The present application relates generally to a control apparatus for controlling a system of an automotive vehicle in response to sensed dynamic behavior, and more specifically, to a method and apparatus for controlling the roll characteristics of the vehicle by characterizing the vehicle body to road angle on which the vehicle is having a potential rollover event.
Dynamic control systems for automotive vehicles have recently begun to be offered on various products. Dynamic control systems typically control the yaw of the vehicle by controlling the braking effort at the various wheels of the vehicle. Yaw control systems typically compare the desired direction of the vehicle based upon the steering wheel angle and the direction of travel. By regulating the amount of braking at each corner of the vehicle, the desired direction of travel may be maintained. Typically, the dynamic control systems do not address roll of the vehicle. For high profile vehicles in particular, it would be desirable to control the rollover characteristic of the vehicle to maintain the vehicle position with respect to the road. That is, it is desirable to maintain contact of each of the four tires of the vehicle on the road.
In vehicle roll stability control it is desired to alter the vehicle attitude such that its motion along the roll direction is prevented from achieving a predetermined limit (rollover limit) with the aid of the actuation from the available active systems such as controllable brake system, steering system and suspension system. Although the vehicle attitude is well defined, direct measurement is usually impossible.
There are two types of vehicle attitudes needed to be distinguished. One is the so-called global attitude, which is sensed by the angular rate sensors. The other is the relative attitude, which measures the relative angular positions of the vehicle with respect to the road surface on which the vehicle is driven. The global attitude of the vehicle is relative to an earth frame (or called the inertia frame), sea level, or a flat road. It can be directly related to the three angular rate gyro sensors. While the relative attitude of the vehicle measures the relative angular positions of the vehicle with respect to the road surface, which are always of various terrains. Unlike the global attitude, there are no gyro-type sensors that can be directly related to the relative attitude. A reasonable estimate is that a successful relative attitude sensing system utilizes both the gyro-type sensors (when the road becomes flat, the relative attitude sensing system recovers the global attitude) and some other sensor signals.
One reason to distinguish relative and global attitude is due to the fact that vehicles are usually driven on a three-dimensional road surface of different terrains, not always on a flat road surface. Driving on a road surface with a large road bank does increase the rollover tendency, i.e., a large output from the global attitude sensing system might well imply an uncontrollable rollover event regardless of the flat road driving and the 3-D road driving. However driving on a three-dimensional road with moderate road bank angle, the global attitude may not be able to provide enough fidelity for a rollover event to be distinguished. Vehicular rollover happens when one side of the vehicle is lifted from the road surface with a long duration of time without returning back. If a vehicle is driven on a banked road, the global attitude sensing system will pick up certain attitude information even when the vehicle does not experience any wheel lifting (four wheels are always contacting the road surface). Hence a measure of the relative angular positions of the vehicle with respect to the portion of the road surface on which the vehicle is driven provides more fidelity than global attitude to sense the rollover event when the vehicle is driven on a road with a moderate bank angle. Such an angle is called body-to-road roll angle and it is used as one of the key variables in the roll stability control module to compute the amount of actuation needed for preventing untripped rollover event.
When the vehicle does not have one side lifted, U.S. Pat. No. 6,556,908 does provide a method to calculate the relative attitudes and their accuracy may be affected by the vehicle loading, suspension and tire conditions. However, during a potential rollover event, such a relative roll angle is not a good measure of the true relative roll angle between vehicle body and the road surface. U.S. patent application Ser. No. 10/459,697 (FGT-1660)) provides another way to compute the true relative roll angle during a potential rollover event. This application is suited for cases where vehicle loading and suspension conditions are very close to the nominal systems. If the vehicle has large loading variations (especially roof loading), potential inaccuracy could cause false activations in roll stability controls.
During a potential rollover event, one or two wheels on the inside of the vehicle turn are up in the air and there is an angle between the axle of the lifted wheel and road surface. Such an angle is called a wheel departure angle. If such a wheel departure can be somehow characterized, the true body-to-road roll angle can be conceptually obtained as the sum of the wheel departure angle and the relative roll angle calculated in U.S. Pat. No. 6,556,908.
Another way to capture the true body-to-road roll angle is to use the resultant angle obtained by subtracting the road bank angle for the global roll angle calculated for example in U.S. patent application Ser. No. 09/967,038 , filed Oct. 1, 2001. Although this method is theoretically feasible, it has inevitable drawbacks. The first drawback lies in the computation of the road bank angle, since there is no robust and accurate computation of road banks using the existing sensor set. Secondly, the global roll angle computation as shown in U.S. patent application Ser. No. 09/967,038 may be affected by the accuracy of the low frequency bank angle estimation.
Therefore, the aforementioned two methods of computing the body-to-road roll angle may not deliver accurate enough body-to-road roll angle for roll stability control purpose in certain situations. Because each of the individual methods described above does provide accurate measure with certain conditions, a sensor fusion algorithm would be a way to obtain an angle good for roll stability control. Such a sensor fusion method needs to integrate the various angles and conduct signal sensitizing and desensitizing, which may include the computations of (i) global roll angle as discussed in U.S. patent application Ser. No. 09/967,038; (ii) relative roll angle as discussed in U.S. Pat. No. 6,556,908; (iii) a rough characterization of the road bank angle, which is called a reference road bank angle); (iv) wheel departure angle; (v) body-to-road roll angle; (vi) transition and rollover condition.
The aforementioned computation is not only good for roll stability control, but also for other applications. For example, the reference road bank angle could be used in an active anti-roll-bar control, the yaw stability control, etc. An active roll control system using a controlled anti-roll-bar does not respond suitably to the side bank in the conventional setting, since the presence of road side bank cannot be detected and the system therefore responds to a side bank as if the vehicle were cornering. This can result in unnecessary power consumption for the active anti-roll-bar system. In order to eliminate this, U.S. Pat. No. 6,282,471 provides a very crude estimation of the road side bank using lateral acceleration sensor and vehicle reference speed. A vehicle driven on a road with a sharp side bank may cause false activation for the yaw stability control system and/or roll stability control system due to the fact that large lateral motion is determined through sensor signals even if the vehicle is driven in steady state condition on the banked road.
Therefore, it is desirable in vehicle dynamics control, especially for roll stability control to detect accurately a wheel departure angle so as to accurately predict the true roll position of the vehicle to properly activate the vehicle control systems.
A system for determining a body to road angle is set forth herein. The process may be iterative and continuous so that a previous or body to road angle determination or estimate is used to find an updated or second body to road angle.
In one embodiment, a control system for an automotive vehicle having a safety system includes a controller determining a first body to road angle; determining a second body to road angle; determining a final body to road angle from the first body to road angle and the second body to road angle; and controlling the safety system in response to the final body to road signal.
In another embodiment, a method of controlling a safety system of an automotive vehicle comprises determining a wheel departure angle; determining a relative roll angle; determining a first body to road angle in response to the wheel departure angle and the relative roll angle; determining a reference bank angle; determining a global roll angle; determining a second body to road angle from the reference bank angle and the global roll angle; determining a final body to road angle from the first body to road angle and the second body to road angle; and controlling a safety system in response to the final body to road signal.
Other advantages and features of the present invention will become apparent when viewed in light of the detailed description of the preferred embodiment when taken in conjunction with the attached drawings and appended claims.
In the following figures the same reference numerals will be used to identify the same components. The present teachings may be used in conjunction with a yaw control system or a rollover control system for an automotive vehicle. However, the present teachings may also be used with a deployment device such as airbag or roll bar.
Referring to
As mentioned above, the system may also be used with active/semi-active suspension systems, anti-roll bar or other safety devices deployed or activated upon sensing predetermined dynamic conditions of the vehicle.
The sensing system 16 is part of a control system 18. The sensing system 16 may use a standard yaw stability control sensor set (including lateral acceleration sensor, yaw rate sensor, steering angle sensor and wheel speed sensor) together with a roll rate sensor and a longitudinal acceleration sensor. The various sensors will be further described below. The wheel speed sensors 20 are mounted at each corner of the vehicle, and the rest of the sensors of sensing system 16 may be mounted directly on the center of gravity of the vehicle body, along the directions x,y and z shown in
The angular rate sensors and the acceleration sensors are mounted on the vehicle car body along the body frame directions b1, b2 and b3, which are the x-y-z axes of the vehicle's sprung mass.
The longitudinal acceleration sensor 36 is mounted on the car body located at the center of gravity, with its sensing direction along b1-axis, whose output is denoted as ax. The lateral acceleration sensor 32 is mounted on the car body located at the center of gravity, with its sensing direction along b2-axis, whose output is denoted as ay.
The other frame used in the following discussion includes the road frame, as depicted in
In the following discussion, the Euler angles of the body frame b1b2b3 with respect to the road frame r1r2r3 are denoted as θxr, θyr and θzr, which are also called the relative Euler angles.
Referring now to
Referring now to
In
Referring now to
Referring now to
Referring now to
In one embodiment, the sensors are located at the center of gravity of the vehicle. Those skilled in the art will recognize that the sensors may also be located off the center of gravity and translated equivalently thereto.
Lateral acceleration, roll orientation and speed may be obtained using a global positioning system (GPS). Based upon inputs from the sensors, controller 26 may control a safety device 38. Depending on the desired sensitivity of the system and various other factors, not all the sensors 20, 28, 32, 34, 35, 36, and 37, or various combinations of the sensors, may be used in a commercial embodiment. Safety device 38 may control an airbag 40, an active braking system 41, an active front steering system 42, an active rear steering system 43, an active suspension system 44, and an active anti-roll bar system 45, or combinations thereof. Each of the systems 40–45 may have their own controllers for activating each one. As mentioned above, the safety system 38 may be at least the active braking system 41.
Roll rate sensor 34 may sense the roll condition of the vehicle based on sensing the height of one or more points on the vehicle relative to the road surface. Sensors that may be used to achieve this include a radar-based proximity sensor, a laser-based proximity sensor and a sonar-based proximity sensor.
Roll rate sensor 34 may also sense the roll condition based on sensing the linear or rotational relative displacement or displacement velocity of one or more of the suspension chassis components which may include a linear height or travel sensor, a rotary height or travel sensor, a wheel speed sensor used to look for a change in velocity, a steering wheel position sensor, a steering wheel velocity sensor and a driver heading command input from an electronic component that may include steer by wire using a hand wheel or joy stick.
The roll condition may also be sensed by sensing the force or torque associated with the loading condition of one or more suspension or chassis components including a pressure transducer in active air suspension, a shock absorber sensor such as a load cell, a strain gauge, the steering system absolute or relative motor load, the steering system pressure of the hydraulic lines, a tire lateral force sensor or sensors, a longitudinal tire force sensor, a vertical tire force sensor or a tire sidewall torsion sensor.
The roll condition of the vehicle may also be established by one or more of the following translational or rotational positions, velocities or accelerations of the vehicle including a roll gyro, the roll rate sensor 34, the yaw rate sensor 28, the lateral acceleration sensor 32, a vertical acceleration sensor, a vehicle longitudinal acceleration sensor, lateral or vertical speed sensor including a wheel-based speed sensor, a radar-based speed sensor, a sonar-based speed sensor, a laser-based speed sensor or an optical-based speed sensor.
Based on the inputs from sensors 20, 28, 32, 34, 35, 36, 37, controller 26 determines a roll condition and controls any one or more of the safety devices 40–45.
Speed sensor 20 may be one of a variety of speed sensors known to those skilled in the art. For example, a suitable speed sensor 20 may include a sensor at every wheel that is averaged by controller 26. The controller 26 translates the wheel speeds into the speed of the vehicle. Yaw rate, steering angle, wheel speed and possibly a slip angle estimate at each wheel may be translated back to the speed of the vehicle at the center of gravity. Various other algorithms are known to those skilled in the art. For example, if speed is determined while speeding up or braking around a corner, the lowest or highest wheel speed may not be used because of its error. Also, a transmission sensor may be used to determine vehicle speed.
Referring now to
Referring now to
The various sensor signals may also be used to determine a relative pitch angle in relative pitch angle module 56 and a roll acceleration in roll acceleration module 58. The outputs of the wheel lift detection module 50, the transition detection module 52, and the relative roll angle module 54 are used to determine a wheel departure angle in wheel departure angle module 60. Various sensor signals and the relative pitch angle in relative pitch angle module 56 are used to determine a relative velocity total in module 62. The road reference bank angle block 64 determines the bank angle. The relative pitch angle, the roll acceleration, and various other sensor signals as described below are used to determine the road reference bank angle. Other inputs may include a roll stability control event (RSC) and/or the presence of a recent yaw stability control event, and the wheel lifting and/or grounding flags.
The global roll angle of the vehicle is determined in global roll angle module 66. The relative roll angle, the wheel departure angle, and the roll velocity total blocks are all inputs to the global roll angle total module 66. The global roll angle total block determines the global roll angle θx. An output module 68 receives the global roll angle total module 66 and the road reference bank angle from the road reference bank angle module 64. A roll signal for control is developed in roll signal module 70. The roll signal for control is illustrated as arrow 72. A sensitizing and desensitizing module 74 may also be included in the output module 68 to adjust the roll signal for control.
In the reference road bank angle module 64, the reference bank angle estimate is calculated. The objective of the reference bank estimate is to track a robust but rough indication of the road bank angle experienced during driving in both stable and highly dynamic situations, and which is in favor for roll stability control. That is, this reference bank angle is adjusted based on the vehicle driving condition and the vehicle roll condition. Most importantly, when compared to the global roll estimate, it is intended to capture the occurrence and physical magnitude of a divergent roll condition (two wheel lift) should it occur. This signal is intended to be used as a comparator against the global roll estimate for calculating the error signal which is fed back to roll stability controller 26.
Referring now to
In step 80 various external inputs are determined. The inputs may be the sensor signals themselves or calculated signals derived from the sensor signals. One such signal is the Relative roll angle: θxr. The relative roll angle is determined in the relative roll angle module 54.
One of the inputs may be pre-charge flags: Spre-charge(0) for front left wheel and Spre-charge(1) for front right wheel. The pre-charge flags indicate whether the brake pressure has been built up or set to build up in a particular hydraulic line.
The relative roll angle θxr may be determined as set forth in U.S. patent application Ser. No. 10/459,697, the disclosure of which is incorporated by reference herein. The relative roll angle θxr can be computed from the roll rate sensor output {dot over (ω)}x-sensor and the lateral acceleration sensor output ay-sensor as follows:
{dot over (θ)}xr=−c1θxr−c2{dot over (ω)}x-sensor+c3ay-sensor
where the coefficients in the equation can be related to the vehicle parameters as in the following:
Where the suspension resultant roll stiffness and roll damping rates (including anti-roll-bars, suspensions, etc.) are respectively defined as Kroll and Droll, Ms is the vehicle body mass (or the sprung mass of the vehicle), hcg is the height of the center of gravity of the vehicle and θxr as the relative angular displacement between the vehicle body and the average wheel axle. A digital algorithm using a Tyler expansion to the continuous time differential equation in order to obtain the digital version of the sensing algorithm can be used as in the following for estimating the relative roll angles:
θxr(k+1)=θxr(k)+ΔT*f(k)
x(k+1)=x(k)+ΔT*g(k)
θwda(k+1)=θwda(k)+ΔT*x(k)+ΔT2*g(k)
where ΔT is the sampling time of the implemented algorithm, x is an internal state variable for conducting the computation, f and g are calculated at each time step according to the following functional relationships
f(k)=−c1θxr(k)−c2ωx-sensor(k)+c3ay-sensor(k)
g(k)=−d1 cos(θwda(k))+d2ay-sensor(k)cos(θxr(k)+d3θxr(k)+d4θxr(k)
where
where Iwxf and Iwxr are the roll moments of inertia of the front and rear wheel/tire/suspension assemblies around the contact patches of the outer tires; Muf and Mur are the total masses of the front and rear wheel/tire/suspension assemblies; lw is the half of the wheel track.
In step 84, the wheel departure angle, θwda is also calculated or derived. The wheel departure angle, θwda may be determined as set forth in U.S. patent application Ser. No. 10/610,278 and U.S. provisional application No. 60/400,376, both of which are incorporated by reference herein. The wheel departure angle may be determined iteratively as:
θwda=θwda+RV*p_LOOP_TIME_SEC
where RV is the roll velocity, and p_LOOP_TIME_SEC is a time constant for a loop time. In the present example, 0.007 is used. This is an iterative process which uses a previous value of θwda in the calculation.
In step 86, wheel lift status flags, Swld(i), are determined. The wheel lift status flags are set forth as follows:
If the ith wheel status cannot be firmly identified, Swld(i)=NO_INDICATION
One way in which to determine the wheel lift status flags is described in U.S. patent application Ser. No. 10/608,909 and U.S. provisional application No. 60/400,172, the disclosures of which are incorporated by reference herein.
In step 88, the reference bank angle, θrefbank, is determined. One way in which to determine the reference bank angle is described in U.S. is described in U.S. patent application Ser. No. 10/610,280, the disclosure of which is incorporated by reference herein.
The outputs of module 68 are a body-to-road roll, θb
The various calibratable parameters used herein are:
In step 90, a first body to road angle θb
θx=θb
When one or two inside wheels of the vehicle driven in a turn are lifted, equation (1) is not true even on level ground. One reason for this is that θxr captures the suspension roll angle or the roll angle between the vehicle body and the axles, while during wheel lifting one side of the wheels is in the air without touching the road surface.
Although the wheel lift status Swld generated from wheel lifting detection module 50 provides a rough indication about when the wheel lifting happens, it cannot be directly used to calculate control command quantitatively. The actual computation about how high the lifted wheels is useful. For example, if the wheel or wheels are lifted higher, a proportional higher braking pressure might be needed to control the rollover.
Such a quantitative characterization about how high the lifted wheels may be expressed by the angle between the axles and the road surface as in the following
where zw(i) is the vertical displacement of the center of the ith wheel with respect to the average road surface, tf is the front track and tr is the rear track. This angle may also be referred to as the wheel departure angle (θwda). If such an angle θa
Notice that using distance sensors to measure zw(i) is very costly. Therefore equation (3) is not feasible for practical implementation. An alternative method to obtain the axle-to-road roll angle θa
θb
Notice that the calculated first body-to-road roll angle θb
Another way to compute the true body-to-road relative roll angle θb
θb
where θbank is the road bank angle and θx is the global roll angle. Although the global roll angle θx can be computed from the global roll angle module 66, the difficulty of using equation (5) lies in the difficulty of accurately getting the road bank θbank. Instead of accurately computing the road bank θbank, a so-called reference bank θrefbank is calculated in reference bank module 64. Using this θrefbank, a second body-to-road roll is computed as in the following
θb
Such a reference bank θrefbank uses the available vehicle states to determine if the vehicle is in divergent or convergent stability trend (as shown in
When the wheel or wheels are contacting the road surface, the true body-to-road relative roll angle θb
With the above computed θrefbank, θb
If one or two wheels at the same side of the vehicle are lifted, the above computation for θb
Considering the above, the first θb
where θb
θb
where α>1. Using this θb
Similarly when the vehicle is turning right, the following computations are used for θb
and for double wheel lifting
With the above two computations of body-to-road relative roll angle, a third version can be obtained as the linear combination of the two body to road angles. That is, a final body to road angle is determined in step 94.
θb
where β is a positive number with magnitude less than 1.
Based on the final body to road angle, at least one safety system 38, such as systems 40–45 for the automotive vehicle can be controlled. For example, brakes or steering may be applied to prevent the vehicle from rolling over.
While particular embodiments of the invention have been shown and described, numerous variations and alternate embodiments will occur to those skilled in the art. Accordingly, it is intended that the invention be limited only in terms of the appended claims.
The present invention claims priority to U.S. provisional applications Ser. Nos. 60/400,172, 60/400,261, 60/400,375, and 60/400,376, filed Aug. 1, 2002, the disclosures of which are incorporated by reference herein. The present invention is also related to U.S. Applications Ser. No. 10/610,280 entitled “SYSTEM AND METHOD FOR CHARACTERIZING THE ROAD BANK FOR VEHICLE ROLL STABILITY CONTROL”, and Ser. No. 10/610,278 entitled “SYSTEM AND METHOD FOR DETERMINING A WHEEL DEPARTURE ANGLE FOR A ROLLOVER CONTROL SYSTEM”, filed simultaneously herewith.
Number | Name | Date | Kind |
---|---|---|---|
2917126 | Phillips | Dec 1959 | A |
3604273 | Kwok et al. | Sep 1971 | A |
3608925 | Murphy | Sep 1971 | A |
3899028 | Morris et al. | Aug 1975 | A |
3948567 | Kasselmann et al. | Apr 1976 | A |
3972543 | Presley et al. | Aug 1976 | A |
4023864 | Lang et al. | May 1977 | A |
RE30550 | Reise | Mar 1981 | E |
4480714 | Yabuta et al. | Nov 1984 | A |
4592565 | Eagle | Jun 1986 | A |
4597462 | Sano et al. | Jul 1986 | A |
4650212 | Yoshimura | Mar 1987 | A |
4679808 | Ito et al. | Jul 1987 | A |
4690553 | Fukamizu et al. | Sep 1987 | A |
4761022 | Ohashi | Aug 1988 | A |
4765649 | Ikemoto et al. | Aug 1988 | A |
4767588 | Ito | Aug 1988 | A |
4778773 | Sukegawa | Oct 1988 | A |
4809183 | Eckert | Feb 1989 | A |
4827416 | Kawagoe et al. | May 1989 | A |
4872116 | Ito et al. | Oct 1989 | A |
4888696 | Akatsu et al. | Dec 1989 | A |
4898431 | Karnopp et al. | Feb 1990 | A |
4930082 | Harara et al. | May 1990 | A |
4951198 | Watanabe et al. | Aug 1990 | A |
4960292 | Sadler | Oct 1990 | A |
4964679 | Rath | Oct 1990 | A |
4967865 | Schindler | Nov 1990 | A |
4976330 | Matsumoto | Dec 1990 | A |
4998593 | Karnopp et al. | Mar 1991 | A |
5033770 | Kamimura et al. | Jul 1991 | A |
5058017 | Adachi et al. | Oct 1991 | A |
5066041 | Kindermann et al. | Nov 1991 | A |
5088040 | Matsuda et al. | Feb 1992 | A |
5089967 | Haseda et al. | Feb 1992 | A |
5163319 | Spies et al. | Nov 1992 | A |
5200896 | Sato et al. | Apr 1993 | A |
5208749 | Adachi et al. | May 1993 | A |
5224765 | Matsuda | Jul 1993 | A |
5228757 | Ito et al. | Jul 1993 | A |
5239868 | Takenaka et al. | Aug 1993 | A |
5247466 | Shimada et al. | Sep 1993 | A |
5261503 | Yasui | Nov 1993 | A |
5265020 | Nakayama | Nov 1993 | A |
5278761 | Ander et al. | Jan 1994 | A |
5282134 | Gioutsos et al. | Jan 1994 | A |
5311431 | Cao et al. | May 1994 | A |
5324102 | Roll et al. | Jun 1994 | A |
5335176 | Nakamura | Aug 1994 | A |
5365439 | Momose et al. | Nov 1994 | A |
5370199 | Akuta et al. | Dec 1994 | A |
5408411 | Nakamura et al. | Apr 1995 | A |
5446658 | Pastor et al. | Aug 1995 | A |
5510989 | Zabler et al. | Apr 1996 | A |
5548536 | Ammon | Aug 1996 | A |
5549328 | Cubalchini | Aug 1996 | A |
5579245 | Kato | Nov 1996 | A |
5598335 | You | Jan 1997 | A |
5602734 | Kithil | Feb 1997 | A |
5610575 | Gioutsos | Mar 1997 | A |
5627756 | Fukada et al. | May 1997 | A |
5634698 | Cao et al. | Jun 1997 | A |
5640324 | Inagaki | Jun 1997 | A |
5648903 | Liubakka | Jul 1997 | A |
5671982 | Wanke | Sep 1997 | A |
5676433 | Inagaki et al. | Oct 1997 | A |
5694319 | Suissa et al. | Dec 1997 | A |
5703776 | Soung | Dec 1997 | A |
5707117 | Hu et al. | Jan 1998 | A |
5707120 | Monzaki et al. | Jan 1998 | A |
5720533 | Pastor et al. | Feb 1998 | A |
5723782 | Bolles, Jr. | Mar 1998 | A |
5732377 | Eckert | Mar 1998 | A |
5732378 | Eckert et al. | Mar 1998 | A |
5732379 | Eckert et al. | Mar 1998 | A |
5736939 | Corcoran | Apr 1998 | A |
5737224 | Jeenicke et al. | Apr 1998 | A |
5740041 | Iyoda | Apr 1998 | A |
5742918 | Ashrafi et al. | Apr 1998 | A |
5742919 | Ashrafi et al. | Apr 1998 | A |
5762406 | Yasui et al. | Jun 1998 | A |
5782543 | Monzaki et al. | Jul 1998 | A |
5787375 | Madau et al. | Jul 1998 | A |
5801647 | Survo et al. | Sep 1998 | A |
5809434 | Ashrafi et al. | Sep 1998 | A |
5816670 | Yamada et al. | Oct 1998 | A |
5825284 | Dunwoody et al. | Oct 1998 | A |
5857535 | Brooks | Jan 1999 | A |
5869943 | Nakashima et al. | Feb 1999 | A |
5878357 | Sivashankar et al. | Mar 1999 | A |
5893896 | Imamura et al. | Apr 1999 | A |
5925083 | Ackermann | Jul 1999 | A |
5931546 | Nakashima et al. | Aug 1999 | A |
5944137 | Moser et al. | Aug 1999 | A |
5944392 | Tachihata et al. | Aug 1999 | A |
5946644 | Cowan et al. | Aug 1999 | A |
5964819 | Naito | Oct 1999 | A |
5971503 | Joyce et al. | Oct 1999 | A |
6002974 | Schiffmann | Dec 1999 | A |
6002975 | Schiffmann et al. | Dec 1999 | A |
6026926 | Noro et al. | Feb 2000 | A |
6038495 | Schiffmann | Mar 2000 | A |
6040916 | Griesinger | Mar 2000 | A |
6050360 | Pattok et al. | Apr 2000 | A |
6055472 | Breunig et al. | Apr 2000 | A |
6062336 | Amberkar et al. | May 2000 | A |
6065558 | Wielenga | May 2000 | A |
6073065 | Brown et al. | Jun 2000 | A |
6079513 | Nishizaki et al. | Jun 2000 | A |
6081761 | Harada et al. | Jun 2000 | A |
6085133 | Keuper et al. | Jul 2000 | A |
6085860 | Hackl et al. | Jul 2000 | A |
6086168 | Rump | Jul 2000 | A |
6089344 | Baughn et al. | Jul 2000 | A |
6104284 | Otsuka | Aug 2000 | A |
6122568 | Madau et al. | Sep 2000 | A |
6122584 | Lin et al. | Sep 2000 | A |
6129172 | Yoshida et al. | Oct 2000 | A |
6141604 | Mattes et al. | Oct 2000 | A |
6141605 | Joyce | Oct 2000 | A |
6144904 | Tseng | Nov 2000 | A |
6149251 | Wuerth et al. | Nov 2000 | A |
6161905 | Hac et al. | Dec 2000 | A |
6169939 | Raad et al. | Jan 2001 | B1 |
6169946 | Griessbach | Jan 2001 | B1 |
6176555 | Semsey | Jan 2001 | B1 |
6178375 | Breunig | Jan 2001 | B1 |
6179310 | Clare et al. | Jan 2001 | B1 |
6179394 | Browalski et al. | Jan 2001 | B1 |
6184637 | Yamawaki et al. | Feb 2001 | B1 |
6185485 | Ashrafti et al. | Feb 2001 | B1 |
6186267 | Hackl et al. | Feb 2001 | B1 |
6192305 | Schiffmann | Feb 2001 | B1 |
6195606 | Barta et al. | Feb 2001 | B1 |
6198988 | Tseng | Mar 2001 | B1 |
6202009 | Tseng | Mar 2001 | B1 |
6202020 | Kyrtsos | Mar 2001 | B1 |
6206383 | Burdock | Mar 2001 | B1 |
6219604 | Dilger et al. | Apr 2001 | B1 |
6223114 | Boros et al. | Apr 2001 | B1 |
6226579 | Hackl et al. | May 2001 | B1 |
6233510 | Platner et al. | May 2001 | B1 |
6263261 | Brown et al. | Jul 2001 | B1 |
6266596 | Hartman et al. | Jul 2001 | B1 |
6272420 | Schramm et al. | Aug 2001 | B1 |
6278930 | Yamada et al. | Aug 2001 | B1 |
6282471 | Burdock et al. | Aug 2001 | B1 |
6282472 | Jones et al. | Aug 2001 | B1 |
6282474 | Chou et al. | Aug 2001 | B1 |
6292734 | Murakami et al. | Sep 2001 | B1 |
6292759 | Schiffmann | Sep 2001 | B1 |
6311111 | Leimbach et al. | Oct 2001 | B1 |
6314329 | Madau et al. | Nov 2001 | B1 |
6315373 | Yamada et al. | Nov 2001 | B1 |
6321141 | Leimbach | Nov 2001 | B1 |
6324446 | Brown et al. | Nov 2001 | B1 |
6324458 | Takagi et al. | Nov 2001 | B1 |
6330522 | Takeuchi | Dec 2001 | B1 |
6332104 | Brown et al. | Dec 2001 | B1 |
6338012 | Brown et al. | Jan 2002 | B1 |
6349247 | Schramm et al. | Feb 2002 | B1 |
6351694 | Tseng et al. | Feb 2002 | B1 |
6352318 | Hosomi et al. | Mar 2002 | B1 |
6356188 | Meyers et al. | Mar 2002 | B1 |
6370938 | Leimbach et al. | Apr 2002 | B1 |
6394240 | Barwick | May 2002 | B1 |
6397127 | Meyers et al. | May 2002 | B1 |
6419240 | Burdock et al. | Jul 2002 | B1 |
6428118 | Blosch | Aug 2002 | B1 |
6438463 | Tobaru et al. | Aug 2002 | B1 |
6438464 | Woywod et al. | Aug 2002 | B1 |
6477480 | Tseng et al. | Nov 2002 | B1 |
6496758 | Rhode et al. | Dec 2002 | B1 |
6496763 | Griessbach | Dec 2002 | B1 |
6498976 | Ehlbeck et al. | Dec 2002 | B1 |
6502023 | Fukada | Dec 2002 | B1 |
6547022 | Hosomi et al. | Apr 2003 | B1 |
6554293 | Fennel et al. | Apr 2003 | B1 |
6556908 | Lu et al. | Apr 2003 | B1 |
6559634 | Yamada | May 2003 | B1 |
6681196 | Glaser et al. | Jan 2004 | B1 |
20020014799 | Nagae | Feb 2002 | A1 |
20020040268 | Yamada et al. | Apr 2002 | A1 |
20020056582 | Chubb | May 2002 | A1 |
20020075139 | Yamamoto et al. | Jun 2002 | A1 |
20020082749 | Meyers et al. | Jun 2002 | A1 |
20020096003 | Yamada et al. | Jul 2002 | A1 |
20020139599 | Lu | Oct 2002 | A1 |
Number | Date | Country |
---|---|---|
36 16 907 | Nov 1987 | DE |
38 15 938 | Nov 1989 | DE |
43 21 571 | Jan 1994 | DE |
42 27 886 | Feb 1994 | DE |
43 35 979 | Apr 1995 | DE |
43 42 732 | Jun 1995 | DE |
199 07 633 | Oct 1999 | DE |
0 430 813 | Dec 1993 | EP |
0 662 601 | Jul 1995 | EP |
0 758 601 | Feb 1997 | EP |
983919 | Mar 2000 | EP |
24 25 342 | Dec 1979 | FR |
2257403 | Jan 1993 | GB |
2 342 078 | Apr 2000 | GB |
62055211 | Sep 1985 | JP |
63116918 | May 1988 | JP |
63151539 | Jun 1988 | JP |
63203456 | Aug 1988 | JP |
1101238 | Apr 1989 | JP |
2171373 | Jul 1990 | JP |
3042360 | Feb 1991 | JP |
3045452 | Feb 1991 | JP |
4008837 | Jan 1992 | JP |
5016699 | Jan 1993 | JP |
5254406 | Oct 1993 | JP |
6278586 | Oct 1994 | JP |
6297985 | Oct 1994 | JP |
6312612 | Nov 1994 | JP |
8080825 | Mar 1996 | JP |
9005352 | Jan 1997 | JP |
10024819 | Jan 1998 | JP |
10329682 | Dec 1998 | JP |
11011272 | Jan 1999 | JP |
11170992 | Jun 1999 | JP |
11254992 | Sep 1999 | JP |
11255093 | Sep 1999 | JP |
11304663 | Oct 1999 | JP |
11304662 | Nov 1999 | JP |
816849 | Mar 1981 | SU |
Number | Date | Country | |
---|---|---|---|
20040064237 A1 | Apr 2004 | US |
Number | Date | Country | |
---|---|---|---|
60400172 | Aug 2002 | US | |
60400261 | Aug 2002 | US | |
60400375 | Aug 2002 | US | |
60400376 | Aug 2002 | US |