This document relates to medical procedures such as transseptal perforation. More specifically, this document relates to devices for use in such medical procedures, and related systems and methods.
The following summary is intended to introduce the reader to various aspects of the detailed description, but not to define or delimit any invention.
Perforation devices for use in medical procedures are disclosed. According to some aspects, a perforation device includes a shaft. The shaft has a proximal portion, and an opposed distal portion. A perforating tip is associated with the distal portion. At least a first light emitter is associated with the distal portion and is positioned proximate the perforating tip, for illuminating a region surrounding the perforating tip. At least a first light collector is associated with the distal portion and is positioned proximate the perforating tip, for collecting light from the region surrounding the perforating tip.
In some examples, the perforation device further includes at least a first illumination optical fiber extending through the shaft from the proximal portion to the distal portion. The illumination optical fiber has a source end for receiving light from a light source and an illumination end proximate the perforating tip. The illumination end forms the light emitter.
In some examples the perforation device further includes at least a first collection optical fiber extending through the shaft from the proximal portion to the distal portion. The collection optical fiber has a light collection end that forms the light collector, and a sensor end for delivering light to a light sensor.
In some examples, the light collector is in the form of a light sensor associated with the distal portion of the shaft.
In some examples, the perforating tip includes a radiofrequency perforation electrode.
In some examples, the illumination end is shrouded within the shaft, and the perforation device further includes a light scattering material between the illumination end and an opening in the shaft for directing light from the illumination end to an exterior of the shaft.
In some examples, the illumination end is distally facing. In some examples, the illumination end is recessed proximally from a distal end face of the shaft. In some examples, the illumination end is flush with a distal end face of the shaft.
Medical systems are also disclosed. According to some aspects, a medical system includes a perforation device. The perforation device includes a perforation device having a shaft. The shaft has a proximal portion, and an opposed distal portion. A perforating tip is associated with the distal portion. At least a first light emitter is associated with the distal portion and is positioned proximate the perforating tip for illuminating a region surrounding the perforating tip. The medical system further includes an analysis system for analyzing returned light that is returned back towards the shaft from the region surrounding the perforating tip. The analysis system includes a light sensor configured to detect one or more parameters of the returned light, a processor configured to perform an analysis of the one or more parameters, and an alert system connected to the processor for alerting a user to a result of the analysis.
In some examples, the medical system includes a light source, and at least a first illumination optical fiber extending through the shaft from the proximal portion to the distal portion. The illumination optical fiber has a source end connected to the light source for receiving light from the light source, and an illumination end positioned proximate the perforating tip and forming the light emitter.
In some examples, the medical system further includes a first collection optical fiber extending through the shaft from the proximal portion to the distal portion. The collection optical fiber has a light collection end for collecting the returned light, and a sensor end for delivering light to the sensor.
In some examples, the sensor is mounted to the distal portion of the shaft.
In some examples, the result is an indication of whether blood in the region surrounding the perforating tip is oxygenated blood or deoxygenated blood.
In some examples, the perforating tip includes a radiofrequency perforation electrode. The medical system can further include a radio frequency generator connected to the radiofrequency perforation electrode for powering the radiofrequency perforation electrode. The generator can be in communication with the analysis system and can be configured to provide power to the radiofrequency perforation electrode based on the analysis. The generator can be configured to cease providing power to the radiofrequency perforation electrode if the analysis indicates that the region surrounding the perforating tip contains oxygenated blood.
Methods for carrying out medical procedures are also disclosed. According to some aspects, a method for carrying out a medical procedure includes a. positioning a perforating tip of a puncture device adjacent a target region within a patient's body; b. advancing the perforating tip through the target region; c. before, during and/or after step b., illuminating a region surrounding the perforating tip with light, collecting light returned back from the region surrounding the perforating tip, and analyzing the returned light.
In some examples, the method further includes ceasing advancement of the perforating tip if the analysis of the returned light indicates that the region surrounding the perforating tip contains oxygenated blood.
In some examples, the method further includes continuing or repeating advancement of the perforating tip if the analysis of the returned light indicates that the region surrounding the perforating tip contains deoxygenated blood.
In some examples, step b. includes delivering radiofrequency energy to the perforating tip to puncture the fossa ovalis. In some examples, the method further includes ceasing the delivery of radiofrequency energy if the analysis of the returned light indicates that the region surrounding the perforating tip contains oxygenated blood.
In some examples, the target region is a fossa ovalis.
The accompanying drawings are for illustrating examples of articles, methods, and apparatuses of the present disclosure and are not intended to be limiting. In the drawings:
Various apparatuses or processes or compositions will be described below to provide an example of an embodiment of the claimed subject matter. No example described below limits any claim and any claim may cover processes or apparatuses or compositions that differ from those described below. The claims are not limited to apparatuses or processes or compositions having all of the features of any one apparatus or process or composition described below or to features common to multiple or all of the apparatuses or processes or compositions described below. It is possible that an apparatus or process or composition described below is not an embodiment of any exclusive right granted by issuance of this patent application. Any subject matter described below and for which an exclusive right is not granted by issuance of this patent application may be the subject matter of another protective instrument, for example, a continuing patent application, and the applicants, inventors or owners do not intend to abandon, disclaim or dedicate to the public any such subject matter by its disclosure in this document.
Generally disclosed herein are devices and systems that can be used in medical procedures, such as cardiac procedures. For example, the devices systems can be used in transseptal perforation procedures, in which a sheath is advanced to the right atrium of a patient's heart via the femoral vein, and a perforation device (e.g. a radiofrequency (RF) perforation device or a mechanical perforation device) and dilator are guided through the sheath, to the right atrium. When the sheath is adjacent a target region in the right atrium, for example the fossa ovalis of the atrial septum, the perforation device can be advanced out of the sheath and used to create a perforation in the target region, and the dilator can be advanced out of the sheath to dilate the perforation. Such procedures can be carried out, for example, as a medical treatment, or to gain access to the left atrium for a subsequent medical treatment.
The systems, devices, and methods disclosed herein can be used to determine whether perforation is complete—i.e. whether the perforation device has indeed perforated the atrial septum and the perforating tip is in the left atrium, or whether perforation is not yet complete and the perforating tip is within the atrial septum, still within the right atrium, or elsewhere. This can in turn reduce the use of fluoroscopy, decrease the complication rate in such procedures, and enhance patient safety. Particularly, the systems and devices disclosed herein are configured to emit light to (i.e. illuminate) the region surrounding the perforating tip of the perforation device, and to collect light that is returned from the region surrounding the perforating tip (referred to herein as “returned light”, which can be, for example, reflected light or emitted fluorescence). This returned light is then analyzed, for example using absorption or fluorescence spectroscopy. Particularly, blood that is within the right atrium is venous blood, which is not oxygenated and largely contains deoxyhemoglobin. In contrast, blood that is within the left atrium is arterial blood, which is oxygenated and largely contains oxyhemoglobin. Deoxyhemoglobin and oxyhemoglobin have distinct absorption spectra in the range of 520 nm and 600 nm, as shown in
Referring now to
In use, the sheath 102 can be advanced intravenously via the femoral vein towards the right atrium of the patient's heart. The dilator 104 and perforation device 106 can both be advanced towards the patient's heart via the sheath 102. The RF perforation device 106 can be connected to a radiofrequency generator 112, which can in turn be connected to one or more grounding pads (not shown). When in the desired position in the patient's heart, for example adjacent the fossa ovalis, the RF perforation device 106 can be activated to perforate the fossa ovalis.
Referring to
The perforation device 106 further includes a set of light emitters 124 associated with the distal portion 120 of the shaft 114 and positioned proximate the perforating tip 108 for illuminating the region surrounding the perforating tip 108 (i.e. for delivering light to blood or tissue that is in contact with or near to the perforating tip 108). The light emitters 124 can be of various configurations. Referring to
Referring to
Referring still to
Referring still to
Referring still to
Referring still to
Referring still to
The analysis system 144 further includes a processor 146 connected to the light sensor. The processor 146 can include various hardware and software, and is configured to perform an analysis of the parameters detected by the light sensor 138. For example, the processor 146 can compare the absorption spectrum of the returned light to a stored reference absorption spectrum for oxyhemoglobin and deoxyhemoglobin. Based on this comparison, the processor 146 can then determine whether the absorption spectrum of the returned light corresponds to the reference spectrum for oxyhemoglobin (which indicates that the region surrounding the perforating tip 108 contains oxygenated blood) or deoxyhemoglobin (which indicates that the region surrounding the perforating tip 108 contains deoxygenated blood).
The analysis system 144 further includes an alerting system connected to the processor 146, for alerting a user to a result of the analysis. In the example shown, the alerting system includes a screen 148 that displays an indicium of the position of the perforating tip 108. Alternatively, the alerting system can be, for example, in the form of a light that changes color when the analysis indicates that the region surrounding the perforating tip 108 contains oxygenated blood. The change in color of the light can indicate to a user that the perforating tip 108 is in the left atrium. Alternatively, the alerting system can provide an auditory alert that indicates to a user that the perforating tip 108 is in the left atrium.
In the example shown, the light source 130, light sensor 138, processor 146, and screen 148 are provided in a single unit 149. In alternative examples, the light source 130, light sensor 138, processor 146, and screen 148 may be provided in separate units or at separate locations. For example, the light sensor 138 may be mounted to the perforation device 106 (as described below), and the processor 146 and screen 148 may be provided in a separate unit. Alternatively, one or more of the light source 130, light sensor 138, processor 146, and screen 148 may be provided in a unit with the RF generator 112.
Optionally, the RF generator 112 (shown in
Referring now to
Referring now to
In the example of
Referring now to
In the example of
Referring now to
In the example of
A method for transseptal perforation will now be described with reference to
As a first step (not shown), a guidewire can be advanced via the femoral vein towards the heart, and “parked” in the superior vena cava (SVC). The dilator 104 can then be inserted into the sheath 102, with the tip of the dilator 104 shrouded within the sheath 102. The sheath 102 and dilator 104 can then be advanced over the guidewire, towards the SVC. The guidewire can then be removed.
As a second step (not shown), the perforation device 106 can be advanced through the dilator 104, until the perforating tip 108 is just shy of the distal end of the dilator 104.
Referring to
With the perforation device 106 in the ready position, as shown in
To continue the procedure, the RF generator 112 (not shown in
Optionally, before or during advancement of the perforating tip 108 through the fossa ovalis, the fluorescence spectra of the tissue of the fossa ovalis 1404 can be obtained using an excitation wavelength of about 365 nm. Due to the presence of collagen and other fluorophores within the fossa ovalis 1404, a distinct fluorescence spectrum may be obtained at this wavelength. This can be used to confirm that the perforating tip is within or in contact with the fossa ovalis 1404.
Referring to
In alternative examples, other anatomical regions can be perforated using the devices, systems, and methods disclosed herein. For example, the devices, systems, and methods disclosed herein can be used to create channels between vessels (i.e. artery to vein or vice versa) and/or in ventricular puncture.
While the above description provides examples of one or more processes or apparatuses or compositions, it will be appreciated that other processes or apparatuses or compositions may be within the scope of the accompanying claims.
To the extent any amendments, characterizations, or other assertions previously made (in this or in any related patent applications or patents, including any parent, sibling, or child) with respect to any art, prior or otherwise, could be construed as a disclaimer of any subject matter supported by the present disclosure of this application, Applicant hereby rescinds and retracts such disclaimer. Applicant also respectfully submits that any prior art previously considered in any related patent applications or patents, including any parent, sibling, or child, may need to be re-visited.
Number | Name | Date | Kind |
---|---|---|---|
175254 | Oberly | Mar 1876 | A |
827626 | Gillet | Jul 1906 | A |
848711 | Weaver | Apr 1907 | A |
1072954 | Junn | Sep 1913 | A |
1279654 | Charlesworth | Sep 1918 | A |
1918094 | Geekas | Jul 1933 | A |
1996986 | Weinberg | Apr 1935 | A |
2021989 | De Master | Nov 1935 | A |
2146636 | Lipchow | Feb 1939 | A |
3429574 | Williams | Feb 1969 | A |
3448739 | Stark et al. | Jun 1969 | A |
3575415 | Fulp et al. | Apr 1971 | A |
3595239 | Petersen | Jul 1971 | A |
4129129 | Amrine | Dec 1978 | A |
4244362 | Anderson | Jan 1981 | A |
4401124 | Guess et al. | Aug 1983 | A |
4639252 | Kelly et al. | Jan 1987 | A |
4641649 | Walinsky et al. | Feb 1987 | A |
4669467 | Willett et al. | Jun 1987 | A |
4682596 | Bales et al. | Jul 1987 | A |
4790311 | Ruiz | Dec 1988 | A |
4790809 | Kuntz | Dec 1988 | A |
4793350 | Mar et al. | Dec 1988 | A |
4807620 | Strul et al. | Feb 1989 | A |
4832048 | Cohen | May 1989 | A |
4840622 | Hardy | Jun 1989 | A |
4863441 | Lindsay et al. | Sep 1989 | A |
4884567 | Elliott et al. | Dec 1989 | A |
4892104 | Ito et al. | Jan 1990 | A |
4896671 | Cunningham et al. | Jan 1990 | A |
4928693 | Goodin et al. | May 1990 | A |
4936281 | Stasz | Jun 1990 | A |
4960410 | Pinchuk | Oct 1990 | A |
4977897 | Hurwitz | Dec 1990 | A |
4998933 | Eggers et al. | Mar 1991 | A |
5006119 | Acker et al. | Apr 1991 | A |
5019076 | Yamanashi et al. | May 1991 | A |
5047026 | Rydell | Sep 1991 | A |
5081997 | Bosley et al. | Jan 1992 | A |
5098431 | Rydell | Mar 1992 | A |
5112048 | Kienle | May 1992 | A |
5154724 | Andrews | Oct 1992 | A |
5201756 | Horzewski et al. | Apr 1993 | A |
5209741 | Spaeth | May 1993 | A |
5211183 | Wilson | May 1993 | A |
5221256 | Mahurkar | Jun 1993 | A |
5230349 | Langberg | Jul 1993 | A |
5281216 | Klicek | Jan 1994 | A |
5300068 | Rosar et al. | Apr 1994 | A |
5300069 | Hunsberger et al. | Apr 1994 | A |
5314418 | Takano et al. | May 1994 | A |
5318525 | West et al. | Jun 1994 | A |
5327905 | Avitall | Jul 1994 | A |
5364393 | Auth et al. | Nov 1994 | A |
5372596 | Klicek et al. | Dec 1994 | A |
5380304 | Parker | Jan 1995 | A |
5397304 | Truckai | Mar 1995 | A |
5403338 | Milo | Apr 1995 | A |
5423809 | Klicek | Jun 1995 | A |
5425382 | Golden et al. | Jun 1995 | A |
5490859 | Mische et al. | Feb 1996 | A |
5497774 | Swartz et al. | Mar 1996 | A |
5507751 | Goode et al. | Apr 1996 | A |
5509411 | Littmann et al. | Apr 1996 | A |
5540681 | Strul et al. | Jul 1996 | A |
5545200 | West et al. | Aug 1996 | A |
5555618 | Winkler | Sep 1996 | A |
5571088 | Lennox et al. | Nov 1996 | A |
5575766 | Swartz et al. | Nov 1996 | A |
5575772 | Lennox | Nov 1996 | A |
5599347 | Hart et al. | Feb 1997 | A |
5605162 | Mirzaee et al. | Feb 1997 | A |
5617878 | Taheri | Apr 1997 | A |
5622169 | Golden et al. | Apr 1997 | A |
5624430 | Eton et al. | Apr 1997 | A |
5667488 | Lundquist et al. | Sep 1997 | A |
5673695 | McGee et al. | Oct 1997 | A |
5674208 | Berg et al. | Oct 1997 | A |
5683366 | Eggers et al. | Nov 1997 | A |
5720744 | Eggleston et al. | Feb 1998 | A |
5741249 | Moss et al. | Apr 1998 | A |
5766135 | Terwilliger | Jun 1998 | A |
5779688 | Imran et al. | Jul 1998 | A |
5810764 | Eggers et al. | Sep 1998 | A |
5814028 | Swartz et al. | Sep 1998 | A |
5830214 | Flom et al. | Nov 1998 | A |
5836875 | Webster, Jr. | Nov 1998 | A |
5849011 | Jones et al. | Dec 1998 | A |
5851210 | Torossian | Dec 1998 | A |
5885227 | Finlayson | Mar 1999 | A |
5888201 | Stinson et al. | Mar 1999 | A |
5893848 | Negus et al. | Apr 1999 | A |
5893885 | Webster, Jr. | Apr 1999 | A |
5904679 | Clayman | May 1999 | A |
5916210 | Winston | Jun 1999 | A |
5921957 | Killion et al. | Jul 1999 | A |
5931818 | Werp et al. | Aug 1999 | A |
5944023 | Johnson et al. | Aug 1999 | A |
5951482 | Winston et al. | Sep 1999 | A |
5957842 | Littmann et al. | Sep 1999 | A |
5964757 | Ponzi | Oct 1999 | A |
5967976 | Larsen et al. | Oct 1999 | A |
5989276 | Houser et al. | Nov 1999 | A |
6007555 | Devine | Dec 1999 | A |
6009877 | Edwards | Jan 2000 | A |
6013072 | Winston et al. | Jan 2000 | A |
6017340 | Cassidy et al. | Jan 2000 | A |
6018676 | Davis et al. | Jan 2000 | A |
6030380 | Auth et al. | Feb 2000 | A |
6032674 | Eggers et al. | Mar 2000 | A |
6048349 | Winston et al. | Apr 2000 | A |
6053870 | Fulton, III | Apr 2000 | A |
6053904 | Scribner et al. | Apr 2000 | A |
6056747 | Saadat et al. | May 2000 | A |
6063093 | Winston et al. | May 2000 | A |
6093185 | Ellis et al. | Jul 2000 | A |
6106515 | Winston et al. | Aug 2000 | A |
6106520 | Laufer et al. | Aug 2000 | A |
6117131 | Taylor | Sep 2000 | A |
6142992 | Cheng et al. | Nov 2000 | A |
6146380 | Racz et al. | Nov 2000 | A |
6155264 | Ressemann et al. | Dec 2000 | A |
6156031 | Aita et al. | Dec 2000 | A |
6171305 | Sherman | Jan 2001 | B1 |
6179824 | Eggers et al. | Jan 2001 | B1 |
6193676 | Winston et al. | Feb 2001 | B1 |
6193715 | Wrublewski et al. | Feb 2001 | B1 |
6210408 | Chandrasekaran et al. | Apr 2001 | B1 |
6217575 | Devore et al. | Apr 2001 | B1 |
6221061 | Engelson et al. | Apr 2001 | B1 |
6228076 | Winston et al. | May 2001 | B1 |
6245054 | Fuimaono et al. | Jun 2001 | B1 |
6267758 | Daw et al. | Jul 2001 | B1 |
6283983 | Makower et al. | Sep 2001 | B1 |
6292678 | Hall et al. | Sep 2001 | B1 |
6293945 | Parins et al. | Sep 2001 | B1 |
6296615 | Brockway et al. | Oct 2001 | B1 |
6296636 | Cheng et al. | Oct 2001 | B1 |
6302898 | Edwards et al. | Oct 2001 | B1 |
6304769 | Arenson et al. | Oct 2001 | B1 |
6315777 | Comben | Nov 2001 | B1 |
6328699 | Eigler et al. | Dec 2001 | B1 |
6360128 | Kordis et al. | Mar 2002 | B2 |
6364877 | Goble et al. | Apr 2002 | B1 |
6385472 | Hall et al. | May 2002 | B1 |
6394976 | Winston et al. | May 2002 | B1 |
6395002 | Ellman et al. | May 2002 | B1 |
6419674 | Bowser et al. | Jul 2002 | B1 |
6428551 | Hall et al. | Aug 2002 | B1 |
6450989 | Dubrul et al. | Sep 2002 | B2 |
6475214 | Moaddeb | Nov 2002 | B1 |
6485485 | Winston et al. | Nov 2002 | B1 |
6508754 | Liprie et al. | Jan 2003 | B1 |
6524303 | Garibaldi | Feb 2003 | B1 |
6530923 | Dubrul et al. | Mar 2003 | B1 |
6554827 | Chandrasekaran et al. | Apr 2003 | B2 |
6562031 | Chandrasekaran et al. | May 2003 | B2 |
6562049 | Norlander et al. | May 2003 | B1 |
6565562 | Shah et al. | May 2003 | B1 |
6607529 | Jones et al. | Aug 2003 | B1 |
6632222 | Edwards et al. | Oct 2003 | B1 |
6639999 | Cookingham et al. | Oct 2003 | B1 |
6650923 | Lesh et al. | Nov 2003 | B1 |
6651672 | Roth | Nov 2003 | B2 |
6662034 | Segner et al. | Dec 2003 | B2 |
6663621 | Winston et al. | Dec 2003 | B1 |
6702811 | Stewart et al. | Mar 2004 | B2 |
6709444 | Makower | Mar 2004 | B1 |
6723052 | Mills | Apr 2004 | B2 |
6733511 | Hall et al. | May 2004 | B2 |
6740103 | Hall et al. | May 2004 | B2 |
6752800 | Winston et al. | Jun 2004 | B1 |
6755816 | Ritter et al. | Jun 2004 | B2 |
6811544 | Schaer | Nov 2004 | B2 |
6814733 | Schwartz et al. | Nov 2004 | B2 |
6820614 | Bonutti | Nov 2004 | B2 |
6834201 | Gillies et al. | Dec 2004 | B2 |
6842639 | Winston et al. | Jan 2005 | B1 |
6852109 | Winston et al. | Feb 2005 | B2 |
6855143 | Davison et al. | Feb 2005 | B2 |
6860856 | Ward et al. | Mar 2005 | B2 |
6869431 | Maguire et al. | Mar 2005 | B2 |
6911026 | Hall et al. | Jun 2005 | B1 |
6951554 | Johansen et al. | Oct 2005 | B2 |
6951555 | Suresh et al. | Oct 2005 | B1 |
6955675 | Jain | Oct 2005 | B2 |
6970732 | Winston et al. | Nov 2005 | B2 |
6980843 | Eng et al. | Dec 2005 | B2 |
7029470 | Francischelli et al. | Apr 2006 | B2 |
7056294 | Khairkhahan et al. | Jun 2006 | B2 |
7083566 | Tornes et al. | Aug 2006 | B2 |
7112197 | Hartley et al. | Sep 2006 | B2 |
7270662 | Visram | Sep 2007 | B2 |
7335197 | Sage et al. | Feb 2008 | B2 |
7618430 | Scheib | Nov 2009 | B2 |
7651492 | Wham | Jan 2010 | B2 |
7666203 | Chanduszko et al. | Feb 2010 | B2 |
7678081 | Whiting et al. | Mar 2010 | B2 |
7682360 | Guerra | Mar 2010 | B2 |
7749217 | Podhajsky | Jul 2010 | B2 |
7828796 | Wong et al. | Nov 2010 | B2 |
7900928 | Held et al. | Mar 2011 | B2 |
8123745 | Beeckler | Feb 2012 | B2 |
8192425 | Mirza et al. | Jun 2012 | B2 |
8257323 | Joseph et al. | Sep 2012 | B2 |
8388549 | Paul et al. | Mar 2013 | B2 |
8500697 | Kurth et al. | Aug 2013 | B2 |
8577447 | Tegg | Nov 2013 | B2 |
8986292 | Sliwa | Mar 2015 | B2 |
8986298 | Lee | Mar 2015 | B2 |
10194981 | Margallo Balbás | Feb 2019 | B2 |
11339579 | Stearns | May 2022 | B1 |
20010012934 | Chandrasekaran et al. | Aug 2001 | A1 |
20010021867 | Kordis et al. | Sep 2001 | A1 |
20020019644 | Hastings et al. | Feb 2002 | A1 |
20020022781 | Mclntire et al. | Feb 2002 | A1 |
20020022836 | Goble et al. | Feb 2002 | A1 |
20020035361 | Houser et al. | Mar 2002 | A1 |
20020087153 | Roschak et al. | Jul 2002 | A1 |
20020087156 | Maguire et al. | Jul 2002 | A1 |
20020111618 | Stewart et al. | Aug 2002 | A1 |
20020123749 | Jain | Sep 2002 | A1 |
20020147485 | Mamo et al. | Oct 2002 | A1 |
20020169377 | Khairkhahan et al. | Nov 2002 | A1 |
20020188302 | Berg et al. | Dec 2002 | A1 |
20020198521 | Maguire | Dec 2002 | A1 |
20030032929 | McGuckin | Feb 2003 | A1 |
20030040742 | Underwood et al. | Feb 2003 | A1 |
20030144658 | Schwartz et al. | Jul 2003 | A1 |
20030158480 | Tornes et al. | Aug 2003 | A1 |
20030163153 | Scheib | Aug 2003 | A1 |
20030225392 | McMichael et al. | Dec 2003 | A1 |
20040015162 | McGaffigan | Jan 2004 | A1 |
20040024396 | Eggers | Feb 2004 | A1 |
20040030328 | Eggers et al. | Feb 2004 | A1 |
20040044350 | Martin et al. | Mar 2004 | A1 |
20040073243 | Sepetka et al. | Apr 2004 | A1 |
20040077948 | Violante et al. | Apr 2004 | A1 |
20040116851 | Johansen et al. | Jun 2004 | A1 |
20040127963 | Uchida et al. | Jul 2004 | A1 |
20040133113 | Krishnan | Jul 2004 | A1 |
20040133130 | Ferry et al. | Jul 2004 | A1 |
20040143256 | Bednarek | Jul 2004 | A1 |
20040147950 | Mueller et al. | Jul 2004 | A1 |
20040181213 | Gondo | Sep 2004 | A1 |
20040230188 | Cioanta et al. | Nov 2004 | A1 |
20050004585 | Hall et al. | Jan 2005 | A1 |
20050010208 | Winston et al. | Jan 2005 | A1 |
20050049628 | Schweikert et al. | Mar 2005 | A1 |
20050059966 | McClurken et al. | Mar 2005 | A1 |
20050065507 | Hartley et al. | Mar 2005 | A1 |
20050085806 | Auge et al. | Apr 2005 | A1 |
20050096529 | Cooper et al. | May 2005 | A1 |
20050101984 | Chanduszko et al. | May 2005 | A1 |
20050119556 | Gillies et al. | Jun 2005 | A1 |
20050137527 | Kunin | Jun 2005 | A1 |
20050149012 | Penny et al. | Jul 2005 | A1 |
20050203504 | Wham et al. | Sep 2005 | A1 |
20050203507 | Truckai et al. | Sep 2005 | A1 |
20050261607 | Johansen et al. | Nov 2005 | A1 |
20050288631 | Lewis et al. | Dec 2005 | A1 |
20060041253 | Newton et al. | Feb 2006 | A1 |
20060074398 | Whiting et al. | Apr 2006 | A1 |
20060079769 | Whiting et al. | Apr 2006 | A1 |
20060079787 | Whiting et al. | Apr 2006 | A1 |
20060079884 | Manzo et al. | Apr 2006 | A1 |
20060085054 | Zikorus et al. | Apr 2006 | A1 |
20060089638 | Carmel et al. | Apr 2006 | A1 |
20060106375 | Werneth et al. | May 2006 | A1 |
20060135962 | Kick et al. | Jun 2006 | A1 |
20060142756 | Davies et al. | Jun 2006 | A1 |
20060189972 | Grossman | Aug 2006 | A1 |
20060241586 | Wilk | Oct 2006 | A1 |
20060247672 | Vidlund et al. | Nov 2006 | A1 |
20060264927 | Ryan | Nov 2006 | A1 |
20060276710 | Krishnan | Dec 2006 | A1 |
20070060879 | Weitzner et al. | Mar 2007 | A1 |
20070066975 | Wong et al. | Mar 2007 | A1 |
20070118099 | Trout, III | May 2007 | A1 |
20070123964 | Davies et al. | May 2007 | A1 |
20070167775 | Kochavi et al. | Jul 2007 | A1 |
20070208256 | Marilla | Sep 2007 | A1 |
20070225681 | House | Sep 2007 | A1 |
20070270791 | Wang et al. | Nov 2007 | A1 |
20080039865 | Shaher et al. | Feb 2008 | A1 |
20080042360 | Veikley | Feb 2008 | A1 |
20080086120 | Mirza et al. | Apr 2008 | A1 |
20080097213 | Carlson et al. | Apr 2008 | A1 |
20080108987 | Bruszewski et al. | May 2008 | A1 |
20080146918 | Magnin et al. | Jun 2008 | A1 |
20080171934 | Greenan et al. | Jul 2008 | A1 |
20080208121 | Youssef et al. | Aug 2008 | A1 |
20080275439 | Francischelli et al. | Nov 2008 | A1 |
20090105742 | Kurth et al. | Apr 2009 | A1 |
20090138009 | Viswanathan et al. | May 2009 | A1 |
20090156921 | Wang | Jun 2009 | A1 |
20090163850 | Betts et al. | Jun 2009 | A1 |
20090177114 | Chin et al. | Jul 2009 | A1 |
20090264977 | Bruszewski et al. | Oct 2009 | A1 |
20100087789 | Leeflang et al. | Apr 2010 | A1 |
20100125282 | Machek et al. | May 2010 | A1 |
20100168684 | Ryan | Jul 2010 | A1 |
20100179632 | Bruszewski et al. | Jul 2010 | A1 |
20100191142 | Paul et al. | Jul 2010 | A1 |
20100194047 | Sauerwine | Aug 2010 | A1 |
20110046619 | Ducharme | Feb 2011 | A1 |
20110152716 | Chudzik et al. | Jun 2011 | A1 |
20110160592 | Mitchell | Jun 2011 | A1 |
20110190763 | Urban et al. | Aug 2011 | A1 |
20120232546 | Mirza et al. | Sep 2012 | A1 |
20120265055 | Melsheimer et al. | Oct 2012 | A1 |
20120330156 | Brown et al. | Dec 2012 | A1 |
20130184551 | Paganelli et al. | Jul 2013 | A1 |
20130184735 | Fischell et al. | Jul 2013 | A1 |
20130282084 | Mathur et al. | Oct 2013 | A1 |
20140206987 | Urbanski et al. | Jul 2014 | A1 |
20140296769 | Hyde et al. | Oct 2014 | A1 |
20160220741 | Garrison et al. | Aug 2016 | A1 |
20190021763 | Zhou et al. | Jan 2019 | A1 |
20190110838 | Martinez | Apr 2019 | A1 |
20190216503 | Otsubo | Jul 2019 | A1 |
20190247035 | Gittard et al. | Aug 2019 | A1 |
Number | Date | Country | |
---|---|---|---|
20210251686 A1 | Aug 2021 | US |