1. Field of the Invention
The present invention relates to ultra-wideband (UWB) wireless communication systems in general, and, in particular, to channelization and data multiplexing in multi-band orthogonal frequency division multiplexing (OFDM) systems.
2. Description of the Related Art
Unlicensed wireless data communications systems such as Wi-Fi (IEEE 802.11b, 802.11g) have found wide acceptance, connecting PC's and digital appliances such as digital cameras, video cameras, and PDA's to each other and to internet gateways. Performance of wireless systems is typically affected by choice of frequency, bandwidth, modulation type, data multiplexing type, data rate, and power level. Design tradeoffs considering these parameters have a significant impact on the complexity of hardware and software, and can affect cost, size, and power consumption. It is generally desirable to maximize data rates, number of simultaneous users, and range, while minimizing transmit power and hardware complexity.
A type of wireless system, ultra-wideband (UWB), has an occupied bandwidth much wider than many traditional systems. The spectrum allocated in the United States for UWB is from 3,100 MHz to 10,600 MHz (7,500 MHz bandwidth); contrast this with the 20 MHz bandwidth allocated for US commercial FM broadcasting. Wireless communication systems using UWB technology typically provide multiple time division duplex (TDD) data sessions among users or devices. Data multiplexing provides shared access to the communication system for multiple users or devices. Widely used forms of multiplexing include frequency division multiple access (FDMA), where signals or data streams are each modulated onto unique portions of spectrum, and time division multiple access (TDMA), where data packets from different users or devices are assigned unique time slots in the same portion of spectrum.
A known art approach to data multiplexing in a UWB system uses code division multiple access (CDMA), a direct-sequence spread-spectrum system also used in cellular telephony, wireless LAN, and many other applications. CDMA first modifies the user data to be transmitted by multiplying it with a unique pseudo-noise (PN) spreading code having a bit width typically 5 to 20 times narrower (in time) than the user data bit width. The resultant digital signal, now at a much higher chip rate than the original data rate, is modulated onto a radio-frequency (RF) carrier. The high data rate of the PN code, compared to the user data rate, spreads the coded information across a much wider portion of spectrum. Each user or device is given a unique spreading code to differentiate its data stream from other users or devices data streams. At the receiver, the original data is recovered by de-spreading using this unique PN code.
CDMA systems with bandwidth in the GHz range pose stringent demands on transmit and receive hardware, which are generally difficult and costly to meet. Wideband UWB CDMA typically requires very high speed RF and analog circuits, as well as very high speed analog to digital (A/D) and digital to analog (D/A) converters. Complex digital circuitry is required to capture sufficient multipath energy to provide acceptable link range. CDMA also increases the probability of interference from one device to another as the number of devices in the shared spectrum increases.
Some wireless communications systems are designed to support simultaneous data transmission among multiple devices and multiple groups of devices. A group or network of devices having data connection among each other is sometimes referred to as a piconet. A piconet is a logical group of two or more devices communicating with each other, without interference from other piconets even in close proximity. An example piconet might be a digital camera with UWB connection to a PC, downloading images to the PC. Another might be a DVD player with a UWB wireless link to a television display.
In UWB systems it is often advantageous to support as many simultaneously operating piconets (SOP's) as possible. Multiple SOP's typically require that data packets or symbols from devices on each SOP are multiplexed in a manner so data packets from one SOP are not readable to other SOP's. While known UWB multiplexing schemes support multiple SOP's, an alternative channelization and multiplexing scheme increasing the number of SOP's would be beneficial.
The choice of channelization and multiplexing also impacts the logical connection between the medium access controller (MAC) and the physical layer (PHY). The MAC assigns a unique data path to each of the data streams or piconets. These data paths are then mapped, in the PHY, to the physical characteristics necessary to affect minimally interfering multiplexing of the data. These characteristics might include spreading code in a CDMA system, frequency in a FDMA system, time slot in a TDMA system, or some combination thereof. It is desirable to simplify the interface between the MAC and the PHY.
The present application describes a system and method for channelization of spectrum and multiplexing of data in a multi-band OFDM wireless communication system, providing improved support of multiple SOP's, and providing a simplified interface between the MAC and the PHY. The UWB spectrum (3,100 MHz to 10,600 MHz) is subdivided into bands 528 MHz wide, which are then grouped into band groups each having two or more adjacent bands. User data is modulated onto a plurality (typically 100) of OFDM data tones in one of the 528 MHz bands, and the band used to transmit the OFDM symbols for a given piconet changes with time in a defined sequence. Within each band group, the sequence of bands used for a particular piconet is defined by a time-frequency code (TFC). The method provides a combination of FDMA and time-frequency codes, enabling support of a larger number of SOP's. Additional advantages over known art include the ability to tailor the frequency bands to specific regions or countries to mitigate interference with existing wireless services, and the separation of types of service by frequency, allowing optimization of bands used for given data rate and range requirements.
The foregoing is a summary and thus contains, by necessity, simplifications, generalizations and omissions of detail; consequently, those skilled in the art will appreciate that the summary is illustrative only and is not intended to be in any way limiting. As will also be apparent to one of skill in the art, the operations disclosed herein may be implemented in a number of ways, and such changes and modifications may be made without departing from this invention and its broader aspects. Other aspects, inventive features, and advantages of the present invention, as defined solely by the claims, will become apparent in the non-limiting detailed description set forth below.
The description that follows presents a series of systems, apparati, methods and techniques that facilitate additional local register storage through the use of a virtual register set in a processor. While much of the description herein assumes a single processor, process or thread context, some realizations in accordance with the present invention provide expanded internal register capability customizable for each processor of a multiprocessor, each process and/or each thread of execution. Accordingly, in view of the above, and without limitation, certain exemplary exploitations are now described.
FC(N)=3432+528* (N-1) MHZ
where FC(N) is the center frequency of band N.
Coded bits are aggregated into groups of typically 100 or 200 bits each. Pairs of bits within the group are modulated, using known modulation techniques such as quadrature phase shift keying (QPSK), onto typically 100 data tones generally equally spaced in one of the 528 MHz bands. Symbols associated with a unique piconet are assigned a specific one of the 4 band groups, and are further assigned a unique time-frequency code (TFC) within the assigned band group. The band assigned for successive symbols changes with time according to a time frequency code.
Examining band group 1 for example, four simultaneously operating piconets (SOP's) are each assigned a unique preamble pattern (hence a unique sequence of TFC's). Each piconet can access the channel with statistically acceptable interference from other piconets. The TFC's are chosen to minimize interference caused by more than one device transmitting in the same band at the same time. When all TFC's of
This combination of FDMA, splitting the assigned bandwidth into 4 band groups further subdivided into 16 bands, and time-frequency coding provides, in each band group, operation of up to 4 devices or SOP's. Using all 4 band groups, up to 16 SOP's or devices can simultaneously communicate in the assigned spectrum. Each of the sixteen possible combinations is uniquely described by combining the band group number and the preamble pattern number. This simplifies the interface between the MAC, which assigns one of the sixteen possible data paths to a user, and the PHY.
This baseband analog signal out of DAC 816 thus has user data QPSK modulated onto 100 tones spaced at 4.125 MHz, plus 28 guard, pilot and null tones, also at 4.125 MHz spacing, creating a baseband OFDM signal in the 0 to 528 MHz range at the output of DAC 816. The baseband OFDM signal from DAC 816 is input to one input of multiplier 818. The other input of multiplier 818 is a band center frequency signal from synthesized generator 820. The output of multiplier 818 is the sum of the generator 820 frequency and the baseband input from DAC 816. The baseband OFDM signal is thus upconverted to one of the 14 bands of (for example)
Synthesized generator 820 typically uses addition or subtraction of a plurality of reference signals to create one of a multiplicity of frequencies, as shown in
The Time-Frequency Kernel 822 has as its inputs a preamble number and a band group number from the MAC (medium access controller), which preamble and band group, in combination, are unique to a specific piconet, user or device inputting data to input 802. An example of mapping from band group and preamble to TFC is shown in
The example embodiments described in the figures and accompanying descriptions show that variations in band group and band definitions, TFC structure, or modulation technique can all be made, while retaining the advantages of combining frequency division multiple access (FDMA) and time frequency codes (TFC). Those skilled in the art to which the invention relates will appreciate that yet other substitutions and modifications can be made to the described embodiments, without departing from the spirit and scope of the invention as described by the claims below. For example, the combination of frequency bands with a band group can be reconfigured to minimize interference among pico nets within a given physical environment. Similarly, various combinations of band groups can be formed according to a quality of data throughput required in given wireless network.
Realizations in accordance with the present invention have been described in the context of particular embodiments. These embodiments are meant to be illustrative and not limiting. Many variations, modifications, additions, and improvements are possible. Accordingly, plural instances may be provided for components described herein as a single instance. Boundaries between various components, operations and data stores are somewhat arbitrary, and particular operations are illustrated in the context of specific illustrative configurations. Other allocations of functionality are envisioned and may fall within the scope of claims that follow. Finally, structures and functionality presented as discrete components in the exemplary configurations may be implemented as a combined structure or component. These and other variations, modifications, additions, and improvements may fall within the scope of the invention as defined in the claims that follow.
This application is related to and claims priority from U.S. Provisional Patent Application Ser. No. 60/535,305 filed on Jan. 09, 2004 and U.S. Provisional Patent Application Ser. No. 60/550,938 filed on Mar. 04, 2004. Disclosures of these applications are incorporated herein by references in their entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
60535305 | Jan 2004 | US | |
60550938 | Mar 2004 | US |