The present disclosure relates to set-top boxes, and in particular to a system for and method of channel selection on a set-top box.
The use of user control devices, such as remote control units and wireless keyboards, to change or select a channel from a number of available multimedia channels on televisions are well known. Multimedia content providers also provide program guides, such as electronic programming guides (EPGs), to subscribers to facilitate navigation, via these user control devices, among the available multimedia channels.
Typically, a remote control unit contains a numeric pad which includes numeric buttons for channel selection and an interactive pad which includes arrow buttons and an Enter button (e.g. the “OK” button) to navigate through the EPG or through the available multimedia channels. A remote control unit typically further includes a navigation pad with buttons relating to navigation features of the multimedia channels (e.g. an EPG key) and a television pad having buttons to control the television volume, television channels and other television features.
Channel selection is typically effected by entering, using the numeric pad of the remote control unit, the specific channel number of the channel the user wants to view (e.g. “52” for ESPN). Alternatively, the user may use the arrow buttons of the interactive pad to scroll through the channels until the required channel is reached. A user may also find the required channel by scrolling through the available channels on the EPG and then selecting the required channel by pressing the Enter button.
However, these methods of channel selection are quite time-consuming and are even more cumbersome when a user does not know the specific channel number associated with the channel of choice.
Accordingly, alternative techniques for selecting and changing multimedia channels and for navigating among multimedia channels would be advantageous.
Embodiments are illustrated by way of example and not limitation in the figures of the accompanying drawings, in which:
A method of selecting a channel on a set-top box is provided. The method includes receiving a channel request from a user control device, wherein the channel request includes at least one alphabetic letter and is a partial or complete alphanumeric channel identifier associated with at least one channel within an available channel list on the set-top box. The available channel list, in one embodiment, identifies channels that are available via the set-top box. The channel request is mapped to at least one channel within the available channel list. In response to the channel request received, a channel output to a display device is provided.
In another example embodiment, a system for channel selection on a set-top box is provided. The system includes a receiver to receive a channel request from a user control device, with the channel request typically including at least one alphabetic letter and is a partial or complete alphanumeric channel identifier associated with a channel within an available channel list on the set-top box. A processor is also provided to map the channel request to at least one channel within the available channel list on the set-top box and to provide a channel output, in response to the channel request received, to a display device.
Referring to
As indicated in
The memory 112 of the set-top box 104 may further store an electronic programming guide (EPG) interface module 116. The EPG interface module 116 may be implemented as executable instructions stored in memory 112 and executed by the processor 110 of the set-top box 104. Typically, the EPG interface module 116 generates, in combination with the predictive entry module 114, EPG sub-menus, in response to a channel request received.
Also stored within the memory 112 of the set-top box 104 is a mapping module 117 which operationally maps a channel request, received at the receiver 100 from the remote control device 108, to at least one channel identified within the available channel list 107.
Turning now to the remote control unit 108, this device may include a number of buttons that can be toggled by a user during operation, e.g., in order to cause one or more video files to be downloaded from the content provider, to navigate between channels or within the EPG, or to send a channel request to the set-top box 104.
In one embodiment, the remote control unit 108 may include an alphanumeric pad 120 which includes numeric buttons for channel selection, with alphabetic letters either printed on the buttons or next to the buttons. The alphanumeric pad 120 may be similar to the key set of a mobile handset. In an alternative embodiment, the remote control unit 108 may include a separate numeric pad and a separate alphabetic pad. The alphabetic pad may have a QWERTY layout. The alphanumeric pad or alphabetic pad is used to send a channel request to the receiver 118 of the set-top box 104. An example of a remote control 600 unit having separate numeric and alphabetic pads is discussed below with reference to
In addition to this, the remote control unit 108 may have an interactive pad 122 which includes arrow buttons and an Enter button (e.g. the “OK” button) to navigate through an EPG or through the channels. The remote control unit 108 may further include a navigation pad (not shown) with buttons relating to navigation features of the multimedia channels (e.g. an EPG key) and a television pad (not shown) having buttons to control the television volume, channels and other television features.
The content provider typically receives data representative of multimedia channels from a content source or sources, and provides data representative of at least a subset of the multimedia channels to the set-top box 104 for processing and display at the television 102. The content provider also provides data representative of an EPG to the set-top box 104 for processing by the processor 110 and for navigation by a user via the remote control unit 108 and the EPG interface module 116.
Referring to
The channel request typically comprises a channel identifier or a partial channel identifier. A channel identifier may be any alphanumeric channel identifier including the name of the channel, the alias of the channel or an abbreviation of the name of the channel, e.g. CNN, ESPN or DISCOVERY. Each channel identifier is associated with a multimedia channel within an available channel list of channels on the set-top box 104. The channel identifier comprises at least one alphabetic letter, which letter is typically the first character of the channel identifier.
At block 202, the processor 110 processes the received channel request by accessing data stored in the memory 112. The processor 110 maps the channel request to at least one channel associated with the channel request within the available channel list. In certain circumstances, the processor 110 may map the channel request to a number of channel identifiers. This process is described in more detail below.
In response to the channel request received, a channel output is provided by the processor 110 to the television 102, as shown by block 204. The type of channel output is dependent on the status of the display of the television and/or on the mapping between the channel request and the channels on the available channel list.
Referring to
At block 302, the processor 110 processes the received channel request by accessing data stored in the memory 112. The processor 110 maps the channel request to at least one channel associated with the channel request within the available channel list. A channel request is mapped to a particular channel when the channel request is a portion of the channel identifier, typically the first few characters.
The processor 110 now determines the status of the display on the television, as shown in decision block 304. The status of the television 102 is selected from a normal viewing status, a browser-bar active status or an EPG active status.
A normal viewing status is typically when a user is viewing live television, without a mini-guide or browser-bar being active or open, and without the EPG being active.
A browser-bar active status relates to viewing when a mini-guide or browser-bar is active during television service. A browser-bar is a single channel visual display that is generally placed in the bottom quarter of a television screen. The browser-bar allows the user to navigate, typically using the arrow buttons or channel buttons on the remote control 108, to other channels on the browser-bar while remaining on the current channel the user is viewing.
An EPG active status relates to a user viewing and navigating within the EPG, e.g., live television viewing has been suspended, while the user accesses program information from the EPG.
Should the status of the display on the television 102 be that of normal viewing, the processor 110 determines, at block 306, whether the channel request received maps to one or more channels from the available channel list stored in the memory 112.
In the event that the processor 110 maps to only one channel, irrespective of whether the channel request is a complete or partial channel identifier, the display on the television 102 is changed to the selected channel, as shown in block 308. For example, if the user has entered “CNN” using the alphanumeric pad 120 and the processor 110 determines that “CNN” maps to only one channel, that is CNN channel number 54, the viewing channel on the television 102 will be changed to “CNN” channel number 54.
If the processor 110 determines that the channel maps to more than one channel, notwithstanding the channel request being a complete or partial channel identifier, the predictive entry module 114 generates, as shown in block 310, a menu, using predictive entry functionality. The menu lists all channels within the available channel list stored in the memory 112 of the set-top box 104 which have mapped to the received channel request. Therefore, in the event that the received channel request is a partial alphanumeric channel identifier, all channels having the partial alphanumeric channel identifier as part of their respective alphanumeric channel identifiers will be listed in the menu.
Returning to
Turning to block 314, in the event that the status of the display on the television 102 is a browser-bar active status, the processor 110 determines whether the channel request received maps to one or more channels in the memory 112. If the processor 110 maps the channel request to only one channel, irrespective of the channel request being a complete or partial channel identifier, the display on the active browser-bar is changed to the selected channel in block 316, which in these circumstances will be the channel associated with and mapped to the complete or partial channel identifier received as channel request.
However, as shown in block 318, if the processor 110 maps the channel request to more than one channel identifier, a browser-bar menu is generated. The browser-bar menu lists all channels within the available channel list stored in the memory 112 of the set-top box 104, which channels have been mapped to the received channel request. As described above, predictive entry functionality is used by the predictive entry module 114 to generate the browser-bar menu. The browser-bar menu typically has the same format as the menu 402 described according to
The set-top box 104 now receives, as shown in block 320, a channel selection from the remote control unit 108. Similar to the description above, this channel selection is effected by a user scrolling through the browser-bar menu with the arrow buttons and then pressing the Enter button when the channel of choice is highlighted or indicated as preferred. Once the channel selection is received by the receiver 118 from the remote control unit 108, the display on the browser-bar of the television 102 is changed to the selected channel, while the display on the remainder of the television screen will remain the same.
Moving from
As shown in block 324, if it is determined that the channel request maps to only one channel, the processor 110, through the EPG interface module 116, moves the EPG information to the selected channel. Typically, the user's highlight of a particular channel will move to the selected channel identifier and channel number.
Alternatively, if the processor 110 determines that the channel request maps to more than one channel, the EPG interface module 116, together with the processor 110, generates an EPG sub-menu and the processor 111 displays this EPG sub-menu on the television 102. This is illustrated by block 326. The EPG sub-menu may include all the information typically displayed by the EPG, but only for the channels within the available channel list stored in the memory 112 of the set-top box 104 which have mapped to the received channel request. The predictive entry module 114 is responsible for the selection of these channels.
The user may now navigate within the EPG sub-menu by using the arrow buttons and Enter button to scroll up and down the sub-menu. Further, utilizing the EPG sub-menu, the user may perform a channel selection that is received by the set-top box one of the reform at block 328, whereafter the method again progresses to block 324. This channel selection is typically effected by a user scrolling through the channels displayed in the EPG sub-menu with the arrow buttons and then pressing the Enter button once on the channel of choice. When the channel selection is received by the receiver 118, the display on the television 102 of the EPG information may be moved to the selected channel.
The example set-top box 500 includes a processor 502 (e.g., a central processing unit (CPU), a graphics processing unit (GPU) or both), a main memory 504 and a static memory 506, which communicate with each other via a bus 508. The set-top box 500 may further include a video display unit 510 (e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)). The set-top box 500 also includes an alphanumeric input device 512 (e.g., a keyboard), a user interface (UI) navigation device 514 (e.g., a mouse), a disk drive unit 516, a signal generation device 518 (e.g., a speaker) and a network interface device 520.
The disk drive unit 516 includes a machine-readable medium 522 on which is stored one or more sets of instructions and data structures (e.g., software 524) embodying or utilized by any one or more of the methodologies or functions described herein. The software 524 may also reside, completely or at least partially, within the main memory 504 and/or within the processor 502 during execution thereof by the set-top box 500, the main memory 504 and the processor 502 also constituting machine-readable media.
The software 524 may further be transmitted or received over a network 526 via the network interface device 520 utilizing any one of a number of well-known transfer protocols (e.g., HTTP).
While the machine-readable medium 522 is shown in an example embodiment to be a single medium, the term “machine-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “machine-readable medium” shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present invention, or that is capable of storing, encoding or carrying data structures utilized by or associated with such a set of instructions. The term “machine-readable medium” shall accordingly be taken to include, but not be limited to, solid-state memories, optical and magnetic media, and carrier wave signals.
As shown, the system 700 can include a client facing tier 702, an application tier 704, an acquisition tier 706, and an operations and management tier 708. Each tier 702, 704, 706, 708 is coupled to a private network 710; to a public network 712, such as the Internet; or to both the private network 710 and the public network 712. For example, the client-facing tier 702 can be coupled to the private network 710. Further, the application tier 704 can be coupled to the private network 710 and to the public network 712. The acquisition tier 706 can also be coupled to the private network 710 and to the public network 712. Additionally, the operations and management tier 708 can be coupled to the public network 712.
As illustrated in
As illustrated in
In a particular embodiment, the client-facing tier 702 can be coupled to the modems 714, 722 via fiber optic cables. Alternatively, the modems 714 and 722 can be digital subscriber line (DSL) modems that are coupled to one or more network nodes via twisted pairs, and the client-facing tier 702 can be coupled to the network nodes via fiber-optic cables. Each set-top box device 716, 724 can process data received via the private access network 766, via an IPTV software platform, such as Microsoft® TV IPTV Edition.
Additionally, the first set-top box device 716 can be coupled to a first external display device, such as a first television monitor 718, and the second set-top box device 724 can be coupled to a second external display device, such as a second television monitor 726. Moreover, the first set-top box device 716 can communicate with a first remote control 720, and the second set-top box device can communicate with a second remote control 728.
In an exemplary, non-limiting embodiment, each set-top box device 716, 724 can receive video content, which may include video and audio portions, from the client-facing tier 702 via the private access network 766. The set-top boxes 716, 724 can transmit the video content to an external display device, such as the television monitors 718, 726. Further, the set-top box devices 716, 724 can each include a STB processor, such as STB processor 770, and a STB memory device, such as STB memory 772, which is accessible to the STB processor 770. In one embodiment, a computer program, such as the STB computer program 774, can be embedded within the STB memory device 772. Each set-top box device 716, 724 can also include a video content storage module, such as a digital video recorder (DVR) 776. In a particular embodiment, the set-top box devices 716, 724 can communicate commands received from the remote control devices 720, 728 to the client-facing tier 702 via the private access network 766.
In an illustrative embodiment, the client-facing tier 702 can include a client-facing tier (CFT) switch 730 that manages communication between the client-facing tier 702 and the private access network 766 and between the client-facing tier 702 and the private network 710. As shown, the CFT switch 730 is coupled to one or more image and data servers 732 that store still images associated with programs of various IPTV channels. The image and data servers 732 can also store data related to various channels, e.g., types of data related to the channels and to programs or video content displayed via the channels. In an illustrative embodiment, the image and data servers 732 can be a cluster of servers, each of which can store still images, channel and program-related data, or any combination thereof. The CFT switch 730 can also be coupled to a terminal server 734 that provides terminal devices with a connection point to the private network 710. In a particular embodiment, the CFT switch 730 can also be coupled to a video-on-demand (VOD) server 736 that stores or provides VOD content imported by the IPTV system 700. The client-facing tier 702 can also include one or more video content servers 780 that transmit video content requested by viewers via their set-top boxes 716, 724. In an illustrative, non-limiting embodiment, the video content servers 780 can include one or more multicast servers.
As illustrated in
Further, the second APP switch 740 can be coupled to a domain controller 746 that provides web access, for example, to users via the public network 712. For example, the domain controller 746 can provide remote web access to IPTV account information via the public network 712, which users can access using their personal computers 768. The second APP switch 740 can be coupled to a subscriber and system store 748 that includes account information, such as account information that is associated with users who access the system 700 via the private network 710 or the public network 712. In a particular embodiment, the application tier 704 can also include a client gateway 750 that communicates data directly with the client-facing tier 702. In this embodiment, the client gateway 750 can be coupled directly to the CFT switch 730. The client gateway 750 can provide user access to the private network 710 and the tiers coupled thereto.
In a particular embodiment, the set-top box devices 716, 724 can access the IPTV system 700 via the private access network 766, using information received from the client gateway 750. In this embodiment, the private access network 766 can provide security for the private network 710. User devices can access the client gateway 750 via the private access network 766, and the client gateway 750 can allow such devices to access the private network 710 once the devices are authenticated or verified. Similarly, the client gateway 750 can prevent unauthorized devices, such as hacker computers or stolen set-top box devices from accessing the private network 710, by denying access to these devices beyond the private access network 766.
For example, when the first representative set-top box device 716 accesses the system 700 via the private access network 766, the client gateway 750 can verify subscriber information by communicating with the subscriber and system store 748 via the private network 710, the first APP switch 738, and the second APP switch 740. Further, the client gateway 750 can verify billing information and status by communicating with the OSS/BSS gateway 744 via the private network 710 and the first APP switch 738. In one embodiment, the OSS/BSS gateway 744 can transmit a query across the first APP switch 738, to the second APP switch 740, and the second APP switch 740 can communicate the query across the public network 712 to the OSS/BSS server 764. After the client gateway 750 confirms subscriber and/or billing information, the client gateway 750 can allow the set-top box device 716 access to IPTV content and VOD content. If the client gateway 750 cannot verify subscriber information for the set-top box device 716, e.g., because it is connected to an unauthorized twisted pair, the client gateway 750 can block transmissions to and from the set-top box device 716 beyond the private access network 766.
As indicated in
Further, the television or movie content can be transmitted to the video content servers 780, where it can be encoded, formatted, stored, or otherwise manipulated and prepared for communication to the set-top box devices 716, 724. The CFT switch 730 can communicate the television or movie content to the modems 714, 722 via the private access network 766. The set-top box devices 716, 724 can receive the television or movie content via the modems 714, 722, and can transmit the television or movie content to the television monitors 718, 726. In an illustrative embodiment, video or audio portions of the television or movie content can be streamed to the set-top box devices 716, 724.
Further, the AQT switch can be coupled to a video-on-demand importer server 758 that stores television or movie content received at the acquisition tier 706 and communicates the stored content to the VOD server 736 at the client-facing tier 702 via the private network 710. Additionally, at the acquisition tier 706, the video-on-demand (VOD) importer server 758 can receive content from one or more VOD sources outside the IPTV system 700, such as movie studios and programmers of non-live content. The VOD importer server 758 can transmit the VOD content to the AQT switch 752, and the AQT switch 752, in turn, can communicate the material to the CFT switch 730 via the private network 710. The VOD content can be stored at one or more servers, such as the VOD server 736.
When user issue requests for VOD content via the set-top box devices 716, 724, the requests can be transmitted over the private access network 766 to the VOD server 736, via the CFT switch 730. Upon receiving such requests, the VOD server 736 can retrieve the requested VOD content and transmit the content to the set-top box devices 716,124 across the private access network 766, via the CFT switch 730. The set-top box devices 716, 724 can transmit the VOD content to the television monitors 718, 726. In an illustrative embodiment, video or audio portions of VOD content can be streamed to the set-top box devices 716, 724.
In an illustrative embodiment, the live acquisition server 754 can transmit the television or movie content to the AQT switch 752, and the AQT switch 752, in turn, can transmit the television or movie content to the OMT switch 760 via the public network 712. In this embodiment, the OMT switch 760 can transmit the television or movie content to the TV2 server 762 for display to users accessing the user interface at the TV2 server 762. For example, a user can access the TV2 server 762 using a personal computer (PC) 768 coupled to the public network 712.