2014 | B2 |
8760290 | Piett et al. | Jun 2014 | B2 |
8761721 | Li | Jun 2014 | B2 |
8792867 | Negahban et al. | Jul 2014 | B1 |
8811935 | Faccin et al. | Aug 2014 | B2 |
8825687 | Marceau et al. | Sep 2014 | B2 |
8848877 | Seidberg et al. | Sep 2014 | B2 |
8866606 | Will et al. | Oct 2014 | B1 |
8868028 | Kaltsukis | Oct 2014 | B1 |
8880021 | Hawkins | Nov 2014 | B2 |
8890685 | Sookman et al. | Nov 2014 | B1 |
8918075 | Maier et al. | Dec 2014 | B2 |
8948732 | Negahban et al. | Feb 2015 | B1 |
8971839 | Hong | Mar 2015 | B2 |
8983424 | Binning | Mar 2015 | B2 |
8984143 | Serra et al. | Mar 2015 | B2 |
9008078 | Kamdar et al. | Apr 2015 | B2 |
9014657 | Rohde et al. | Apr 2015 | B2 |
9019870 | Khan et al. | Apr 2015 | B2 |
9020462 | Hodgson | Apr 2015 | B2 |
9071643 | Saito et al. | Jun 2015 | B2 |
9077676 | Price et al. | Jul 2015 | B2 |
9078092 | Piett et al. | Jul 2015 | B2 |
9094816 | Maier et al. | Jul 2015 | B2 |
9129219 | Robertson et al. | Sep 2015 | B1 |
9167379 | Hamilton et al. | Oct 2015 | B1 |
9244922 | Marceau et al. | Jan 2016 | B2 |
9258680 | Drucker | Feb 2016 | B2 |
9277389 | Saito et al. | Mar 2016 | B2 |
9351142 | Basore et al. | May 2016 | B2 |
9369847 | Borghei | Jun 2016 | B2 |
9384491 | Briggs et al. | Jul 2016 | B1 |
9402159 | Self et al. | Jul 2016 | B1 |
9408051 | Finney et al. | Aug 2016 | B2 |
9420099 | Krishnan et al. | Aug 2016 | B1 |
9426638 | Johnson | Aug 2016 | B1 |
9497585 | Cooley et al. | Nov 2016 | B1 |
9503876 | Saito et al. | Nov 2016 | B2 |
9544260 | Cuff et al. | Jan 2017 | B2 |
9544750 | Self et al. | Jan 2017 | B1 |
9591467 | Piett et al. | Mar 2017 | B2 |
9609128 | Dahan et al. | Mar 2017 | B2 |
9629185 | Gluckman et al. | Apr 2017 | B1 |
9635534 | Maier et al. | Apr 2017 | B2 |
9659484 | Mehta et al. | May 2017 | B1 |
9693213 | Self et al. | Jun 2017 | B2 |
9734721 | Stenneth et al. | Aug 2017 | B2 |
9736670 | Mehta et al. | Aug 2017 | B2 |
9756169 | Mehta et al. | Sep 2017 | B2 |
9805430 | Miasnik et al. | Oct 2017 | B2 |
9838858 | Anand et al. | Dec 2017 | B2 |
9877177 | Lesage et al. | Jan 2018 | B2 |
9924043 | Mehta et al. | Mar 2018 | B2 |
9942739 | Bozik et al. | Apr 2018 | B2 |
9986404 | Mehta et al. | May 2018 | B2 |
9992655 | Anand et al. | Jun 2018 | B2 |
9998507 | Mehta et al. | Jun 2018 | B2 |
10002375 | Scythes et al. | Jun 2018 | B1 |
10089854 | Hender et al. | Oct 2018 | B2 |
10136294 | Mehta et al. | Nov 2018 | B2 |
10140482 | Mehta et al. | Nov 2018 | B2 |
10140842 | Mehta et al. | Nov 2018 | B2 |
10142213 | Hart et al. | Nov 2018 | B1 |
10142469 | Klaban | Nov 2018 | B2 |
10142816 | Cavendish et al. | Nov 2018 | B2 |
10165431 | Bozik et al. | Dec 2018 | B2 |
10375558 | Katz et al. | Aug 2019 | B2 |
20010051849 | Boone | Dec 2001 | A1 |
20020001367 | Lee | Jan 2002 | A1 |
20020027975 | Oxley | Mar 2002 | A1 |
20020057678 | Jiang et al. | May 2002 | A1 |
20020120698 | Tamargo | Aug 2002 | A1 |
20030069035 | Shurvinton | Apr 2003 | A1 |
20030109245 | McCalmont et al. | Jun 2003 | A1 |
20030195775 | Hampton et al. | Oct 2003 | A1 |
20040166828 | Yosioka | Aug 2004 | A1 |
20040203572 | Aerrabotu et al. | Oct 2004 | A1 |
20040229620 | Zhao et al. | Nov 2004 | A1 |
20040266390 | Faucher et al. | Dec 2004 | A1 |
20050085215 | Kokko et al. | Apr 2005 | A1 |
20050104745 | Bachelder et al. | May 2005 | A1 |
20050111630 | Potorny et al. | May 2005 | A1 |
20050151642 | Tupler et al. | Jul 2005 | A1 |
20050190892 | Dawson et al. | Sep 2005 | A1 |
20050192746 | King et al. | Sep 2005 | A1 |
20050220277 | Blalock et al. | Oct 2005 | A1 |
20050222829 | Dumas | Oct 2005 | A1 |
20050239477 | Kim et al. | Oct 2005 | A1 |
20050242944 | Bankert et al. | Nov 2005 | A1 |
20050282518 | D et al. | Dec 2005 | A1 |
20050285181 | Yasui et al. | Dec 2005 | A1 |
20060085275 | Stokes et al. | Apr 2006 | A1 |
20060109960 | D et al. | May 2006 | A1 |
20060154642 | Scannell, Jr. | Jul 2006 | A1 |
20060217105 | Kumar P S | Sep 2006 | A1 |
20060293024 | Benco et al. | Dec 2006 | A1 |
20070003024 | Olivier et al. | Jan 2007 | A1 |
20070030144 | Titus et al. | Feb 2007 | A1 |
20070030146 | Shepherd | Feb 2007 | A1 |
20070033095 | Hodgin et al. | Feb 2007 | A1 |
20070049287 | Dunn | Mar 2007 | A1 |
20070053308 | Dumas et al. | Mar 2007 | A1 |
20070058528 | Massa et al. | Mar 2007 | A1 |
20070060097 | Edge et al. | Mar 2007 | A1 |
20070161383 | Caci | Jul 2007 | A1 |
20070164872 | Monroe | Jul 2007 | A1 |
20070171854 | Chen et al. | Jul 2007 | A1 |
20070218895 | Saito et al. | Sep 2007 | A1 |
20080019268 | Rollins | Jan 2008 | A1 |
20080063153 | Krivorot et al. | Mar 2008 | A1 |
20080077474 | Dumas et al. | Mar 2008 | A1 |
20080081646 | Morin et al. | Apr 2008 | A1 |
20080166990 | Toiv | Jul 2008 | A1 |
20080194238 | Kwon | Aug 2008 | A1 |
20080253535 | Sherry et al. | Oct 2008 | A1 |
20080274721 | Stagnetto | Nov 2008 | A1 |
20080294058 | Shklarski | Nov 2008 | A1 |
20080309486 | McKenna et al. | Dec 2008 | A1 |
20090041206 | Hobby et al. | Feb 2009 | A1 |
20090134982 | Robertson et al. | May 2009 | A1 |
20090186596 | Kaltsukis et al. | Jul 2009 | A1 |
20090214000 | Patel et al. | Aug 2009 | A1 |
20090257345 | King | Oct 2009 | A1 |
20090311987 | Edge et al. | Dec 2009 | A1 |
20090322513 | Hwang et al. | Dec 2009 | A1 |
20100002846 | Ray et al. | Jan 2010 | A1 |
20100003964 | Khare et al. | Jan 2010 | A1 |
20100093305 | Reich et al. | Apr 2010 | A1 |
20100156626 | Story | Jun 2010 | A1 |
20100159871 | Tester | Jun 2010 | A1 |
20100159976 | Marocchi et al. | Jun 2010 | A1 |
20100166153 | Guleria et al. | Jul 2010 | A1 |
20100190468 | Scott et al. | Jul 2010 | A1 |
20100202368 | Hans | Aug 2010 | A1 |
20100238018 | Kelly | Sep 2010 | A1 |
20100261448 | Peters | Oct 2010 | A1 |
20100262668 | Piett et al. | Oct 2010 | A1 |
20110009086 | Poremba et al. | Jan 2011 | A1 |
20110029600 | Theimer | Feb 2011 | A1 |
20110071880 | Spector | Mar 2011 | A1 |
20110086607 | Wang et al. | Apr 2011 | A1 |
20110103266 | Andreasen et al. | May 2011 | A1 |
20110134897 | Montemurro et al. | Jun 2011 | A1 |
20110151829 | Velusamy et al. | Jun 2011 | A1 |
20110153368 | Pierre et al. | Jun 2011 | A1 |
20110201357 | Garrett et al. | Aug 2011 | A1 |
20110263219 | Hasenfang et al. | Oct 2011 | A1 |
20110263319 | Haemaelaeinen et al. | Oct 2011 | A1 |
20120002792 | Chang | Jan 2012 | A1 |
20120028599 | Hatton et al. | Feb 2012 | A1 |
20120029970 | Stiles et al. | Feb 2012 | A1 |
20120040636 | Kazmi | Feb 2012 | A1 |
20120092161 | West | Apr 2012 | A1 |
20120144019 | Zhu et al. | Jun 2012 | A1 |
20120157795 | Chiu et al. | Jun 2012 | A1 |
20120202428 | Mirbaha et al. | Aug 2012 | A1 |
20120210325 | De Lind Van Wijngaarden et al. | Aug 2012 | A1 |
20120218102 | Bivens et al. | Aug 2012 | A1 |
20120256745 | Piett et al. | Oct 2012 | A1 |
20120257729 | Piett et al. | Oct 2012 | A1 |
20120258680 | Piett et al. | Oct 2012 | A1 |
20120289243 | Tarlow et al. | Nov 2012 | A1 |
20120295575 | Nam | Nov 2012 | A1 |
20120309341 | Ward | Dec 2012 | A1 |
20130005295 | Park et al. | Jan 2013 | A1 |
20130012155 | Forstall et al. | Jan 2013 | A1 |
20130030825 | Bagwandeen et al. | Jan 2013 | A1 |
20130052983 | Fletcher et al. | Feb 2013 | A1 |
20130065569 | Leipzig et al. | Mar 2013 | A1 |
20130082837 | Cosentino et al. | Apr 2013 | A1 |
20130084824 | Hursey | Apr 2013 | A1 |
20130102351 | Mo | Apr 2013 | A1 |
20130122932 | Patel et al. | May 2013 | A1 |
20130138791 | Thomas et al. | May 2013 | A1 |
20130183924 | Saigh et al. | Jul 2013 | A1 |
20130185368 | Nordstrom et al. | Jul 2013 | A1 |
20130203373 | Edge | Aug 2013 | A1 |
20130203376 | Maier et al. | Aug 2013 | A1 |
20130222133 | Schultz | Aug 2013 | A1 |
20130226369 | Yorio et al. | Aug 2013 | A1 |
20130237175 | Piett | Sep 2013 | A1 |
20130237181 | Ray | Sep 2013 | A1 |
20130260710 | Hr | Oct 2013 | A1 |
20130309994 | Hellwig et al. | Nov 2013 | A1 |
20130331055 | McKown et al. | Dec 2013 | A1 |
20130331058 | Harvey | Dec 2013 | A1 |
20140031000 | Hanover | Jan 2014 | A1 |
20140045450 | Ballantyne et al. | Feb 2014 | A1 |
20140051379 | Ganesh et al. | Feb 2014 | A1 |
20140086108 | Dunn et al. | Mar 2014 | A1 |
20140087680 | Luukkala et al. | Mar 2014 | A1 |
20140096195 | Morgan | Apr 2014 | A1 |
20140113606 | Morken et al. | Apr 2014 | A1 |
20140126356 | Lee et al. | May 2014 | A1 |
20140134969 | Jin et al. | May 2014 | A1 |
20140142979 | Mitsunaga | May 2014 | A1 |
20140148117 | Basore et al. | May 2014 | A1 |
20140148120 | Buck | May 2014 | A1 |
20140155017 | Fan et al. | Jun 2014 | A1 |
20140155018 | Fan et al. | Jun 2014 | A1 |
20140164505 | Daly et al. | Jun 2014 | A1 |
20140199959 | Hassan et al. | Jul 2014 | A1 |
20140213212 | Clawson | Jul 2014 | A1 |
20140222462 | Shakil et al. | Aug 2014 | A1 |
20140248848 | Mufti et al. | Sep 2014 | A1 |
20140253326 | Cho et al. | Sep 2014 | A1 |
20140257846 | Hermiz et al. | Sep 2014 | A1 |
20140302810 | Inha et al. | Oct 2014 | A1 |
20140324351 | Dannevik et al. | Oct 2014 | A1 |
20140359008 | Finney et al. | Dec 2014 | A1 |
20140368601 | Decharms | Dec 2014 | A1 |
20140370836 | Gladstone | Dec 2014 | A1 |
20140370841 | Roberts et al. | Dec 2014 | A1 |
20150011176 | Zhu | Jan 2015 | A1 |
20150029836 | Hans et al. | Jan 2015 | A1 |
20150031324 | Zentner et al. | Jan 2015 | A1 |
20150055453 | Chaki et al. | Feb 2015 | A1 |
20150055554 | Sedlacek et al. | Feb 2015 | A1 |
20150065082 | Sehgal | Mar 2015 | A1 |
20150081209 | Yeh et al. | Mar 2015 | A1 |
20150081927 | Xu et al. | Mar 2015 | A1 |
20150085997 | Biage et al. | Mar 2015 | A1 |
20150087259 | Hinsen | Mar 2015 | A1 |
20150094095 | Johnson et al. | Apr 2015 | A1 |
20150099481 | Maitre et al. | Apr 2015 | A1 |
20150109125 | Kaib et al. | Apr 2015 | A1 |
20150111524 | South et al. | Apr 2015 | A1 |
20150137972 | Nepo et al. | May 2015 | A1 |
20150140936 | Sachs et al. | May 2015 | A1 |
20150172897 | Mariathasan et al. | Jun 2015 | A1 |
20150181401 | Dhandu et al. | Jun 2015 | A1 |
20150289121 | Lesage et al. | Oct 2015 | A1 |
20150304827 | Price et al. | Oct 2015 | A1 |
20150317392 | Fernandez | Nov 2015 | A1 |
20150317809 | Chellappan et al. | Nov 2015 | A1 |
20150319284 | Leonessi | Nov 2015 | A1 |
20150350262 | Rainisto et al. | Dec 2015 | A1 |
20150358794 | Nokhoudian et al. | Dec 2015 | A1 |
20150365319 | Finn et al. | Dec 2015 | A1 |
20160004224 | Pi | Jan 2016 | A1 |
20160026768 | Singh et al. | Jan 2016 | A1 |
20160057595 | Ahmed et al. | Feb 2016 | A1 |
20160065748 | Li et al. | Mar 2016 | A1 |
20160088455 | Bozik et al. | Mar 2016 | A1 |
20160173689 | Klaban | Jun 2016 | A1 |
20160210581 | Braun | Jul 2016 | A1 |
20160219084 | Abiezzi | Jul 2016 | A1 |
20160219397 | Mayor et al. | Jul 2016 | A1 |
20160227589 | Marshall et al. | Aug 2016 | A1 |
20160269535 | Balabhadruni et al. | Sep 2016 | A1 |
20160307436 | Nixon | Oct 2016 | A1 |
20160315923 | Riscombe-Burton et al. | Oct 2016 | A1 |
20160316493 | Davis et al. | Oct 2016 | A1 |
20160330769 | Edge | Nov 2016 | A1 |
20160337831 | Piett et al. | Nov 2016 | A1 |
20160345171 | Kulkarni et al. | Nov 2016 | A1 |
20160353266 | Winkler et al. | Dec 2016 | A1 |
20160363931 | Yang et al. | Dec 2016 | A1 |
20160371973 | Holleczek et al. | Dec 2016 | A1 |
20170004427 | Bruchal et al. | Jan 2017 | A1 |
20170012815 | Nekrestyanov et al. | Jan 2017 | A1 |
20170046216 | Stenneth et al. | Feb 2017 | A1 |
20170078226 | Daly et al. | Mar 2017 | A1 |
20170099579 | Ryan et al. | Apr 2017 | A1 |
20170108862 | Mikkelsen | Apr 2017 | A1 |
20170124670 | Becker et al. | May 2017 | A1 |
20170124852 | Pauws et al. | May 2017 | A1 |
20170140637 | Thurlow et al. | May 2017 | A1 |
20170142568 | Saito et al. | May 2017 | A1 |
20170150335 | Self et al. | May 2017 | A1 |
20170161614 | Mehta et al. | Jun 2017 | A1 |
20170180963 | Cavendish et al. | Jun 2017 | A1 |
20170180966 | Piett et al. | Jun 2017 | A1 |
20170188218 | Corley et al. | Jun 2017 | A1 |
20170213251 | Nunally et al. | Jul 2017 | A1 |
20170238129 | Maier et al. | Aug 2017 | A1 |
20170238136 | Smith | Aug 2017 | A1 |
20170245113 | Hooker | Aug 2017 | A1 |
20170287085 | Smith et al. | Oct 2017 | A1 |
20170310827 | Mehta et al. | Oct 2017 | A1 |
20170316698 | Stenneth et al. | Nov 2017 | A1 |
20170323209 | Rinzler et al. | Nov 2017 | A1 |
20170325056 | Mehta et al. | Nov 2017 | A1 |
20170331954 | Kotnis et al. | Nov 2017 | A1 |
20170359712 | Meredith et al. | Dec 2017 | A1 |
20170374538 | Gellens et al. | Dec 2017 | A1 |
20180020091 | Self et al. | Jan 2018 | A1 |
20180039737 | Dempers et al. | Feb 2018 | A1 |
20180053401 | Martin et al. | Feb 2018 | A1 |
20180077282 | Herron et al. | Mar 2018 | A1 |
20180077553 | Gideon, III | Mar 2018 | A1 |
20180152563 | Mehta et al. | May 2018 | A1 |
20180176271 | Laurent | Jun 2018 | A1 |
20180242133 | Anand et al. | Aug 2018 | A1 |
20180249315 | Mehta et al. | Aug 2018 | A1 |
20180262544 | Mehta et al. | Sep 2018 | A1 |
20180352408 | Baer et al. | Dec 2018 | A1 |
20190020993 | Nguyen | Jan 2019 | A1 |
20190073894 | Mehta et al. | Mar 2019 | A1 |
20190104395 | Mehta et al. | Apr 2019 | A1 |
20190130719 | D'Amico | May 2019 | A1 |
20190166480 | Rauner | May 2019 | A1 |
20190174288 | Bozik et al. | Jun 2019 | A1 |
20190174289 | Martin et al. | Jun 2019 | A1 |
20190253861 | Horelik et al. | Aug 2019 | A1 |
20190281165 | Mehta et al. | Sep 2019 | A1 |
20190320310 | Horelik et al. | Oct 2019 | A1 |
20190327597 | Katz et al. | Oct 2019 | A1 |
20200059776 | Martin et al. | Feb 2020 | A1 |
20200068374 | Mehta et al. | Feb 2020 | A1 |
20200100084 | Martin et al. | Mar 2020 | A1 |
20200126174 | Halse et al. | Apr 2020 | A1 |
20210127228 | Baarman et al. | Apr 2021 | A1 |
20210266722 | Pellegrini et al. | Aug 2021 | A1 |
Number | Date | Country |
---|---|---|
2662606 | Oct 2009 | CA |
2697986 | Sep 2010 | CA |
2773749 | Oct 2012 | CA |
2773881 | Oct 2012 | CA |
2790501 | Mar 2013 | CA |
2809421 | Sep 2013 | CA |
2646607 | Sep 2016 | CA |
2886535 | Oct 2016 | CA |
2697986 | May 2018 | CA |
104487976 | Apr 2015 | CN |
104539776 | Apr 2015 | CN |
106021508 | Oct 2016 | CN |
2161912 | Mar 2010 | EP |
H10314133 | Dec 1998 | JP |
H11700869 | Mar 1999 | JP |
2006319946 | Nov 2006 | JP |
2006334369 | Dec 2006 | JP |
2011223285 | Nov 2011 | JP |
2012222443 | Nov 2012 | JP |
20090019606 | Feb 2009 | KR |
20090092900 | Sep 2009 | KR |
20100055746 | May 2010 | KR |
101305286 | Sep 2013 | KR |
20140052780 | May 2014 | KR |
20140093568 | Jul 2014 | KR |
20150097031 | Aug 2015 | KR |
101602482 | Mar 2016 | KR |
101612423 | Apr 2016 | KR |
20160097933 | Aug 2016 | KR |
20170100422 | Sep 2017 | KR |
WO-0022593 | Apr 2000 | WO |
WO-0165763 | Sep 2001 | WO |
WO-0167419 | Sep 2001 | WO |
WO-2007109599 | Dec 2007 | WO |
WO-2012129561 | Sep 2012 | WO |
WO-2014025563 | Feb 2014 | WO |
WO-2014063121 | Apr 2014 | WO |
WO-2014074420 | May 2014 | WO |
WO-2014176646 | Nov 2014 | WO |
WO-2015127867 | Sep 2015 | WO |
WO-2015196155 | Dec 2015 | WO |
WO-2016044540 | Mar 2016 | WO |
WO-2017079354 | May 2017 | WO |
WO-2017083571 | May 2017 | WO |
WO-2017100220 | Jun 2017 | WO |
WO-2017106775 | Jun 2017 | WO |
WO-2017112820 | Jun 2017 | WO |
WO-2017189610 | Nov 2017 | WO |
WO-2017196753 | Nov 2017 | WO |
WO-2018039142 | Mar 2018 | WO |
WO-2019113129 | Jun 2019 | WO |
WO-2020172612 | Aug 2020 | WO |
WO-2020205033 | Oct 2020 | WO |
WO-2021034859 | Feb 2021 | WO |
Entry |
---|
PCT/US2020/019341 International Search Report and Written Opinion dated Jun. 29, 2020. |
PCT/US2020/046857 International Search Report and Written Opinion dated Nov. 18, 2020. |
U.S. Appl. No. 15/976,600 Office Action dated Aug. 3, 2020. |
U.S. Appl. No. 16/162,171 Office Action dated Sep. 24, 2020. |
U.S. Appl. No. 16/378,363 Office Action dated Feb. 17, 2021. |
U.S. Appl. No. 16/384,600 Office Action dated Oct. 2, 2020. |
U.S. Appl. No. 16/421,355 Office Action dated Oct. 19, 2020. |
U.S. Appl. No. 16/684,366 Office Action dated Dec. 23, 2020. |
U.S. Appl. No. 16/740,207 Office Action dated Aug. 17, 2020. |
U.S. Appl. No. 16/798,049 Office Action dated Jul. 17, 2020. |
U.S. Appl. No. 16/798,049 Office Action dated Mar. 8, 2021. |
U.S. Appl. No. 16/823,192 Office Action dated Dec. 4, 2020. |
U.S. Appl. No. 16/834,914 Office Action dated Dec. 2, 2020. |
U.S. Appl. No. 17/115,098 Office Action dated Mar. 9, 2021. |
Abel et al. Semantics + Filtering + Search = Twitcident exploring information in social web streams. HT'12—Proceedings of 23rd ACM Conference on Hypertext and Social Media (10 pgs) (2012). |
ArcGIS Rest Services Directory. Folder: TIGERWeb. Available at https://tigerweb.geo.census.gov/arcgis/rest/services/TIGERweb. (1 pg.) (Accessed Sep. 2017). |
Chowdhury et al. Tweet4act: Using incident-specific profiles for classifying crisis-related messages. Proceedings of the 10th International ISCRAM Conference (pp. 834-839) (2013). |
Cipolla et al. A tool for Emergency Detection with Deep Learning Neural Networks. KDWeb (2016) How to predict a disaster. ICAR—National Research Council of Italy—Palermo, Italy (10 pgs). |
Co-pending U.S. Appl. No. 16/378,363, filed Apr. 8, 2019. |
Co-pending U.S. Appl. No. 16/384,600, filed Apr. 15, 2019. |
Co-pending U.S. Appl. No. 16/436,810, filed Jun. 10, 2019. |
Homeland Security Science and Technology. Using Social Media for Enhanced Situational Awareness and Decision Support. Virtual Social Medial Working Group and DHS First Responders Group. (44 pgs.) (Jun. 2014). |
Marcus et al. TwitInfo: Aggregating and Visualizing Microblogs for Event Exploration. ACM CHI Conference 2011 (10 pgs). |
Meier. MatchApp: Next Generation Disaster Response App? iRevolution (12 pgs.) (Feb. 27, 2013). |
National Emergency Number Association (Nena) Technical Committee Chairs: NENA Functional and Interface Standards for Next Generation 9-1-1 Version 1.0 (i3). (Dec. 18, 2017). Retrieved from the Internet: URL:https://c.ymcdn.com/sites/nena.site-ym.com/resource/collection/2851C951-69FF-40F0-A6B8-36A714CB085D/NENA_08-002-vl_Functional_Interface_Standards_NG911_i3.pdf [retrieved on Feb. 5, 2018] (121 pgs). |
National Emergency Number Association (NENA). Social Networking in 9-1-1 PSAPs Information Document. Available at https://c.ymcdn.com/sites/www.nena.org/resource/resmgr/Standards/NENA-INF-001.1.1-2012_Social (18 pgs) (2012). |
PCT/US2015/050609 International Preliminary Report on Patentability dated Mar. 30, 2017. |
PCT/US2015/050609 International Search Report and Written Opinion dated Dec. 16, 2015. |
PCT/US2016/060189 International Preliminary Report on Patentability dated May 17, 2018. |
PCT/US2016/060189 International Search Report and Written Opinion dated Feb. 24, 2017. |
PCT/US2016/065212 International Preliminary Report on Patentability dated Jun. 21, 2018. |
PCT/US2016/065212 International Search Report and Written Opinion dated Feb. 20, 2017. |
PCT/US2016/067366 International Preliminary Report on Patentability dated Jun. 28, 2018. |
PCT/US2016/067366 International Search Report and Written Opinion dated Mar. 31, 2017. |
PCT/US2016/068134 International Preliminary Report on Patentability dated Jul. 5, 2018. |
PCT/US2016/068134 International Search Report and Written Opinion dated Apr. 21, 2017. |
PCT/US2017/029465 International Preliminary Report on Patentability dated Nov. 8, 2018. |
PCT/US2017/029465 International Search Report and Written Opinion dated Aug. 9, 2017. |
PCT/US2017/031605 International Search Report and Written Opinion dated Jul. 31, 2017. |
PCT/US2017/047854 International Preliminary Report on Patentability dated Mar. 7, 2019. |
PCT/US2017/047854 International Search Report and Written Opinion dated Nov. 28, 2017. |
PCT/US2018/028951 International Search Report and Written Opinion dated Aug. 10, 2018. |
PCT/US2018/063935 International Search Report and Written Opinion dated Mar. 22, 2019. |
PCT/US2019/027538 International Search Report and Written Opinion dated Aug. 2, 2019. |
Seattle Real Time Fire 911 Calls. Available at https://catalog.data.gov/dataset/seattle-real-time-fire-911-calls-6cdf3 (3 pgs.) (Accessed Sep. 2017). |
Tazaki. Floating Ground: An Architecture for Network Mobility and Ad Hoc Network Convergence. Thesis. Graduate School of Media and Governance Keio University 5322 Endo Fujisawa, Kanagawa, Japan 2520882 (pp. 1-162) (2010). |
U.S. Census Bureau. Developers: Population Estimates APIs. Available at https://www.census.gov/data/developers/data-sets/popest-popproj/popest.html (2 pgs.) (Accessed Sep. 2017). |
U.S. Appl. No. 14/794,780 Office Action dated Feb. 2, 2016. |
U.S. Appl. No. 14/794,780 Office Action dated Mar. 7, 2017. |
U.S. Appl. No. 14/794,780 Office Action dated Nov. 15, 2016. |
U.S. Appl. No. 14/856,818 Office Action dated Apr. 12, 2017. |
U.S. Appl. No. 15/371,117 Office Action dated Aug. 5, 2019. |
U.S. Appl. No. 15/387,363 Office Action dated Jul. 6, 2017. |
U.S. Appl. No. 15/387,363 Office Action dated Mar. 15, 2017. |
U.S. Appl. No. 15/436,379 Office Action dated Apr. 6, 2017. |
U.S. Appl. No. 15/436,379 Office Action dated Nov. 2, 2017. |
U.S. Appl. No. 15/436,484 Office Action dated May 8, 2017. |
U.S. Appl. No. 15/436,484 Office Action dated Sep. 14, 2017. |
U.S. Appl. No. 15/444,133 Office Action dated Apr. 4, 2017. |
U.S. Appl. No. 15/444,133 Office Action dated Aug. 17, 2017. |
U.S. Appl. No. 15/497,067 Office Action dated Jun. 23, 2017. |
U.S. Appl. No. 15/588,343 Office Action dated Feb. 26, 2018. |
U.S. Appl. No. 15/589,847 Office Action dated Jun. 23, 2017. |
U.S. Appl. No. 15/589,847 Office Action dated Nov. 30, 2017. |
U.S. Appl. No. 15/589,847 Office Action dated Nov. 6, 2018. |
U.S. Appl. No. 15/667,531 Office Action dated Apr. 5, 2018. |
U.S. Appl. No. 15/667,531 Office Action dated Nov. 8, 2017. |
U.S. Appl. No. 15/682,440 Office Action dated Jul. 10, 2019. |
U.S. Appl. No. 15/880,208 Office Action dated Aug. 7, 2018. |
U.S. Appl. No. 15/958,186 Office Action dated Oct. 18, 2018. |
U.S. Appl. No. 15/958,398 Office Action dated Oct. 12, 2018. |
U.S. Appl. No. 15/960,384 Office Action dated Jul. 12, 2018. |
U.S. Appl. No. 16/150,099 Office Action dated Jun. 25, 2019. |
U.S. Appl. No. 16/178,476 Office Action dated May 30, 2019. |
U.S. Appl. No. 16/209,892 Office Action dated Feb. 8, 2019. |
U.S. Appl. No. 16/271,634 Office Action dated Jun. 13, 2019. |
U.S. Appl. No. 16/378,363 Office Action dated Jul. 19, 2019. |
U.S. Appl. No. 16/436,810 Office Action dated Aug. 9, 2019. |
Weather Company Data for IBM Bluemix APIs. Available at https://twcservice.mybluemix.net/rest-api/ (100 pgs) (Accessed Sep. 2017). |
Co-pending U.S. Appl. No. 16/740,207, filed Jan. 10, 2020. |
Co-pending U.S. Appl. No. 16/798,049, filed Feb. 21, 2020. |
Co-pending U.S. Appl. No. 16/823,192, filed Mar. 18, 2020. |
Co-pending U.S. Appl. No. 16/834,914, filed Mar. 30, 2020. |
PCT/US2020/013176 International Search Report and Written Opinion dated May 8, 2020. |
Song. Next Generation Emergency Call System with Enhanced Indoor Positioning, Columbia University. Thesis [online] [retrieved Apr. 20, 2020 from < url:https://scholar.google.co.kr/citations/?user=h_4uUqAAAAAJ&hl=ko > (156 pgs) (2014) < /url: < a >. |
U.S. Appl. No. 15/976,600 Office Action dated Jan. 30, 2020. |
U.S. Appl. No. 16/162,171 Office Action dated Apr. 9, 2020. |
U.S. Appl. No. 16/162,171 Office Action dated Nov. 4, 2019. |
U.S. Appl. No. 16/271,634 Office Action dated Dec. 16, 2019. |
U.S. Appl. No. 16/384,600 Office Action dated Apr. 2, 2020. |
U.S. Appl. No. 16/421,355 Office Action dated Feb. 4, 2020. |
U.S. Appl. No. 16/436,810 Office Action dated Dec. 17, 2019. |
U.S. Appl. No. 16/526,195 Office Action dated Dec. 27, 2019. |
U.S. Appl. No. 16/740,207 Office Action dated Mar. 11, 2020. |
U.S. Appl. No. 16/378,363 Office Action dated Jan. 14, 2020. |
U.S. Appl. No. 16/384,600 Office Action dated Jun. 9, 2021. |
U.S. Appl. No. 16/865,170 Office Action dated Jul. 9, 2021. |
U.S. Appl. No. 16/936,856 Office Action dated Aug. 16, 2021. |
Number | Date | Country | |
---|---|---|---|
20190335310 A1 | Oct 2019 | US |
Number | Date | Country | |
---|---|---|---|
62021709 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15958186 | Apr 2018 | US |
Child | 16509296 | US | |
Parent | 15436484 | Feb 2017 | US |
Child | 15958186 | US | |
Parent | 14794780 | Jul 2015 | US |
Child | 15436484 | US |