System and method for cardiac valve repair and replacement

Information

  • Patent Grant
  • 11510780
  • Patent Number
    11,510,780
  • Date Filed
    Friday, February 28, 2020
    4 years ago
  • Date Issued
    Tuesday, November 29, 2022
    2 years ago
Abstract
A method of delivering a prosthetic mitral valve includes delivering a distal anchor from a delivery sheath such that the distal anchor self-expands inside a first heart chamber on a first side of the mitral valve annulus, pulling proximally on the distal anchor such that the distal anchor self-aligns within the mitral valve annulus and the distal anchor rests against tissue of the ventricular heart chamber, and delivering a proximal anchor from the delivery sheath to a second heart chamber on a second side of the mitral valve annulus such that the proximal anchor self-expands and moves towards the distal anchor to rest against tissue of the second heart chamber. The self-expansion of the proximal anchor captures tissue of the mitral valve annulus therebetween.
Description
INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


FIELD

The present invention relates generally to the treatment of cardiac valve disorders, such as mitral valve replacement, using minimally invasive techniques.


BACKGROUND

The mitral valve lies between the left atrium and the left ventricle of the heart. Various diseases can affect the function of the mitral valve, including degenerative mitral valve disease and mitral valve prolapse. These diseases can cause mitral stenosis, in which the valve fails to open fully and thereby obstructs blood flow, and/or mitral insufficiency, in which the mitral valve is incompetent and blood flows passively in the wrong direction.


Many patients with heart disease, such as problems with the mitral valve, are intolerant of the trauma associated with open-heart surgery. Age or advanced illness may have impaired the patient's ability to recover from the injury of an open-heart procedure. Additionally, the high costs are associated with open-heart surgery and extra-corporeal perfusion can make such procedures prohibitive.


Patients in need of cardiac valve repair or cardiac valve replacement can be served by minimally invasive surgical techniques. In many minimally invasive procedures, small devices are manipulated within the patient's body under visualization from a live imaging source like ultrasound, fluoroscopy, or endoscopy. Minimally invasive cardiac procedures are inherently less traumatic than open procedures and may be performed without extra-corporeal perfusion, which carries a significant risk of procedural complications.


Minimally invasive aortic valve replacement devices, such as the Medtronic Corevalve or the Edwards Sapien, deliver aortic valve prostheses through small tubes which may be positioned within the heart through the aorta via the femoral artery or through the apex of the heart. However, current cardiac valve prostheses are not designed to function effectively within the mitral valve. Further, current cardiac valve prostheses delivered via a minimally invasive device are often difficult to place correctly within the native valve, difficult to match in size to the native valve, and difficult to retrieve and replace if initially placed incorrectly.


Accordingly, it is desirable to have a mitral valve replacement that solves some or all of these problems.


SUMMARY OF THE DISCLOSURE

In general, in one embodiment, a prosthetic mitral valve includes a proximal anchor, a distal anchor, and a central portion therebetween. The proximal and distal anchors each include a first outer frame and a second outer frame. The first outer frame includes a plurality of first arcs joined together, and the second outer frame includes a plurality of second arcs joined together. The plurality of first arcs are out of phase relative to the plurality of second arcs.


This and other embodiments can include one or more of the following features. The first plurality of arcs can be movable relative to the second plurality of arcs. The first and second outer frames can be substantially circular. The plurality of first arcs can be disposed around substantially the entire first outer frame, and the plurality of second arcs can be disposed around substantially the entire second outer frame. The plurality of first arcs can lie substantially in a first plane, and the plurality of second arcs can lie substantially in an adjacent second plane. The first and second arcs can be approximately 90 degrees out of phase. The first and second outer frames can be made of wire rope. The wire rope of the first outer frame can have an opposite lay than a lay of the wire rope of the second outer frame. The proximal anchor and distal anchor can be substantially parallel to one another. The central portion can include substructures connecting the proximal and distal anchors. The substructures can be hexagonal. The proximal anchor, distal anchor, and central portion can be configured to expand from a constrained configuration to an expanded configuration. The device can be configured to foreshorten upon expansion of the proximal anchor, distal anchor, and central portion from the constrained configuration to the expanded configuration. The proximal anchor and the distal anchor can each have a diameter in the expanded configuration that is greater than a diameter of the central portion in the expanded configuration.


In general, in one embodiment, a prosthetic mitral valve includes a valve frame comprising a proximal anchor, a distal anchor, and a central portion therebetween. The valve frame is configured to expand from a constrained configuration to an expanded configuration. A plurality of struts is attached to the central portion and extends distally past the distal anchor. A plurality of leaflets are secured to the plurality of struts such that at least a portion of each leaflet extends distally past the distal anchor.


This and other embodiments can include one or more of the following features. The valve frame can be configured to self-expand. The plurality of leaflets can be attached to the central portion. The plurality of leaflets can include a biomaterial or a polymer. The proximal anchor can be covered with a skirt configured to seal the prosthetic valve. The skirt can include a biomaterial or polymer. The outer perimeter of the proximal anchor can be substantially circular when covered with the skirt. The plurality of leaflets can be arranged to fill an inner diameter of the mitral valve prosthetic. The ratio of the inner diameter to a height of the plurality of struts can be approximately 2:1. The valve frame can be configured to foreshorten upon expansion of the valve frame from the constrained configuration to the expanded configuration. The proximal anchor and the distal anchor can each have a diameter in the expanded configuration that can be greater than a diameter of the central portion in the expanded configuration.


In general, in one embodiment, a prosthetic mitral valve includes a valve frame having a proximal anchor, a distal anchor, and a central portion therebetween. The valve frame is configured to expand from a constrained configuration to an expanded configuration. The ratio of an outer diameter of the central portion to a length of the valve frame in the expanded configuration is at least 1.1.


This and other embodiments can include one or more of the following features. The valve frame can be configured to self-expand. The ratio can be less than or equal to 2. The ratio of the outer diameter of the proximal anchor or the distal anchor to the length of the device can be greater than or equal to 2. The outer diameter of the central portion can be between 25 and 40 mm. The length can be less than or equal to 22 mm. The proximal and distal anchors can extend radially outward from the central portion. The outer diameter of the proximal and distal anchors can be at least 38 mm.


In general, in one embodiment a method of delivering a prosthetic mitral valve includes delivering a distal anchor from a delivery sheath such that the distal anchor self-expands inside a first heart chamber on a first side of the mitral valve annulus, pulling proximally on the distal anchor such that the distal anchor self-aligns within the mitral valve annulus and the distal anchor rests against tissue of the ventricular heart chamber, and delivering a proximal anchor from the delivery sheath to a second heart chamber on a second side of the mitral valve annulus such that the proximal anchor self-expands and moves towards the distal anchor to rest against tissue of the second heart chamber. The self-expansion of the proximal anchor captures tissue of the mitral valve annulus therebetween.


This and other embodiments can include one or more of the following features. The first heart chamber can be a ventricular heart chamber, and the second heart chamber can be an atrial heart chamber.


In general, in one embodiment, a method of delivering a prosthetic mitral valve includes securing a prosthetic valve within a delivery device by extending a plurality of wires of the delivery device through a proximal anchor so as to collapse the proximal anchor, extending the prosthetic delivery device into a heart with the prosthetic valve covered by a sheath of the delivery device, pulling the sheath proximally to expose a distal anchor of the prosthetic valve, thereby allowing the distal anchor to self-expand into place on a first side of the mitral valve annulus, pulling the sheath proximally to expose the proximal anchor, loosening the wires of the delivery device so as to allow the proximal anchor to self-expand into place on a second side of the mitral valve annulus, and removing the delivery device from the heart.


This and other embodiments can include one or more of the following features. The method can further include tightening the wires after loosening the wires so as to collapse the proximal anchor again, repositioning the proximal anchor to a second location on the second side of the mitral valve annulus and loosening the wires of the delivery device so as to allow the proximal anchor to self-expand into place at the second location on the second side of the mitral valve annulus. Extending a plurality of wires of the delivery device through a proximal anchor so as to collapse the proximal anchor and can include extending a plurality of wires through arcs of the proximal anchor. Neighboring retention wires can extend through neighboring arcs. The method can further include extending a guidewire down a central lumen of the delivery device before extending the prosthetic delivery device into the heart. Tightening and loosening the wires of the delivery device can be performed with a control on a handle of the delivery device.


In general, in one embodiment, a delivery device includes a central longitudinal structure having a plurality of tubes extending therethrough, a retention wire extending within each tube, a sheath, a handle, and a control on the handle. Each tube has a tubular wall and an aperture in the tubular wall. Each retention wire configured to extend through a portion of a medical device at the aperture. The sheath is configured to fit over and slide relative to the central longitudinal structure and the medical device. The handle is connected to the central longitudinal structure. The control on the handle is configured to tighten the wires to collapse at least a portion of the medical device and to loosen the wires to expand the portion of the medical device.


This and other embodiments can include one or more of the following features. The delivery device can further include a central lumen extending through the central longitudinal structure. The central lumen can be configured to house a guidewire. The retention wires can be made of nitinol or liquid crystal polymer fiber. There can be between 4 and 20 retention wires and tubes. The delivery device can further include a tapered distal tip connected to the central longitudinal structure. The control can be further configured to retighten the wires after loosening to collapse the portion of the medical device again.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:



FIGS. 1A-1E are various view of a compliant, self-centering valve prosthesis structure suitable for delivery via minimally invasive surgical techniques. FIGS. 1A and 1B are isometric views of the prosthesis. FIG. 1C is a proximal view of a proximal anchor of the prosthesis. FIG. 1D is a proximal view of the prosthesis. FIG. 1E is a side view of the prosthesis.



FIGS. 2A-2C show an exemplary prosthesis with leaflets attached thereto.



FIG. 2A is an isometric view of the prosthesis. FIG. 2B is a distal view of the prosthesis.



FIG. 2C is a section view of the prosthesis.



FIGS. 3A-3B show the prosthesis of FIGS. 1A-1E with various dimensions marked thereon. FIG. 3A is a proximal view of the prosthesis. FIG. 3B is a side view of the prosthesis.



FIG. 4A shows a delivery device with a prosthesis fully loaded therein.



FIG. 4B shows the delivery device with the prosthesis deployed.



FIGS. 5A-5D shows exemplary steps for delivery a valve prosthesis. FIG. 5A shows a delivery device housing the prosthesis. FIG. 5B shows the distal anchor of the prosthesis deployed with the proximal anchor folded up therearound. FIG. 5C shows the sheath of the delivery device pulled back to expose the retention wires of the delivery device.



FIG. 5D shows the valve prosthesis fully deployed around the delivery device.



FIGS. 6A-6D show placement of a prosthesis within the mitral valve using a delivery device.



FIG. 7 shows a valve prosthesis structure with integral folding hooks for gripping cardiac tissue.



FIGS. 8A-8B and 9A-9B show various wire rope configurations.



FIGS. 10A-10B show a mechanism for releasing the retention wires of a delivery device by pulling proximally on the retention wires.



FIGS. 11A-11B show a mechanism for loosening the retention wires of a delivery device by pushing distally on the retention wires.



FIGS. 12A-12B show an exemplary mechanism for looping the proximal anchor with the retention wires of a delivery device. FIG. 12A shows the use of twelve retention wires. FIG. 12B shows the use of six retention wires.



FIG. 13 shows an alternative mechanism for looping the proximal anchor over a delivery device.





DETAILED DESCRIPTION

Described herein is a flexible, self-orienting cardiac valve prosthesis configured to be delivered through minimally invasive techniques. The prosthesis can include a proximal anchor (e.g., configured to be placed in the ventricle), a distal anchor (e.g., configured to be placed in the atrium), a central portion or column between the anchors, a plurality of struts extending distally (e.g., into the ventricle), and a plurality of leaflets attached to the struts. The prosthesis can be self-expanding, such as be made of super elastic nickel titanium (nitinol). In some embodiments, the prosthesis can be made of woven stranded nitinol.


The prosthesis described herein can be delivered to a cardiac valve orifice, such as the mitral valve, by using minimally invasive techniques to access cardiac valves through small incisions in the patient's body, passing the prosthesis through the apex of the heart, through the aorta via femoral artery access, through the aorta via an intercostal puncture, through the vena cava via femoral vein access, through the vena cava via jugular access, and through the venous system into the left heart via a transseptal puncture. The flexible prosthesis can be folded and compressed to fit within a delivery tube. The delivery tube can used to position the prosthesis at the treatment site, and if necessary, re-sheath, reposition, and re-deploy the device.


During deployment, the distal anchor can be deployed first in a cardiac chamber, such as the ventricle, and retracted to a seated position against the valve orifice, such as the mitral valve orifice. Then the center column and proximal anchor may then be deployed in another cardiac chamber, such as the atrium, sandwiching the valve orifice securely between the anchors in opposing cardiac chambers.


Embodiments of the invention are designed to secure the valve prosthesis in the orifice by applying a radial force from the center column structure of the prosthesis outward against the cardiac orifice and by sandwiching the cardiac orifice between distal and proximal anchors that are larger in diameter than the orifice. Further engagement between the prosthesis and tissue may be added by securing small, curved wire hooks into the sub-structures of the valve prosthesis.



FIGS. 1A-1E show an exemplary embodiment of a valve prosthesis 100. The valve prosthesis includes a proximal anchor 2, a distal anchor 3, and a central portion 4 therebetween. A central opening 15 extends through the center of the prosthesis 100. The central portion 4 can substantially trace the perimeter of the central opening 15 while each anchor 2, 3 can extend outwardly therefrom in an annular shape. The proximal anchor 2, distal anchor 3, and central portion 4 can be formed of wire, such as nitinol wire rope. Each anchor 2,3 can include a first outer frame 122, 133 and a second outer frame 222, 233, respectively. In one embodiment, the proximal anchor 2 and distal anchor 3 can be substantially parallel to one another.


An exemplary proximal anchor 2 is shown in FIG. 1C. The first outer frame 122 can sit proximal to the second outer frame 222, and the first outer frame 122 can sit in a plane substantially parallel to the plane of the second outer frame 222. Further, each frame 122, 222 can include a plurality of arcs 111, 211 (which can also be referred to as arcuate portions, curved portions, or petals), such as between 4 and 10 or between 5 and 8 arcs, joined together at joints 16, 26, respectively. For example, outer frame 122 can include six arcs 111a,b,c,d,e,f while outer frame 222 can also include six arcs 211a,b,c,d,e,f. The arcs 111 of the outer frame 122 can be connected together, and the arcs 211 of the outer frame 222 can be connected together, so as to form a substantially circular outer perimeter for each of the frames 122, 222.


Each joint 16, 26 between neighboring arcs 111 or 211 can be, for example, a crimp that crimps adjacent arcs (e.g., 111a and 111b) to one another. As shown in FIG. 1C, the outer frames 122, 222 can be positioned relative to one another such that the arcs 111, 211 are out of phase relative to one another. For example, the arcs 111 can be approximately 90 degrees out of phase relative to the arcs 211. That is, the arcs 111 of the first outer frame 122 can overlap with the arcs 211 of the second outer frame 222 such that, for example, a single arc 111a of the first outer frame 122 overlaps with half of two underlying arcs 211f, 211a of the second outer frame 222. In some embodiments, only some arcs are out of phase with one another while other arcs are in-phase with one another. The second outer frames 133, 233 can likewise include arcs as described with respect to the first outer frame 122, 222.


As shown in FIGS. 1A and 1E, the first outer frame 122, 133 and the second outer frame 222, 233 of each anchor 2, 3 can be connected to one another through the central portion 4. The central portion 4 can extend from the crimps 16, 26 of the proximal anchor 2 to the corresponding crimps of the distal anchor 3. The central portion 4 can include substructures or wire segments 44 that form a pattern, such as a hexagonal pattern (see FIG. 1E). For example, two wire segments 44a,b of the central portion 4 can extend at an angle from the crimp 16a (see FIGS. 1D, 1E), such as to form an angle of approximately 120 degrees relative to one another. Each of the wire segments 44a,b can then meet adjacent wire segments within the central portion 4 (e.g., segment 44b meets segment 44c). The adjacent wire segments (e.g., 44b and 44c) can then be joined together at a joint 46 (e.g., joint 46a). The joint 46a can form a column substantially parallel to a central axis 110 of the prosthesis 100. This pattern can extend throughout the entire prosthesis to form a number of joints 46, such as twelve joints 46. The joints 46 can not only fix the position of the outer frames of a single anchor together, but also fix the proximal and distal anchors 2, 3 together. The hexagonal structure of the segments 44 and joints 46 can advantageously provide radial and vertical strength as well as stability to the prosthesis 100.


In some embodiments (as shown in FIG. 1D), parts of the central portion 4 can be formed of the same wire or wire rope as the outer frames of the anchors 2,3 and/or the outer frames of the anchors 2,3 can be formed of the same wire or wire rope as one another. For example, two single strands of wire, such as two 22-inch long strands of wire, can be used to form the anchors 2, 3 and the central portion 4. As shown in FIGS. 1D and 1E, a single strand 191 (darkened in the picture relative to the opposite strand 193 for clarity) can form an arc 111a (see FIG. 1D) of the first outer frame 122 of proximal anchor 2, extend through a joint 16a to form wire segment 44b of the central portion 4, extend through joint 46a to form wire segment 44d (see FIG. 1D), then form an arch of the second outer frame 233, extend through another joint to form wire segment 44e (see FIG. 1D), extend around in a similar fashion to form wire segment 44f (see FIG. 1D), and continue winding in a similar fashion until all of the outer frames 122, 233 have been formed from the single strand 191. The ends of the strand 191 can then be attached to one another, such as through splicing crimps, butt joint crimps, welding, riveting, or weaving. The second strand 193 can be wound similarly to form the second outer frame 222 of the proximal anchor 2 and the first outer frame 133 of the distal anchor 3.


By joining the first outer frame 122, 133 to the second outer frame 222, 233 of each anchor 2, 3, as described above, the arcs of each outer frame can be movable relative to one another. For example, the arc 111a can be movable relative to the arcs 211f, 211a that it overlaps (see FIG. 1C). That is, the outer perimeter of the arc 111a can flex along the central axis and/or translate relative to the arcs 211f, 211a (while the inner perimeter is fixed at the joints 46).


Advantageously, the large arc structure of the anchors can provide flexibility and compliance for the portions of the prosthesis intended to be placed in the chambers of the heart. In contrast, in the stiffer tissue of the valve orifice, the hexagonal sub-structures of the central portion can provide higher radial stiffness and strength.


Further, by using wire rope, the prosthesis can advantageously be foldable and strong while the individual fibers, because they are small in diameter, can maintain resistance to fatigue and fracture. In some embodiments, the two frames of a single anchor can be formed of wire rope of opposite lays. For example, the wire of one frame (e.g. strand 193) can be made of a rope twisted to the left while the wire of another frame (e.g. strand 191) can be made of a rope twisted to the right. Using wires of opposite lays can allow the wires to compensate for one another as they compress, thereby maintaining relative positioning during expansion or contraction/folding of the device (as opposed to twisting of the entire device). Various possibilities for winding the wire rope are shown in FIGS. 8A-9B.


As shown in FIGS. 1A and 1E, struts 5 can extend distally from the distal anchor 3 and/or the central portion 4 and be configured to hold leaflets (shown in FIGS. 2A-2C). The struts 5 can be formed, for example, of wire rope. Further, in one example, each strut 5 can include a plurality of wire components 55, such as three wire components 55. Each of the three wire components 55 of a single strut 5 can extend from neighboring joints 46 and come together at a joint 56, thereby forming triangular struts 5. In some embodiments, additional supporting structures, such as tubes, can be placed over or around the struts to increase the stiffness. The triangular struts 5 can provide vertical strength and lateral flexibility.


In one embodiment, there can be three struts 5 located approximately 120 degrees away from one another around the circumference of the prosthesis 100. The joints 56 can be, for example, crimps. As shown in FIGS. 1A and 1E, in one embodiment, the center strut member 55a of a three-strut support can be substantially straight and connected to two outside, curved strut members 55b, 55c to form a structure comprised of two substantially triangular sub-structures, each with the center member as a common triangle leg. This center member may be made of a thin element of material which provides strength in tension as the pressurized leaflets are pushed toward the center of the valve, while providing flexion in compression to allow the valve prosthesis to be folded for delivery and to allow the prosthesis to conform to tissue when placed within the heart.


The various crimps used for the joints of the prosthesis 100 may be made of a suitable implantable material, such as platinum, tantalum, or titanium. Further, in place of crimps, braids, weaves, or welding can be used.


Referring to FIGS. 2A-2C, the valve prosthesis 100 can include integral valve leaflets 511 attached, such as sewn, to the struts 5. There can be three integral valve leaflets 511, and the leaflets 511 can form a pressure actuated valve that provides uni-directional flow occlusion when the prosthesis 100 is implanted in a valve orifice. The leaflets can be constructed of bio-materials, such as bovine or porcine pericardium, or polymer materials.


In one embodiment (shown in FIGS. 2B-2C), the proximal anchor 2 can include a cover or skirt 12 thereon or therearound formed of a biomaterial or thin polymer material. The skirt 12 can advantageously help seal the prosthesis 100 against the cardiac tissue when implanted.


The prosthesis 100 can be configured to be placed in a cardiac valve orifice such that the central portion 4 lines the orifice while the proximal and distal anchors 2, 3 sit within the chambers of the heart and pinch tissue of the orifice therebetween.


In some embodiments, the prosthesis 100 can be sized and configured for use in the mitral valve orifice (shown in FIG. 6D). Referring to FIGS. 3A-3B, to ensure that the prosthesis 100 fits properly within the valve, the diameter do of the central opening 15 can be greater than a length l of the device when fully expanded. For example, the ratio do/l can be greater than or equal to 1.1, such as greater than or equal to 1.2 or greater than or equal to 1.3. Further, the ratio do/l can be less than 2.0. In one embodiment, the diameter do is between 25 mm and 40 mm, such as approximately 28 mm. Further, in one embodiment, the length l is less than or equal to 22 mm, or less than or equal to 20 mm, such as approximately 14 mm. Further, to ensure that the proximal and distal anchors have enough tissue to grab onto, a ratio of the outer diameter of the anchors, dT, to the length l can be greater than or equal to 2.0. In one embodiment, an outer diameter of anchors, dT, can be at least 38 mm, such as greater than or equal to 40 mm. Further, in one embodiment, the anchors can extend out at a radius ra of greater than 10 mm, such as approximately 12 mm. Finally, a ratio do to a length of the struts ls can be approximately 1.5 to 3.0, such as 2.1. A radio of do/ls within this range can advantageously ensure that there is enough leaflet material to allow the leaflets to oppose and seal under stress while maintaining a small enough length to fit properly within the valve. In one embodiment, the struts have a length ls of between 8 and 16 mm, such as approximately 14 mm. Further, lc can be approximately 4-10 mm, such as 6 mm.


In one exemplary embodiment, do is 28 mm, ra is 12 mm, lc is 6 mm, ls is 14 mm, dT is 40 mm, and l l is 14 mm.



FIGS. 4A-4B show a closed delivery device 200 for delivery of a valve prosthesis 100. The delivery device 200 can include an outer sheath 13 and a multi-lumen central longitudinal structure 17 extending therethrough. The valve prosthesis 100 is configured to fit over the central longitudinal structure 17 and within the sheath 13 so as to be fully encapsulated within the delivery device 200. The lumens in the longitudinal structure 17 can be tubular structures 357 (see FIGS. 4B and 5C). Each tubular structure 357 can include a side lumen 355 (see FIGS. 4B and 10A) therein, i.e, an aperture disposed on a radial outer portion of the tubular wall. The tubular structures 357 can contain retention members 19 that bind the proximal anchor 2 of the valve prosthesis tightly to the longitudinal structure 17. The retention members 19 can be made, for example, of a strong, flexible material such as nitinol, nitinol wire rope, or liquid crystal polymer fiber, such as Vectran®. There can be various numbers of retention wires and corresponding tubes 357 and lumens, such as between 4 and 20 or between 6 and 12 retention wires and corresponding tubes/lumens. In one embodiment, there are six retention wires and lumens. In another, there are twelve retention wires and lumens. The delivery device 200 includes a central lumen 15 running therethrough (i.e., through the central longitudinal structure 17) configured to pass a standard cardiac guidewire 16. The guidewire 16 may be used to provide a safe pathway for getting the device 100 to the anatomical target. The delivery device 200 further includes a tapered tip 14 to provide a gradual, atraumatic transition from the guidewire to the outer sheath 13 of the delivery device 200.


In some embodiments, the delivery device 200 can be adapted to specific delivery paths and cardiac structures by being provided with pre-shaped bends in the outer sheath 13. In some embodiments, the delivery device 200 may contain pull-wires integral with the outer wall that may be tensioned to articulate and bend the outer sheath 13. The pull wires may terminate at the tip of the device to provide a bend starting at the distal tip or may terminate along the longitudinal shaft of the device to provide a more proximal bend location.



FIGS. 5A-5D show a multi-stage delivery system for a cardiac valve prosthesis (with the valve leaflets omitted from the drawings for clarity). FIG. 5A shows the delivery device 200 having a handle 300 connected thereto to control the delivery of a prosthesis loaded within the device.



FIGS. 5B and 5C shows the prosthesis 100 partially deployed. That is, as the sheath 13 is pulled back with a lever 301 on the handle 300, the distal anchor 3 (previously collapsed into the sheath 11 with the peaks of the arcs extending distally) pops open. The proximal anchor 2, in turn, can remain connected to the delivery device 100 via the retention wires 19. That is, the retention wires 19 can pass through the multi-lumen central structure 17, through the arcs of the outer frame 122, 222 at apertures 355, and back into lumens of the structure 17. Referring to FIGS. 10A and 12A, in one embodiment, the proximal anchor 2 can be connected to the retention wires 19 such that neighboring arcs 111a, 211a of the proximal anchor 2 extend over neighboring retention wires 19a, 19b. In other embodiments (as shown in FIG. 12B), two neighboring arcs 111a, 211a can extend over a single retention wire 19a. Referring back to FIGS. 5B and 5C, as the retention wires 19 are pulled tight, the peaks of the arcs of the proximal anchor 2 will be pulled proximally, thereby causing the proximal anchor 2 to fold or cinch up to form a funnel shape at the proximal end of the distal anchor 3 (crimps 16, 26 of the proximal anchor 2 can be seen).


To expand the proximal anchor 2, the wires 19 can either be withdrawn or loosened (such as with a lever 303 on the handle), thereby allowing the proximal anchor 2 to self-expand into place, as shown in FIG. 5D. Referring to FIGS. 10A-10B, in some embodiments, the wires 19a can be withdrawn completely, thereby allowing the proximal anchor 2 to expand. In another embodiment, shown in FIGS. 11A-11B, the retention wires 19 can be formed of loops that, when loosened, i.e. pushed distally, allow the distal anchor 2 to expand without releasing the anchor 2. By using such a mechanism, the proximal anchor can be resheathed and moved (by retightening the retention members 19) if necessary. A mechanism on the handle can then be used to release the retention members 19 entirely.


Referring to FIG. 6A, to deploy the valve prosthesis 100 in a valve (such as the mitral valve), the guidewire 16 and delivery device 200 can be inserted through the native valve. Referring to FIG. 6B, as the outer sheath 13 of the device 200 is retracted relative to the central longitudinal structure 17, the distal anchor 3 of the valve prosthesis is exposed and self-expands (such as into the left ventricle). Once expanded, the distal anchor 3 may be retracted proximally against the distal-facing tissue of the cardiac chamber around the orifice, providing positive tactile feedback that the distal anchor 3 is oriented and positioned properly against the distal wall of the cardiac orifice. Further retraction of the sheath 13 exposes the central portion 4 of the valve prosthesis, allowing the central portion 4 to radially expand against the inner wall of the cardiac orifice.


Referring to FIG. 6C, to expand the prosthesis 100 on the other side of the cardiac orifice (i.e., in the left atrium), the central retention members 19 of the delivery device can be withdrawn or loosened as described above, thereby expanding the proximal anchor 2. The expanded proximal anchor 2 provides a second backstop to the valve prosthesis 100, allowing the prosthesis 100 to sandwich the valve orifice, such as the mitral valve orifice between the proximal and distal anchors 2, 3. As the device 100 expands, it foreshortens, moving the proximal anchor 2 and distal anchor 3 toward each other to provide a compressive force on tissue surrounding the cardiac orifice, such as the valve annulus.


Thus, in one example, as shown in FIG. 6D, the prosthesis can be delivered into the mitral valve orifice such that the distal anchor 3 sits within the left ventricle while the proximal anchor 2 sits within the left atrium. The struts 5 and leaflets 511 can extend distally into the left ventricle. Tissue of the mitral valve annulus can be captured between the anchors 2, 3. Further, the size of the prosthesis 100 can be such that the anchors 2, 3 extend within the chambers of the heart and much wider than the diameter of the orifice itself, thereby allowing for strong tissue capture and anchoring. In some embodiments, placement of the prosthesis can move the existing leaflets valves out of the way.


In some embodiments, as described above, the valve prosthesis 100 can be repositioned using the delivery device 200. That is, by pulling on the retention wires 19, the proximal anchor 2 can be cinched back down with the proximal arcs extending proximally. The distal anchor 3 can be collapsed into the sheath (with the arcs extending distally) either by pulling proximally on the prosthesis 100 or pushing the sheath 13 distally.


Use of an alternative delivery device is shown in FIG. 13. As shown in FIG. 13, rather than including multiple retention wires, the delivery device can include a single elongate member 96 over which all of the arcs 111, 211 of the proximal anchor 2 are placed.



FIG. 7 shows an embodiment of the valve prosthesis 199 where retention hooks 21 are built into the device. The hooks 21 extend from toward the center of the device from the joints (e.g., crimps) of the distal anchor 3. The hooks may be made of nitinol and are curved so that as the distal anchor 3 is drawn toward the center longitudinal member 17 of the delivery device 200, the hooks flatten and collapse, allowing the outer sheath 13 of the delivery device 200 to slide smoothly over the hooks 21. As the outer sheath 13 is removed from the valve prosthesis 100 during delivery and the distal anchor 3 of the valve prosthesis opens, the hooks 21 expand into the tissue of the cardiac orifice. In embodiment, the hooks 21 are only located on the distal anchor 3, as the distal anchor 3, when located on the ventricular side of the aorta, undergoes the highest pressure. In other embodiments, the hooks 21 are located on the proximal anchor 2 and/or the central portion 4.


In one embodiment, small hooks in the distal anchor 3 may be used to grip the valve leaflets. As the distal anchor 3 is retracted from the ventricle toward the mitral valve annulus, the hooks can pull the leaflets into a folded position just under the ventricular side of the mitral annulus.


While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. A prosthetic mitral valve comprising: a valve frame configured to expand from a collapsed configuration to an expanded configuration and having a plurality of retention hooks extending radially from a central portion of the valve frame when the valve frame is in the expanded configuration and having a strut positioned at a distal end of the valve frame, the strut including a plurality of strut members joining at a joint; anda plurality of leaflets secured to the valve frame.
  • 2. The prosthetic mitral valve of claim 1, wherein the strut is configured to secure the leaflets.
  • 3. The prosthetic mitral valve of claim 1, wherein the plurality of strut members includes three strut members.
  • 4. The prosthetic mitral valve of claim 1, wherein the plurality of strut members form a triangular shape.
  • 5. The prosthetic mitral valve of claim 1, wherein the plurality of retention hooks flatten when the valve frame is in the collapsed configuration.
  • 6. The prosthetic mitral valve of claim 1, wherein a portion of the valve frame is covered with a skirt configured to seal the prosthetic mitral valve during use.
  • 7. The prosthetic mitral valve of claim 1, wherein the valve frame is self-expanding.
  • 8. The prosthetic mitral valve of claim 1, wherein the valve frame is configured to foreshorten during expansion of the valve frame.
  • 9. The prosthetic mitral valve of claim 1, wherein the joint is any one of a crimp, braid, weave and welding.
  • 10. The prosthetic mitral valve of claim 1, wherein the plurality of strut members includes a center strut member connected to two outside strut members at the joint to form two substantially triangular sub-structures, with the center strut member being a common triangular leg.
  • 11. The prosthetic mitral valve of claim 1, wherein the plurality of struts comprises three struts being spaced apart around a circumference of the prosthetic mitral valve.
  • 12. The prosthetic mitral valve of claim 1, wherein the valve frame a plurality of first arcs joined together and a plurality of second arcs joined together, the plurality of first arcs are out of phase relative to the plurality of second arcs in a plane transverse to a longitudinal axis of the prosthetic mitral valve.
  • 13. The prosthetic mitral valve of claim 12, wherein the plurality of first arcs are approximately 90 degrees out of phase relative to the plurality of second arcs.
  • 14. The prosthetic mitral valve of claim 1, wherein the valve frame is adapted to be secured in an orifice by applying a radial force from the central portion of the valve frame outward against the orifice.
  • 15. A prosthetic mitral valve comprising: a valve frame configured to expand from a collapsed configuration to an expanded configuration and having a plurality of retention hooks that extend radially from a central portion of the valve frame when the valve frame is in the expanded configuration and that flatten when the valve frame is in the collapsed configuration, and having a strut positioned at a distal end of the valve frame, the strut including a plurality of strut members joining at a joint; anda plurality of leaflets secured to the valve frame.
  • 16. The prosthetic mitral valve of claim 15, wherein the joint is any one of a crimp, braid, weave and welding.
  • 17. The prosthetic mitral valve of claim 15, wherein the valve frame is adapted to be secured in an orifice by applying a radial force from the central portion of the valve frame outward against the orifice.
  • 18. The prosthetic mitral valve of claim 15, the valve frame is configured to foreshorten during expansion of the valve frame.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/224,221, filed Dec. 18, 2018, titled “SYSTEM AND METHOD FOR CARDIAC VALVE REPAIR AND REPLACEMENT,” which is a continuation of U.S. patent application Ser. No. 15/424,742, filed Feb. 3, 2017, titled “SYSTEM AND METHOD FOR CARDIAC VALVE REPAIR AND REPLACEMENT,” now U.S. Pat. No. 10,154,906, which is a continuation of U.S. patent application Ser. No. 14/170,407, filed on Jan. 31, 2014, titled “SYSTEM AND METHOD FOR CARDIAC VALVE REPAIR AND REPLACEMENT,” now U.S. Pat. No. 9,561,103, which claims priority to U.S. Patent Provisional Application No. 61/847,515, filed on Jul. 17, 2013, titled “SYSTEM AND METHOD FOR CARDIAC VALVE REPAIR AND REPLACEMENT,” the entireties of which are incorporated by reference herein.

US Referenced Citations (651)
Number Name Date Kind
3334629 Cohn Aug 1967 A
3409013 Berry Nov 1968 A
3540431 Mobin-Ubdin Nov 1970 A
3628535 Ostrowsky et al. Dec 1971 A
3642004 Osthagen et al. Feb 1972 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3714671 Edwards et al. Feb 1973 A
3795246 Sturgeon Mar 1974 A
3839741 Haller Oct 1974 A
3868956 Alfidi et al. Mar 1975 A
3874388 King et al. Apr 1975 A
4056854 Boretos et al. Nov 1977 A
4106129 Carpentier et al. Aug 1978 A
4233690 Akins Nov 1980 A
4291420 Reul Sep 1981 A
4326306 Poler Apr 1982 A
4423809 Mazzocco Jan 1984 A
4425908 Simon Jan 1984 A
4501030 Lane Feb 1985 A
4531943 Van Tassel et al. Jul 1985 A
4580568 Gianturco Apr 1986 A
4602911 Ahmadi et al. Jul 1986 A
4610688 Silvestrini et al. Sep 1986 A
4617932 Kornberg Oct 1986 A
4648881 Carpentier et al. Mar 1987 A
4655218 Kulik et al. Apr 1987 A
4655771 Wallsten Apr 1987 A
4662885 DiPisa, Jr. May 1987 A
4665906 Jervis May 1987 A
4710192 Liotta et al. Dec 1987 A
4733665 Palmaz Mar 1988 A
4755181 Igoe Jul 1988 A
4796629 Grayzel Jan 1989 A
4819751 Shimada et al. Apr 1989 A
4834755 Silvestrini et al. May 1989 A
4856516 Hillstead Aug 1989 A
4865600 Carpentier et al. Sep 1989 A
4872874 Taheri Oct 1989 A
4873978 Ginsburg Oct 1989 A
4909252 Goldberger Mar 1990 A
4917102 Miller et al. Apr 1990 A
4927426 Dretler May 1990 A
4986830 Owens et al. Jan 1991 A
4994077 Dobben Feb 1991 A
5002556 Ishida et al. Mar 1991 A
5002559 Tower Mar 1991 A
5064435 Porter Nov 1991 A
5161547 Tower Nov 1992 A
5163953 Vince Nov 1992 A
5209741 Spaeth May 1993 A
5258023 Reger Nov 1993 A
5258042 Mehta Nov 1993 A
5332402 Teitelbaum Jul 1994 A
5336258 Quintero et al. Aug 1994 A
5350398 Pavcnik et al. Sep 1994 A
5370685 Stevens Dec 1994 A
5389106 Tower Feb 1995 A
5397351 Pavcnik et al. Mar 1995 A
5411552 Andersen et al. May 1995 A
5425762 Muller Jun 1995 A
5431676 Dubrul et al. Jul 1995 A
5443495 Buscemi et al. Aug 1995 A
5443499 Schmitt Aug 1995 A
5476506 Lunn Dec 1995 A
5476510 Eberhardt et al. Dec 1995 A
5480423 Ravenscroft et al. Jan 1996 A
5507767 Maeda et al. Apr 1996 A
5534007 St. Germain et al. Jul 1996 A
5545133 Burns et al. Aug 1996 A
5545211 An et al. Aug 1996 A
5549665 Vesely et al. Aug 1996 A
5554183 Nazari Sep 1996 A
5554185 Block et al. Sep 1996 A
5571215 Sterman et al. Nov 1996 A
5573520 Schwartz et al. Nov 1996 A
5575818 Pinchuk Nov 1996 A
5645559 Hachtman et al. Jul 1997 A
5662671 Barbut et al. Sep 1997 A
5667523 Bynon et al. Sep 1997 A
5674277 Freitag Oct 1997 A
5693083 Baker et al. Dec 1997 A
5695498 Tower Dec 1997 A
5713953 Vallana et al. Feb 1998 A
5716370 Williamson, IV et al. Feb 1998 A
5720391 Dohm et al. Feb 1998 A
5725552 Kotula et al. Mar 1998 A
5733325 Robinson et al. Mar 1998 A
5735842 Krueger et al. Apr 1998 A
5769812 Stevens et al. Jun 1998 A
5807405 Vanney et al. Sep 1998 A
5817126 Imran Oct 1998 A
5824041 Lenker et al. Oct 1998 A
5824043 Cottone, Jr. Oct 1998 A
5824053 Khosravi et al. Oct 1998 A
5824055 Spiridigliozzi et al. Oct 1998 A
5824056 Rosenberg Oct 1998 A
5824064 Taheri Oct 1998 A
5843158 Lenker et al. Dec 1998 A
5855597 Jayaraman Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5860966 Tower Jan 1999 A
5861024 Rashidi Jan 1999 A
5861028 Angell Jan 1999 A
5868783 Tower Feb 1999 A
5876448 Thompson et al. Mar 1999 A
5885228 Rosenman et al. Mar 1999 A
5888201 Stinson et al. Mar 1999 A
5891191 Stinson Apr 1999 A
5895399 Barbut et al. Apr 1999 A
5907893 Zadno-Azizi et al. Jun 1999 A
5911734 Tsugita et al. Jun 1999 A
5925063 Khosravi Jul 1999 A
5944738 Amplatz et al. Aug 1999 A
5954766 Zadno-Azizi et al. Sep 1999 A
5957949 Leonhardt et al. Sep 1999 A
5968070 Bley et al. Oct 1999 A
5984957 Laptewicz, Jr. et al. Nov 1999 A
5984959 Robertson et al. Nov 1999 A
5984973 Girard et al. Nov 1999 A
5993469 McKenzie et al. Nov 1999 A
5997557 Barbut et al. Dec 1999 A
6010522 Barbut et al. Jan 2000 A
6022370 Tower Feb 2000 A
6027525 Suh et al. Feb 2000 A
6042598 Tsugita et al. Mar 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6093203 Uflacker Jul 2000 A
6113612 Swanson et al. Sep 2000 A
6123723 Konya et al. Sep 2000 A
6142987 Tsugita Nov 2000 A
6162245 Jayaraman Dec 2000 A
6165209 Patterson et al. Dec 2000 A
6168579 Tsugita Jan 2001 B1
6171327 Daniel et al. Jan 2001 B1
6174322 Schneidt Jan 2001 B1
6179859 Bates et al. Jan 2001 B1
6187016 Hedges et al. Feb 2001 B1
6197053 Cosgrove et al. Mar 2001 B1
6200336 Pavcnik et al. Mar 2001 B1
6206909 Hanada et al. Mar 2001 B1
6214036 Letendre et al. Apr 2001 B1
6221006 Dubrul et al. Apr 2001 B1
6221096 Aiba et al. Apr 2001 B1
6231544 Tsugita et al. May 2001 B1
6231551 Barbut May 2001 B1
6241757 An et al. Jun 2001 B1
6245102 Jayaraman Jun 2001 B1
6251135 Stinson et al. Jun 2001 B1
6258114 Konya et al. Jul 2001 B1
6258115 Dubrul Jul 2001 B1
6258120 McKenzie et al. Jul 2001 B1
6277555 Duran et al. Aug 2001 B1
6309417 Spence et al. Oct 2001 B1
6312465 Griffin et al. Nov 2001 B1
6319281 Patel Nov 2001 B1
6336934 Gilson et al. Jan 2002 B1
6336937 Vonesh et al. Jan 2002 B1
6338735 Stevens Jan 2002 B1
6348063 Yassour et al. Feb 2002 B1
6352708 Duran et al. Mar 2002 B1
6361545 Macoviak et al. Mar 2002 B1
6371970 Khosravi et al. Apr 2002 B1
6371983 Lane Apr 2002 B1
6379368 Corcoran et al. Apr 2002 B1
6379383 Palmaz et al. Apr 2002 B1
6398807 Chouinard et al. Jun 2002 B1
6409750 Hyodoh et al. Jun 2002 B1
6411552 Chiba Jun 2002 B1
6416510 Altman et al. Jul 2002 B1
6419696 Ortiz et al. Jul 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440152 Gainor et al. Aug 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6468303 Amplatz et al. Oct 2002 B1
6475239 Campbell et al. Nov 2002 B1
6482228 Norred Nov 2002 B1
6485502 Don Michael et al. Nov 2002 B2
6494909 Greenhalgh Dec 2002 B2
6503272 Duerig et al. Jan 2003 B2
6527800 McGuckin, Jr. et al. Mar 2003 B1
6540768 Diaz et al. Apr 2003 B1
6562058 Seguin et al. May 2003 B2
6592546 Barbut et al. Jul 2003 B1
6592614 Lenker et al. Jul 2003 B2
6610077 Hancock et al. Aug 2003 B1
6616675 Evard et al. Sep 2003 B1
6616682 Joergensen et al. Sep 2003 B2
6622604 Chouinard et al. Sep 2003 B1
6623518 Thompson et al. Sep 2003 B2
6635068 Dubrul et al. Oct 2003 B1
6635079 Unsworth et al. Oct 2003 B2
6652571 White et al. Nov 2003 B1
6656206 Corcoran et al. Dec 2003 B2
6663588 DuBois et al. Dec 2003 B2
6663663 Kim et al. Dec 2003 B2
6669724 Park et al. Dec 2003 B2
6673089 Yassour et al. Jan 2004 B1
6673109 Cox Jan 2004 B2
6676668 Mercereau et al. Jan 2004 B2
6676692 Rabkin et al. Jan 2004 B2
6676698 McGuckin, Jr. et al. Jan 2004 B2
6682558 Tu et al. Jan 2004 B2
6682559 Myers et al. Jan 2004 B2
6689144 Gerberding Feb 2004 B2
6689164 Seguin Feb 2004 B1
6692512 Jang Feb 2004 B2
6695864 Macoviak et al. Feb 2004 B2
6695865 Boyle et al. Feb 2004 B2
6702851 Chinn et al. Mar 2004 B1
6712836 Berg et al. Mar 2004 B1
6712842 Gifford, III et al. Mar 2004 B1
6712843 Elliott Mar 2004 B2
6714842 Ito Mar 2004 B1
6723122 Yang et al. Apr 2004 B2
6730118 Spenser et al. May 2004 B2
6730377 Wang May 2004 B2
6733525 Yang et al. May 2004 B2
6752828 Thornton Jun 2004 B2
6758855 Fulton, III et al. Jul 2004 B2
6764503 Ishimaru Jul 2004 B1
6764509 Chinn et al. Jul 2004 B2
6767345 St. Germain et al. Jul 2004 B2
6773454 Wholey et al. Aug 2004 B2
6776791 Stallings et al. Aug 2004 B1
6790218 Jayaraman Sep 2004 B2
6790229 Berreklouw Sep 2004 B1
6790230 Beyersdorf et al. Sep 2004 B2
6790237 Stinson Sep 2004 B2
6792979 Konya et al. Sep 2004 B2
6814746 Thompson et al. Nov 2004 B2
6821297 Snyders Nov 2004 B2
6837901 Rabkin et al. Jan 2005 B2
6843802 Villalobos et al. Jan 2005 B1
6849085 Marton Feb 2005 B2
6863668 Gillespie et al. Mar 2005 B2
6872223 Roberts et al. Mar 2005 B2
6872226 Cali et al. Mar 2005 B2
6875231 Anduiza et al. Apr 2005 B2
6881220 Edwin et al. Apr 2005 B2
6887266 Williams et al. May 2005 B2
6890340 Duane May 2005 B2
6893459 Macoviak May 2005 B1
6893460 Spenser et al. May 2005 B2
6905743 Chen et al. Jun 2005 B1
6908481 Cribier Jun 2005 B2
6911036 Douk et al. Jun 2005 B2
6911037 Gainor et al. Jun 2005 B2
6913614 Marino et al. Jul 2005 B2
6921397 Corcoran et al. Jul 2005 B2
6936058 Forde et al. Aug 2005 B2
6936067 Buchanan Aug 2005 B2
6945997 Huynh et al. Sep 2005 B2
6951571 Srivastava Oct 2005 B1
6953332 Kurk et al. Oct 2005 B1
6960220 Marino et al. Nov 2005 B2
6960224 Marino et al. Nov 2005 B2
6974464 Quijano et al. Dec 2005 B2
6974476 McGuckin, Jr. et al. Dec 2005 B2
6979350 Moll et al. Dec 2005 B2
6984242 Campbell et al. Jan 2006 B2
7011681 Vesely Mar 2006 B2
7018406 Seguin et al. Mar 2006 B2
7025791 Levine et al. Apr 2006 B2
7037331 Mitelberg et al. May 2006 B2
7077861 Spence Jul 2006 B2
7087072 Marino et al. Aug 2006 B2
7115135 Corcoran et al. Oct 2006 B2
7122020 Mogul Oct 2006 B2
7144410 Marino et al. Dec 2006 B2
7166097 Barbut Jan 2007 B2
7175653 Gaber Feb 2007 B2
7175654 Bonsignore et al. Feb 2007 B2
7189258 Johnson et al. Mar 2007 B2
7191018 Gielen et al. Mar 2007 B2
7192435 Corcoran et al. Mar 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7235093 Gregorich Jun 2007 B2
7261732 Justino Aug 2007 B2
7320704 Lashinski et al. Jan 2008 B2
7329279 Haug et al. Feb 2008 B2
7374560 Ressemann et al. May 2008 B2
7381219 Salahieh et al. Jun 2008 B2
7402171 Osborne et al. Jul 2008 B2
7413563 Corcoran et al. Aug 2008 B2
7445631 Salahieh et al. Nov 2008 B2
7455689 Johnson Nov 2008 B2
7566336 Corcoran et al. Jul 2009 B2
7582104 Corcoran et al. Sep 2009 B2
7591848 Allen Sep 2009 B2
7625364 Corcoran et al. Dec 2009 B2
7632298 Hijlkema et al. Dec 2009 B2
7658748 Marino et al. Feb 2010 B2
7691115 Corcoran et al. Apr 2010 B2
7712606 Salahieh et al. May 2010 B2
7722666 Lafontaine May 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7749238 Corcoran et al. Jul 2010 B2
7780725 Haug et al. Aug 2010 B2
7803184 McGuckin, Jr. et al. Sep 2010 B2
7803186 Li et al. Sep 2010 B1
7824442 Salahieh et al. Nov 2010 B2
7824443 Salahieh et al. Nov 2010 B2
7896915 Guyenot et al. Mar 2011 B2
7905901 Corcoran et al. Mar 2011 B2
7927351 Corcoran et al. Apr 2011 B2
7972361 Corcoran et al. Jul 2011 B2
8043368 Crabtree Oct 2011 B2
8057540 Letac et al. Nov 2011 B2
8092520 Quadri Jan 2012 B2
8167935 McGuckin, Jr. et al. May 2012 B2
8236049 Rowe et al. Aug 2012 B2
8317858 Straubinger et al. Nov 2012 B2
8366741 Chin et al. Feb 2013 B2
8398708 Meiri et al. Mar 2013 B2
8425593 Braido et al. Apr 2013 B2
8444689 Zhang May 2013 B2
8449599 Chau et al. May 2013 B2
8551132 Eskridge et al. Oct 2013 B2
8551161 Dolan Oct 2013 B2
8562672 Bonhoeffer et al. Oct 2013 B2
8568475 Nguyen et al. Oct 2013 B2
8579964 Lane et al. Nov 2013 B2
8579966 Seguin et al. Nov 2013 B2
8623074 Ryan Jan 2014 B2
8623075 Murray et al. Jan 2014 B2
8628566 Eberhardt et al. Jan 2014 B2
8673000 Tabor et al. Mar 2014 B2
8685080 White Apr 2014 B2
8721708 Seguin et al. May 2014 B2
8728155 Montorfano May 2014 B2
8740962 Finch et al. Jun 2014 B2
8795356 Quadri et al. Aug 2014 B2
8801779 Seguin et al. Aug 2014 B2
8845722 Gabbay Sep 2014 B2
8852272 Gross et al. Oct 2014 B2
8870948 Erzberger Oct 2014 B1
8894702 Quadri et al. Nov 2014 B2
8911455 Quadri et al. Dec 2014 B2
8956404 Bortlein et al. Feb 2015 B2
8986375 Garde et al. Mar 2015 B2
8998976 Gregg et al. Apr 2015 B2
9011527 Li et al. Apr 2015 B2
9017399 Gross et al. Apr 2015 B2
9023074 Theobald et al. May 2015 B2
9023100 Quadri et al. May 2015 B2
9034032 McLean et al. May 2015 B2
9039757 McLean et al. May 2015 B2
9060857 Nguyen et al. Jun 2015 B2
9101467 Eberhardt et al. Aug 2015 B2
9125740 Morriss et al. Sep 2015 B2
9132009 Hacohen et al. Sep 2015 B2
9155617 Carpentier et al. Oct 2015 B2
9168130 Straubinger et al. Oct 2015 B2
9168131 Yohanan et al. Oct 2015 B2
9232994 Miller Jan 2016 B2
9387071 Tuval et al. Jul 2016 B2
9393110 Levi et al. Jul 2016 B2
9393112 Tuval et al. Jul 2016 B2
9414913 Beith et al. Aug 2016 B2
9421083 Eidenschink et al. Aug 2016 B2
9439757 Wallace et al. Sep 2016 B2
9474605 Rowe et al. Oct 2016 B2
9474609 Haverkost et al. Oct 2016 B2
9480556 Revuelta et al. Nov 2016 B2
9480558 Destefano Nov 2016 B2
9480563 Li Nov 2016 B2
9486306 Tegels et al. Nov 2016 B2
9492273 Wallace Nov 2016 B2
9498330 Solem Nov 2016 B2
9504564 Nguyen et al. Nov 2016 B2
9504568 Ryan et al. Nov 2016 B2
9510943 Mesana et al. Dec 2016 B2
9554899 Granada Jan 2017 B2
9561103 Granada Feb 2017 B2
9579198 Deem et al. Feb 2017 B2
9655722 Morriss et al. May 2017 B2
10105224 Buchbinder Oct 2018 B2
10149761 Granada Dec 2018 B2
10154906 Granada Dec 2018 B2
10624742 Granada Apr 2020 B2
20010007956 Letac et al. Jul 2001 A1
20010039450 Pavcnik et al. Nov 2001 A1
20010041928 Pavcnik et al. Nov 2001 A1
20010041930 Globerman et al. Nov 2001 A1
20010044652 Moore Nov 2001 A1
20010044656 Williamson et al. Nov 2001 A1
20020002396 Fulkerson Jan 2002 A1
20020010489 Grayzel et al. Jan 2002 A1
20020026233 Shaknovich Feb 2002 A1
20020029981 Nigam Mar 2002 A1
20020032481 Gabbay Mar 2002 A1
20020055769 Wang May 2002 A1
20020062135 Mazzocchi et al. May 2002 A1
20020082609 Green Jun 2002 A1
20020095173 Mazzocchi et al. Jul 2002 A1
20020120328 Pathak et al. Aug 2002 A1
20020161392 Dubrul Oct 2002 A1
20020161394 Macoviak et al. Oct 2002 A1
20020177766 Mogul Nov 2002 A1
20020183781 Casey et al. Dec 2002 A1
20020188341 Elliott Dec 2002 A1
20020188344 Bolea et al. Dec 2002 A1
20030023303 Palmaz et al. Jan 2003 A1
20030036791 Philipp et al. Feb 2003 A1
20030040771 Hyodoh et al. Feb 2003 A1
20030040772 Hyodoh et al. Feb 2003 A1
20030040791 Oktay Feb 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030055495 Pease et al. Mar 2003 A1
20030060844 Borillo et al. Mar 2003 A1
20030070944 Nigam Apr 2003 A1
20030109924 Cribier Jun 2003 A1
20030109930 Bluni et al. Jun 2003 A1
20030114912 Sequin et al. Jun 2003 A1
20030130729 Paniagua et al. Jul 2003 A1
20030135257 Taheri Jul 2003 A1
20030144732 Cosgrove et al. Jul 2003 A1
20030149476 Damm et al. Aug 2003 A1
20030149477 Gabbay Aug 2003 A1
20030149478 Figulla et al. Aug 2003 A1
20030176884 Berrada et al. Sep 2003 A1
20030181850 Diamond et al. Sep 2003 A1
20030187495 Cully et al. Oct 2003 A1
20030199971 Tower et al. Oct 2003 A1
20030208224 Broome Nov 2003 A1
20030212429 Keegan et al. Nov 2003 A1
20030212454 Scott et al. Nov 2003 A1
20030216774 Larson Nov 2003 A1
20030225421 Peavey et al. Dec 2003 A1
20030225445 Derus et al. Dec 2003 A1
20030229390 Ashton et al. Dec 2003 A1
20030233117 Adams et al. Dec 2003 A1
20040034411 Quijano et al. Feb 2004 A1
20040049224 Buehlmann et al. Mar 2004 A1
20040049226 Keegan et al. Mar 2004 A1
20040049262 Obermiller et al. Mar 2004 A1
20040060563 Rapacki et al. Apr 2004 A1
20040082904 Houde et al. Apr 2004 A1
20040082967 Broome et al. Apr 2004 A1
20040087982 Eskuri May 2004 A1
20040093016 Root et al. May 2004 A1
20040098022 Barone May 2004 A1
20040098099 McCullagh et al. May 2004 A1
20040111096 Tu et al. Jun 2004 A1
20040116951 Rosengart Jun 2004 A1
20040117004 Osborne et al. Jun 2004 A1
20040122468 Yodfat et al. Jun 2004 A1
20040127936 Salahieh et al. Jul 2004 A1
20040127979 Wilson et al. Jul 2004 A1
20040133274 Webler et al. Jul 2004 A1
20040138694 Tran et al. Jul 2004 A1
20040143294 Corcoran et al. Jul 2004 A1
20040148021 Cartledge et al. Jul 2004 A1
20040153094 Dunfee et al. Aug 2004 A1
20040158277 Lowe et al. Aug 2004 A1
20040167565 Beulke et al. Aug 2004 A1
20040181140 Falwell et al. Sep 2004 A1
20040186563 Lobbi Sep 2004 A1
20040204755 Robin Oct 2004 A1
20040215331 Chew et al. Oct 2004 A1
20040215339 Drasler et al. Oct 2004 A1
20040220655 Swanson et al. Nov 2004 A1
20040225321 Krolik et al. Nov 2004 A1
20040225354 Allen et al. Nov 2004 A1
20040254636 Flagle et al. Dec 2004 A1
20050033402 Cully et al. Feb 2005 A1
20050065548 Marino et al. Mar 2005 A1
20050070934 Tanaka et al. Mar 2005 A1
20050075662 Pedersen et al. Apr 2005 A1
20050085841 Eversull et al. Apr 2005 A1
20050085842 Eversull et al. Apr 2005 A1
20050085843 Opolski et al. Apr 2005 A1
20050085890 Rasmussen et al. Apr 2005 A1
20050090846 Pedersen et al. Apr 2005 A1
20050096692 Linder et al. May 2005 A1
20050096734 Majercak et al. May 2005 A1
20050096735 Hojeibane et al. May 2005 A1
20050096736 Osse et al. May 2005 A1
20050096738 Cali et al. May 2005 A1
20050100580 Osborne et al. May 2005 A1
20050107822 WasDyke May 2005 A1
20050113910 Paniagua et al. May 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137687 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137689 Salahieh et al. Jun 2005 A1
20050137690 Salahieh et al. Jun 2005 A1
20050137691 Salahieh et al. Jun 2005 A1
20050137692 Haug et al. Jun 2005 A1
20050137694 Haug et al. Jun 2005 A1
20050137696 Salahieh et al. Jun 2005 A1
20050137697 Salahieh et al. Jun 2005 A1
20050137698 Salahieh et al. Jun 2005 A1
20050137701 Salahieh et al. Jun 2005 A1
20050143809 Salahieh et al. Jun 2005 A1
20050165352 Henry et al. Jul 2005 A1
20050182486 Gabbay Aug 2005 A1
20050197694 Pai et al. Sep 2005 A1
20050197695 Stacchino et al. Sep 2005 A1
20050203614 Forster et al. Sep 2005 A1
20050203615 Forster et al. Sep 2005 A1
20050203616 Cribier Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050209580 Freyman Sep 2005 A1
20050228472 Case et al. Oct 2005 A1
20050251250 Verhoeven et al. Nov 2005 A1
20050251251 Cribier Nov 2005 A1
20050261759 Lambrecht et al. Nov 2005 A1
20050267560 Bates Dec 2005 A1
20050283962 Boudjemline Dec 2005 A1
20050288766 Plain et al. Dec 2005 A1
20060004439 Spenser et al. Jan 2006 A1
20060004442 Spenser et al. Jan 2006 A1
20060015168 Gunderson Jan 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060116717 Marino et al. Jun 2006 A1
20060155312 Levine et al. Jul 2006 A1
20060161249 Realyvasquez et al. Jul 2006 A1
20060190030 To et al. Aug 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060235510 Johnson et al. Oct 2006 A1
20060247680 Amplatz et al. Nov 2006 A1
20060253191 Salahieh et al. Nov 2006 A1
20060259134 Schwammenthal et al. Nov 2006 A1
20060259135 Navia et al. Nov 2006 A1
20060259137 Artof et al. Nov 2006 A1
20060265045 Shiu et al. Nov 2006 A1
20060271166 Thill et al. Nov 2006 A1
20060287668 Fawzi et al. Dec 2006 A1
20070016286 Herrmann et al. Jan 2007 A1
20070055340 Pryor Mar 2007 A1
20070088431 Bourang et al. Apr 2007 A1
20070100440 Figulla et al. May 2007 A1
20070112355 Salahieh et al. May 2007 A1
20070118214 Salahieh et al. May 2007 A1
20070203503 Salahieh et al. Aug 2007 A1
20070203575 Forster et al. Aug 2007 A1
20070244552 Salahieh et al. Oct 2007 A1
20070255389 Oberti et al. Nov 2007 A1
20070265656 Amplatz et al. Nov 2007 A1
20070276324 Laduca et al. Nov 2007 A1
20070288089 Gurskis et al. Dec 2007 A1
20080015619 Figulla et al. Jan 2008 A1
20080033543 Gurskis et al. Feb 2008 A1
20080082165 Wilson et al. Apr 2008 A1
20080140189 Nguyen et al. Jun 2008 A1
20080140191 Mathis et al. Jun 2008 A1
20080167682 Corcoran et al. Jul 2008 A1
20080177381 Navia et al. Jul 2008 A1
20080188928 Salahieh et al. Aug 2008 A1
20080208328 Antocci et al. Aug 2008 A1
20080208329 Bishop et al. Aug 2008 A1
20080208332 Lamphere et al. Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080234797 Styrc Sep 2008 A1
20080288054 Pulnev et al. Nov 2008 A1
20090005863 Goetz et al. Jan 2009 A1
20090062841 Amplatz et al. Mar 2009 A1
20090082803 Adams et al. Mar 2009 A1
20090171456 Kveen et al. Jul 2009 A1
20090182405 Arnault De La Menardiere et al. Jul 2009 A1
20090192585 Bloom et al. Jul 2009 A1
20090222076 Figulla et al. Sep 2009 A1
20090254165 Tabor et al. Oct 2009 A1
20090264759 Byrd Oct 2009 A1
20090287290 Macaulay et al. Nov 2009 A1
20090306768 Quadri Dec 2009 A1
20100036479 Hill et al. Feb 2010 A1
20100049313 Alon et al. Feb 2010 A1
20100082094 Quadri et al. Apr 2010 A1
20100094314 Hernlund et al. Apr 2010 A1
20100121434 Paul et al. May 2010 A1
20100161036 Pintor et al. Jun 2010 A1
20100219092 Salahieh et al. Sep 2010 A1
20100268204 Tieu et al. Oct 2010 A1
20100280495 Paul et al. Nov 2010 A1
20100284724 Cardia Nov 2010 A1
20100298931 Quadri et al. Nov 2010 A1
20100312333 Navia et al. Dec 2010 A1
20110004296 Lutter et al. Jan 2011 A1
20110022157 Essinger Jan 2011 A1
20110029072 Gabbay Feb 2011 A1
20110034987 Kennedy Feb 2011 A1
20110137397 Chau et al. Jun 2011 A1
20110218619 Benichou et al. Sep 2011 A1
20110245911 Quill et al. Oct 2011 A1
20110257723 McNamara Oct 2011 A1
20110264198 Murray, III et al. Oct 2011 A1
20110295363 Girard et al. Dec 2011 A1
20110301702 Rust et al. Dec 2011 A1
20120016464 Seguin Jan 2012 A1
20120053683 Salahieh et al. Mar 2012 A1
20120059458 Buchbinder et al. Mar 2012 A1
20120078360 Rafiee Mar 2012 A1
20120197283 Marchand et al. Aug 2012 A1
20120197391 Alkhatib et al. Aug 2012 A1
20130041447 Erb et al. Feb 2013 A1
20130041458 Lashinski et al. Feb 2013 A1
20130253643 Rolando et al. Sep 2013 A1
20130261737 Costello Oct 2013 A1
20130282110 Schweich, Jr. et al. Oct 2013 A1
20130282114 Schweich, Jr. et al. Oct 2013 A1
20130304197 Buchbinder et al. Nov 2013 A1
20130304200 McLean et al. Nov 2013 A1
20130310923 Kheradvar et al. Nov 2013 A1
20130331931 Gregg et al. Dec 2013 A1
20140005775 Alkhatib et al. Jan 2014 A1
20140005778 Buchbinder Jan 2014 A1
20140012368 Sugimoto et al. Jan 2014 A1
20140012374 Rankin Jan 2014 A1
20140025164 Montorfano et al. Jan 2014 A1
20140052237 Lane et al. Feb 2014 A1
20140052244 Rolando et al. Feb 2014 A1
20140067048 Chau et al. Mar 2014 A1
20140214159 Vidlund et al. Jul 2014 A1
20140222136 Geist et al. Aug 2014 A1
20140243954 Shannon Aug 2014 A1
20140249622 Carmi et al. Sep 2014 A1
20140257476 Montorfano et al. Sep 2014 A1
20140277390 Ratz et al. Sep 2014 A1
20140277412 Bortlein Sep 2014 A1
20140324164 Gross et al. Oct 2014 A1
20140330368 Gloss et al. Nov 2014 A1
20140379076 Vidlund et al. Dec 2014 A1
20150025623 Granada et al. Jan 2015 A1
20150039083 Rafiee Feb 2015 A1
20150094802 Buchbinder et al. Apr 2015 A1
20150112430 Creaven et al. Apr 2015 A1
20150135506 White May 2015 A1
20150142100 Morriss et al. May 2015 A1
20150157457 Hacohen Jun 2015 A1
20150164640 McLean Jun 2015 A1
20150173897 Raanani et al. Jun 2015 A1
20150351903 Morriss et al. Dec 2015 A1
20150351904 Cooper Dec 2015 A1
20160038280 Morriss et al. Feb 2016 A1
20160158000 Granada et al. Jun 2016 A1
20160158003 Wallace et al. Jun 2016 A1
20160166384 Olson et al. Jun 2016 A1
20160310269 Braido et al. Oct 2016 A1
20170035569 Deem et al. Feb 2017 A1
20170042675 Freudenthal Feb 2017 A1
20170209261 Börtlein Jul 2017 A1
20170209269 Conklin Jul 2017 A1
20170231762 Quadri et al. Aug 2017 A1
20170325948 Wallace Nov 2017 A1
20170340440 Ratz Nov 2017 A1
20180110622 Gregg et al. Apr 2018 A1
Foreign Referenced Citations (61)
Number Date Country
2859666 Jun 2013 CA
1338951 Mar 2002 CN
0409929 Jan 1991 EP
0819013 Jan 1998 EP
0937439 Aug 1999 EP
1042045 Oct 2000 EP
1057459 Dec 2000 EP
1057460 Dec 2000 EP
1059894 Dec 2000 EP
1078610 Feb 2001 EP
1229864 Aug 2002 EP
1340473 Sep 2003 EP
1356793 Oct 2003 EP
1430853 Jun 2004 EP
1469797 Nov 2005 EP
1600121 Nov 2005 EP
1616531 Jan 2006 EP
1849440 Oct 2007 EP
2124826 Jul 2014 EP
9504556 Feb 1995 WO
9529640 Nov 1995 WO
9614032 May 1996 WO
9624306 Aug 1996 WO
9836790 Aug 1998 WO
9857599 Dec 1998 WO
9944542 Sep 1999 WO
0009059 Feb 2000 WO
0044308 Aug 2000 WO
200044313 Aug 2000 WO
0067661 Nov 2000 WO
0105331 Jan 2001 WO
0135870 May 2001 WO
0164137 Sep 2001 WO
0236048 May 2002 WO
2002041789 May 2002 WO
02100297 Dec 2002 WO
2003003943 Jan 2003 WO
2003003949 Jan 2003 WO
03011195 Feb 2003 WO
03015851 Feb 2003 WO
2003030776 Apr 2003 WO
03094797 Nov 2003 WO
2004014256 Feb 2004 WO
2004019811 Mar 2004 WO
2004026117 Apr 2004 WO
2004041126 May 2004 WO
2004047681 Jun 2004 WO
2004066876 Aug 2004 WO
2004082536 Sep 2004 WO
2005037361 Apr 2005 WO
2005084595 Sep 2005 WO
2005087140 Sep 2005 WO
2009045388 Apr 2009 WO
2009072122 Jun 2009 WO
2009108615 Sep 2009 WO
2009132187 Oct 2009 WO
2009137755 Nov 2009 WO
2010141847 Dec 2010 WO
2011057087 May 2011 WO
2013158608 Oct 2013 WO
2013158613 Oct 2013 WO
Non-Patent Literature Citations (44)
Entry
Andersen et al.; Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs; Euro. Heart J.; 13(5): 704-708; May 1992. cited byapplicant.
Atwood et al.; Insertion of Heart Valves by Catheterization; Project Supervised by Prof. S. Muftu of Northeastern University, May 2002: pp. 36-40.
Bodnar et al. Replacement Cardiac Valves R Chapter 13: Extinct cardiac valve prostheses. Pergamon Publishing Corporation. New York, 1991: 307-322 (year of pub. sufficiently earlier than effective US filing date and any foreign priority date).
Boudjemline et al. Percutaneous implantation of a biological valve in the aorta to treat aortic valve insufficiency—a sheep study.f Med Sci. Monit; Apr. 2002; vol. 8, No. 4: BR113-116.
Boudjemline et al. “Percutaneous implantation of a valve in the descending aorta in lambs.” Euro. Heart J; Jul. 2002; 23: 1045-1049.
Boudjemline et al. “Percutaneous pulmonary valve replacement in a large right ventricular outflow tract: an experimental study.” Journal of the American College of Cardiology; Mar. 2004; vol. 43(6): 1082-1087.
Boudjemline et al. “Percutaneous valve insertion: A new approach?” J. of Thoracic and Cardio. Surg; Mar. 2003; 125(3): 741-743.
Boudjemline et al. “Steps Toward Percutaneous Aortic Valve Replacement.” Circulation; Feb. 2002; 105: 775-778.
Cribier et al. “Early Experience with Percutaneous Transcatheter Implantation of Heart Valve Prosthesis for the Treatment of End-Stage Inoperable Patients with Calcific Aortic Stenosis.” J. of Am. Coli. of Cardio; Feb. 2004; 43(4): 698-703.
Ferrari et al. “Percutaneous transvascular aortic valve replacement with self expanding stent-valve device.” Poster from the presentation given at SMIT 2000, 12th International Conference. 1 pg. Sep. 5, 2000.
Hijazi “Transcatheter Valve Replacement: A New Era of Percutaneous Cardiac Intervention Begins.” J. of Am. College of Cardia; Mar. 2004; 43(6): 1088-1089.
Huber et al. “Do valved stents compromise coronary flow?” European Journal of Cardio-thoracic Surgery; May 2004; vol. 25: 754-759.
Knudsen et al. “Catheter-implanted prosthetic heart valves.” Int'l J. of Art. Organs; May 1993; 16(5): 253-262.
Kort et al. “Minimally invasive aortic valve replacement: Echocardiographic and clinical results.” Am. Heart J; Sep. 2001; 142(3): 476-481.
Love et al. The Autogenous Tissue Heart Valve: Current Stat. Journal of Cardiac Surgery; Dec. 1991; 6(4): 499-507.
Lutter et al. “Percutaneous aortic valve replacement: An experimental study. I. Studies on implantation.” J. of Thoracic and Cardio. Surg; Apr. 2002; 123(4 ): 768-776.
Moulopoulos et al. “Catheter-Mounted Aortic Valves.” Annals of Thoracic Surg; May 1971; 11(5): 423-430.
Paniagua et al. “Percutaneous heart valve in the chronic in vitro testing model.” Circulation; Sep. 2002; 106:e51-e52.
Paniagua et al. Heart Watch (2004). Texas Heart Institute. Spring (March) 2004 Edition: 8 pages.
Pavcnik et al. “Percutaneous bioprosthetic veno valve: A long-term study in sheep.” J. of Vascular Surg; Mar. 2002; 35(3): 598-603.
Phillips et al. “A Temporary Catheter-Tip Aortic Valve: Hemodynamic Effects on Experimental Acute Aortic Insufficiency.” Annals of Thoracic Surg; Feb. 1976; 21 (2): 134-136.
Sochman et al. “Percutaneous Transcatheter Aortic Disc Valve Prosthesis Implantation: A Feasibility Study.” Cardiovasc. Lntervent. Radiol; Sep.-Oct. 2000; 23: 384-388.
Stuart, M. “In Heart Valves, a Brave, New Non-Surgical World.” Start-Up; Feb. 2004: 9-17.
Vahanian et al. “Percutaneous Approaches to Valvular Disease.” Circulation; Apr. 2004; 109:1572-1579.
Van Herwerden et al., “Percutaneous valve implantation: back to the future?” Euro. Heart J; Sep. 2002; 23(18): 1415-1416.
Zhou et al. “Self-expandable valved stent of large size: off-bypass implantation in pulmonary position.” Eur. J. Cardiothorac; Aug. 2003; 24: 212-216.
Cribier et al. “Percutaneous Transcatheter Implantation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis: First Human Case.” Percutaneous Valve Technologies, Inc. 2002: 16 pages (year of pub. sufficiently earlier than effective US filedand any foreign priority date).
Erzberger et al.; U.S. Appl. No. 14/170,388 entitled “System and method for cardiac valve repair and replacement,” filed Jan. 31, 2014.
Granada et al.; U.S. Appl. No. 14/677,398 entitled “System and method for cardiac valve repair and replacement,” filed Apr. 2, 2015.
Granada et al.; U.S. Appl. No. 14/677,334 entitled “Replacement cardiac valves and methods of use and manufacture,” filed Apr. 2, 2015.
Granada et al.; U.S. Appl. No. 14/677,370 entitled “Replacement cardiac valves and methods of use and manufacture,” filed Apr. 2, 2015.
Granada et al.; U.S. Appl. No. 14/677,320 entitled “Replacement cardiac valves and methods of use and manufacture,” filed Apr. 2, 2015.
Wallace et al.; U.S. Appl. No. 14/858,230 entitled “Replacement cardiac valves and methods of use and manufacture,” filed Sep. 18, 2015.
Cribier et al. “Percutaneous Transcatheter Implantation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis: First Human Case.” (slide presentation); TCT 2002 (conference); 16 pgs.; Washington D.C.; Sep. 24-28, 2002.
Solvay; Novel revivent(tm) Myocardial anchoring system from bioVentrix uses solvay's zeniva® PEEK in tether component; 3 pages retrieved from the internet (http://www.solvay.com/en/media/press_release/20131205 novel-revivent-myocardial-anchoring-system-bioventrix-uses-zenivapeek.html); (Press Release); on Aug. 10, 2017.
Wallace et al.; U.S. Appl. No. 15/688,673 entitled “Replacement mitral valves,” filed Aug. 28, 2017.
Wallace et al.; U.S. Appl. No. 15/669,788 entitled “Replacement cardiac valves and methods of use and manufacture,” filed Aug. 4, 2017.
Granada et al.; U.S. Appl. No. 15/688,701 entitled “System and method for cardiac valve repair and replacement,” filed Aug. 28, 2017.
Wallace et al.; U.S. Appl. No. 15/669,805 entitled “Replacement mitral valves;” filed Aug. 4, 2017.
Noe et al.; U.S. Appl. No. 15/908,701 entitled “Replacement mitral valves,” filed Feb. 28, 2018.
Noe et al.; U.S. Appl. No. 15/909,610 entitled “Replacement mitral valves,” filed Mar. 1, 2018.
Noe et al.; U.S. Appl. No. 15/909,881 entitled “Replacement mitral valves,” filed Mar. 1, 2018.
Noe et al.; U.S. Appl. No. 15/910,484 entitled “Replacement mitral valves,” filed Mar. 2, 2018.
Extended European Search Report with opinion for Application No. 19201536.0 dated Feb. 12, 2020.
Related Publications (1)
Number Date Country
20200229922 A1 Jul 2020 US
Provisional Applications (1)
Number Date Country
61847515 Jul 2013 US
Continuations (3)
Number Date Country
Parent 16224221 Dec 2018 US
Child 16804712 US
Parent 15424742 Feb 2017 US
Child 16224221 US
Parent 14170407 Jan 2014 US
Child 15424742 US