Conversion of low temperature heat to electrical energy has been a long-standing challenge to engineers and scientists. A traditional approach involves use of a thermopile, which is inefficient and relatively expensive. A system and method for efficiently providing heat to electrical energy conversion is highly desirable.
The embodiments of the invention relate to a heat to electrical energy conversion system and method. The embodiments utilize a capacitor having dielectric with a specific Curie temperature. When charged capacitors are exposed to a liquid source having a temperature above the Curie temperature for a predetermined time such that the temperature of their dielectric material exceeds the Curie temperature, the capacitance decreases, causing an increase in the voltage output from the capacitor. The voltage output can then be stored in a voltage storage component. In one example application, a power plant, the energy lost in waste heat is as much as the electrical energy generated. Hence, using the system and method discussed herein to recover this waste heat can contribute greatly to the overall efficiency of the power plant.
Capacitors 40 each have a specific Curie temperature and are configured to exhibit an increased capacitance when their dielectric material is at a temperature below the Curie temperature and exhibit a decreased capacitance at a temperature above the Curie temperature. As used herein, the Curie temperature is the temperature above which the material loses its spontaneous electric polarization. Above the Curie temperature, a magnetic material loses its high permeability and a high permittivity material loses its high permittivity. A capacitor whose dielectric is made of a high permittivity ferro-electric material will have a high capacitance at a temperature below the Curie temperature, but will have a low capacitance when the temperature exceeds the Curie temperature. In a typical transition, the permittivity starts at 2000 below the Curie temperature and ends at 100 above the Curie temperature.
In some embodiments, capacitors 40 comprise a high permittivity ferro-electric dielectric material. As an example, capacitors 40 may comprise Barium Strontium Titanate (BST). BST is a multi-component single phase material with a Curie peak that can be moved by modifying the barium to strontium ratio. The permittivity of such material may be at least 300 and may range up to about 5000 depending upon the composition, manufacturing, and annealing process. Non-ferroelectric materials typically have permittivity less than 100. The Curie temperature of the BST material may be set by adjusting the ratio of barium to strontium during the manufacturing of the capacitor. For example, if energy is to be extracted from a liquid source at 50° C., then the Curie temperature is set at a few degrees below 50° C., say 47° C., and the appropriate ratio of barium to strontium is used in the dielectric material (see
In some embodiments, capacitors 40 each are configured to have dielectric materials with the same Curie temperature. In some embodiments, the dielectric material of capacitors 40 do not each have the same Curie temperature. Depending on the nature of the liquid source, the dielectric composition of capacitors 40 can be adjusted to suit the temperature of the liquid source. For example, if the temperature of discharge water from a cogeneration plant is 70° C., the Curie temperature for the dielectric may then be set a few degrees less than 70° C., such as 67° C., to insure that contact with the liquid source will set the dielectric material of the capacitor to a non-ferro-electric state.
Capacitors 40 may comprise any type of commercially available capacitor, with details depending upon the size, shape, and desired dielectric material Curie temperature. As an example, capacitors 40 may have specifications including a specific heat capacity of about 500 J/kg-K, a capacitance of about 200 μF/gram or 0.2 F/gram, and a change in temperature of about 10 K. From the data, a 1 kg capacitor pre-charged to 30 V and discharged at 90 V in 10 s generates 180 J electrical energy, while it absorbs 5000 J of heat energy, providing an efficiency of 3.6%. If the change in temperature can be reduced to 3 K, the efficiency would be around 10%. This is a higher efficiency than is generally obtained from typical thermopiles, which is typically less than 1%.
In operation, controller 20, which may be a commercially available controller specifically programmed to achieve the results discussed herein, may cause switch 30 to connect one or more capacitors 40 to voltage source 50 so that capacitors can be charged by voltage source 50. For example, each capacitor is pre-charged at a certain voltage, Vo. When each capacitor is in turn immersed in the liquid source, the new voltage would be V=Co/C*Vo, where Co is the original capacitance, C is the capacitance after the dielectric material of the capacitor temperature exceeds the Curie temperature, and Vo is the original voltage. Thus, if the capacitance decreased to ⅕ of original capacitance, then the new voltage would be 5 times the original voltage. The increased voltage can then be discharged to a voltage storage 60, which can be connected to capacitors 40 by switch 30. As an example, voltage storage 60 may comprise a battery or another capacitor.
Subsequent to charging, and as will be discussed further with respect to
System 100 may also include a cooling system, such as fan 180, to help cool capacitors 130 subsequent to their exposure to liquid source 120. A controller, such as controller 20 shown in
In some embodiments of system 100, the switching to cause the voltage source, such as voltage source 50, to connect to capacitors 130 to charge capacitors 130 as well as to connect capacitors 130 to the voltage storage, such as voltage storage 60, is performed by a controller connected to the switch, such as controller 20 connected to switch 30 as shown in
Other embodiments of system 100 may utilize mechanical switching. For example,
Referring to
Referring now to
Step 530 then involves connecting the capacitors to voltage storage. As an example, step 530 may be performed by controller 20 sending a signal to switch 30 to connect capacitors 40 to voltage storage 60, such as a battery or another capacitor. After the capacitance of the capacitor decreases due to the temperature of the dielectric material of the capacitor exceeding the Curie temperature, switch 30 may connect capacitors 40 to voltage storage 60 so that the capacitor will discharge a voltage, which will be greater than the initial voltage of the capacitor prior to being exposed to the liquid source, into voltage storage 60.
Step 540 involves removing the capacitors from the liquid source. As an example, controller 20 may send a signal to motor 160 to cause shaft 150 to rotate to cause capacitor 130 to be removed from liquid source 120. Step 550 may involve cooling the dielectric material of the capacitors down to a temperature at or below the Curie temperature. In some embodiments, step 550 may involve controller 20 sending a signal to power cooling system 70, such as fan 180, to cool capacitors 130. In some embodiments, the time delay between exposure of capacitors 130 to liquid source 120 allows for capacitors to cool without use of a cooling system. Following step 550, method 500 may continue back to step 510 and be repeated in an iterative process where the capacitors are charged, exposed to a liquid source, connected to a voltage storage, removed from the liquid source, and cooled.
Some or all of the steps of method 500 may be stored on a computer-readable storage medium, such as a non-transitory computer-readable storage medium, wherein the steps are represented by computer-readable programming code. Some or all of the steps of method 500 may also be computer-implemented using a programmable device, such as a computer-based system. Some or all of the steps of method 500 may comprise instructions that may be stored within a processor or programmable controller, such as controller 20 shown in
Various storage media, such as magnetic computer disks, optical disks, and electronic memories, as well as non-transitory computer readable storage media and computer program products, can be prepared that can contain information that can direct a device, such as a micro-controller or processor, to implement some or all of the steps of method 500. Once an appropriate device has access to the information and programs contained on the storage media, the storage media can provide the information and programs to the device, enabling the device to perform the above-described systems and/or methods.
For example, if a computer disk containing appropriate materials, such as a source file, an object file, or an executable file, were provided to a computer, the computer could receive the information, appropriately configure itself and perform the functions of the various systems and methods outlined in the diagrams and flowcharts above to implement the various functions. That is, the computer could receive various portions of information from the disk relating to different elements of the above-described systems and/or methods, implement the individual systems and/or methods, and coordinate the functions of the individual systems and/or methods.
Many modifications and variations of the System and Method for Capacitive Heat to Electrical Energy Conversion are possible in light of the above description. Within the scope of the appended claims, the embodiments of the systems described herein may be practiced otherwise than as specifically described. The scope of the claims is not limited to the implementations and the embodiments disclosed herein, but extends to other implementations and embodiments as may be contemplated by those having ordinary skill in the art.
This application is a continuation-in-part of U.S. patent application Ser. No. 13/463,670, filed on May 3, 2012, entitled “Low Temperature Magnetic Heat Engine,” the entire content of which is fully incorporated by reference herein.
The System and Method for Capacitive Heat to Electrical Energy Conversion is assigned to the United States Government and is available for licensing for commercial purposes. Licensing and technical inquiries may be directed to the Office of Research and Technical Applications, Space and Naval Warfare Systems Center, Pacific, Code 72120, San Diego, Calif., 92152; voice (619) 553-5118; email ssc_pac_T2@navy.mil; reference Navy Case Number 101609.
Number | Name | Date | Kind |
---|---|---|---|
2016100 | Schwarzkopf | Oct 1935 | A |
3062999 | Brown | Nov 1962 | A |
4425540 | Olsen | Jan 1984 | A |
4730137 | Vollers | Mar 1988 | A |
20060144048 | Schulz | Jul 2006 | A1 |
20080122398 | Ho | May 2008 | A1 |
20110048032 | Chang | Mar 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
Parent | 13463670 | May 2012 | US |
Child | 13898594 | US |