This application claims priority to Japanese Patent Application No. 2021-201896, filed Dec. 13, 2021. The contents of that application are incorporated by reference herein in their entirety.
The present invention relates to a system and a method for charging an electric vehicle including a battery.
Shared mobility services that rent out electric vehicles to users are becoming popular. For example, shared mobility services for electric vehicles such as electrically assisted bicycles or electric scooters are provided in some cities. In such services, charging stations for charging electric vehicles are arranged in various places in the city, and the electric vehicles are charged at the charging stations (see, for example, International Publication WO2019/188115).
In recent years, the aforementioned shared mobility services for electric vehicles have come to be provided by various management companies. Each management company has its own charging station. Therefore, the user moves to the charging station specified by the management company of the service to be used and charges the electric vehicle. Therefore, if the specified charging station is not nearby, the user has to travel far away, which is inconvenient.
On the other hand, it is not easy to provide a charging station that can commonly charge the electric vehicles of multiple management companies. This is because there are various types of electric vehicles that management companies use in their own services, and the types of batteries for electric vehicles are also various. Different battery types require different charging profiles to properly charge the battery. Therefore, if batteries of various types of electric vehicles are charged with a common charging profile, it is difficult to efficiently charge the batteries.
An object of the present invention is to provide a system and a method for efficiently charging electric vehicles of a plurality of management companies at a common charging station.
A system according to one aspect of the present invention is a system for charging an electric vehicle including a battery. The system includes a charging station, a management computer, and a charging controller. The charging station includes a power transmission device that supplies electric power to the electric vehicle. The management computer stores multiple charging profiles for different battery types. The charging controller is mounted on the electric vehicle and controls charging of the battery with electric power from the power transmission device. The charging controller stores identification information about the battery. The charging controller transmits the identification information to the management computer. The charging controller acquires a charging profile corresponding to the identification information from the management computer. The charging controller controls charging of the battery according to the charging profile.
In the system according to the present aspect, the charging controller acquires the charging profile corresponding to the battery type from the management computer using the identification information. Therefore, the charging controller can acquire a charging profile suitable for the battery of its own electric vehicle at a charging station that can commonly charge the electric vehicles of various management companies. Thereby, the charging controller can efficiently charge the battery.
The identification information may include an identifier of the battery. In this case, by identifying the type of battery with the identifier, the charging profile suitable for the battery is specified.
The identification information may include an identifier of the electric vehicle. In this case, by identifying the type of electric vehicle with the identifier, the charging profile suitable for the battery of the electric vehicle is specified.
The identification information may include an identifier of the management company that manages the electric vehicle. In this case, by identifying the management company that manages the electric vehicle by the identifier, the charging profile suitable for the battery of the electric vehicle managed by the management company is specified.
The charging profile may indicate target values of voltage and/or current for charging the battery. The charging controller may control the voltage and/or current for charging the battery according to the charging profile. In this case, the voltage and/or current control suitable for charging the battery is performed according to the charging profile.
The charging station may further include a communication device that communicates with the management computer. The charging controller may communicate with the management computer via the communication device of the charging station. In this case, the communication load required for the charging controller is reduced. This reduces the size of the charging controller or reduces the cost of the charging controller.
The system may further include a power receiving device. The power receiving device may be mounted on the electric vehicle and wirelessly receive electric power from the power transmission device. The charging controller may control the voltage and/or current supplied from the power receiving device to the battery according to the charging profile. In this case, it is not necessary to equip the charging station with charging connectors corresponding to the electric vehicles of each management company. Therefore, it becomes easier to share the charging station.
A method according to another aspect of the present invention is a method of controlling an electric vehicle to charge the electric vehicle including a battery at the charging station. The method includes: acquiring identification information about the battery; transmitting the identification information to a management computer storing a plurality of charging profiles corresponding to battery types; acquiring a charging profile corresponding to the identification information; receiving electric power from the charging station to charge the battery; and controlling charging of the battery according to the charging profile.
In the method according to the present aspect, the charging profile corresponding to the battery type is acquired from the management computer. Therefore, at a charging station that can commonly charge the electric vehicles of various management companies, the electric vehicles are charged with a charging profile suitable for their own batteries. As a result, the battery can be efficiently charged.
Charging the battery at the charging station may be done by wireless power transfer. In this case, it is not necessary to equip the charging station with charging connectors corresponding to the electric vehicles of each management company. Therefore, it becomes easier to share the charging station.
A system for charging an electric vehicle according to an embodiment will be described below with reference to the drawings.
As shown in
As shown in
The charging station 2 supplies electric power to the electric vehicle 3A for charging the battery 12 of the electric vehicle 3A. The charging station 2 includes a vehicle stand 13. The vehicle stand 13 holds the electric vehicle 3A. When the electric vehicle 3A is held on the vehicle stand 13, the charging station 2 automatically starts charging the electric vehicle 3A. Alternatively, the charging station 2 may include an input device such as a button or a touch screen, and start charging the electric vehicle 3A in accordance with the operation of the input device by the user.
As shown in
The power receiving device 16 includes a power receiving coil 23 and a power receiving circuit 24. The power receiving coil 23 generates an induced current according to the magnetic field generated by the power transmission coil 22. The power receiving circuit 24 controls electric power output from the power receiving coil 23 to the battery 12. The power receiving circuit 24 includes, for example, a rectifier circuit and a resonance circuit. The power receiving device 16 receives electric power from the power transmission device 14 by wireless power transfer. Electric power from the power transmission device 14 is transmitted to the battery 12 via the power receiving device 16.
The power transmission controller 15 controls the power transmission circuit 21 to control the electric power output from the power transmission circuit 21. The power transmission controller 15 controls the voltage and frequency of the electric power output from the power transmission circuit 21. The power transmission controller 15 includes a storage device 31 and a processor 32 such as a CPU. The storage device 31 includes a memory. The storage device 31 may include an auxiliary storage device such as an HDD or an SSD. The storage device 31 stores programs and data for controlling electric power output from the power transmission device 14. The processor 32 executes processing for controlling electric power output from the power transmission device 14 according to programs and data.
The charging controller 17 controls the power receiving device 16 to control charging of the battery 12 with the electric power from the charging station 2. The charging controller 17 controls the voltage and current of electric power supplied from the power receiving device 16 to the battery 12. The charging controller 17 includes a storage device 33 and a processor 34 such as a CPU. The storage device 33 includes a memory. The storage device 33 may include an auxiliary storage device such as an HDD or an SSD. The storage device 33 stores programs and data for controlling electric power output from the power receiving device 16. The processor 34 executes processing for controlling electric power output from the power receiving device 16 according to programs and data.
As shown in
As shown in
The charging controller 17 determines whether the output voltage is equal to or higher than a second voltage value V2. When the output voltage is less than the second voltage value V2, the charging controller 17 maintains the output current at the first current value I1. When the output voltage is equal to or higher than the second voltage value V2, the charging controller 17 increases the output current to the second current value I2 (time T3) and maintains the output current at the second current value I2. As a result, the output voltage gradually rises (time T3-T4).
The charging controller 17 determines whether the output voltage is equal to or higher than a third voltage value V3. If the output voltage is less than the third voltage value V3, the charging controller 17 maintains the output current at the second current value I2. When the output voltage is equal to or greater than the third voltage value V3, the charging controller 17 maintains the output voltage at a fourth voltage value V4. Note that the output voltage gradually rises to the fourth voltage value V4 with a delay from the command from the charging controller 17 to the power receiving circuit 24. As a result, the output current gradually decreases (time T4-T5).
The charging controller 17 determines whether the output current is equal to or less than a third current value I3. If the output current is greater than the third current value I3, the charging controller 17 maintains the output voltage at the fourth voltage value V4. If the output current is equal to or less than the third current value I3, the charging controller 17 terminates charging (time T5).
Suitable values of the first to fourth voltage values V1 to V4, which are the target values of the output voltage, and suitable values of the first to third current values I1 to I3, which are the target values of the output current, differ depending on the type of the battery 12. The charging controller 17 downloads a charging profile indicating these values from the management computer 4.
As shown in
The third communication device 28 is connected to the management computer 4 via the information communication network 10. The third communication device 28 is connected to the information communication network 10 via, for example, WiFi or a mobile communication network such as 3G, 4G, or 5G. Alternatively, the third communication device 28 may be connected to the information communication network 10 by wire. The charging station 2 performs data communication with the management computer 4 via the third communication device 28.
When the electric vehicle 3A is connected to the charging station 2, the charging controller 17 transmits to the charging station 2 a request command for downloading the charging profile. The charging station 2 transmits the request command from the charging controller 17 to the management computer 4. That is, the charging controller 17 transmits the request command for a charging profile to the management computer 4 via the charging station 2.
The management computer 4 is located in a management center remote from charging station 2. The management computer 4 includes a storage device 35 and a processor 36 such as a CPU. The storage device 35 includes a memory. The storage device 35 may include an auxiliary storage device such as an HDD or an SSD. The storage device 35 stores programs and data for uploading a charging profile to the charging controller 17 in response to a request command. The processor 36 performs processing for uploading the charging profile according to the program and data.
The management computer 4 stores a plurality of charging profiles corresponding to the types of batteries 12. The charging profile is data indicating target values of voltage and current in charging the battery 12 described above.
The management computer 4 stores charging profiles 5A to 5C in association with identification information. The identification information includes identifiers of multiple management companies that provide shared mobility services. For example, identifier 001 indicates Company A, which is a management company. Identifier 002 indicates Company B, which is the management company. Identifier 003 indicates Company C, which is the management company. Company A, Company B, and Company C are different companies.
Company A, Company B, and Company C provide shared mobility services using different electric vehicles. Different electric vehicles mean, for example, electric vehicles of different manufacturers. Alternatively, different electric vehicles may mean electric vehicles of different models even if they are made by the same manufacturer.
As shown in
The identifier 002 is associated with the second charging profile 5B. The second charging profile 5B includes target values a11-a14 of the output voltages V1-V4 and target values b11-b13 of the output currents I1-I3 suitable for charging the battery 12 of the electric vehicle 3B used by Company B. The identifier 003 is associated with the third charging profile 5C. The third charging profile 5C includes target values a21-a24 of the output voltages V1-V4 and target values b21-b23 of the output currents I1-I3 suitable for charging the battery 12 of the electric vehicle 3C used by Company C.
The charging controller 17 stores identification information that indicates the management company of the electric vehicle 3A. The charging controller 17 transmits a request command for the charging profile to the management computer 4 including the identification information. When the management computer 4 receives the request command from the charging controller 17, the management computer 4 acquires the identification information included in the request command. The management computer 4 transmits the charging profile corresponding to the identification information to the charging controller 17.
For example, when the management computer 4 receives the request command including the identifier of Company A, the management computer 4 transmits the first charging profile 5A corresponding to the electric vehicle 3A of Company A to the charging controller 17. When the management computer 4 receives the request command including the identifier of Company B, the management computer 4 transmits the second charging profile 5B corresponding to the electric vehicle 3B of Company B to the charging controller 17. When the management computer 4 receives the request command including the identifier of Company C, the management computer 4 transmits the third charging profile 5C corresponding to the electric vehicle 3C of Company C to the charging controller 17.
As described above, the charging controller 17 downloads the charging profile corresponding to the identification information from the management computer 4. The charging controller 17 controls the output voltage and output current to the battery 12 according to the charging profile.
In the system 1 according to the present embodiment described above, the charging controller 17 acquires from the management computer 4 a charging profile according to the battery of the electric vehicle used by each management company, using the identification information. Therefore, at the charging station 2 that can commonly charge the electric vehicles 3A to 3C of various management companies, the charging controller 17 acquires a charging profile suitable for the battery 12 of its own electric vehicle. Thereby, the charging controller 17 can efficiently charge the battery 12.
Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and various modifications are possible without departing from the gist of the invention.
The electric vehicles 3A to 3C are not limited to electrically assisted bicycles, and may be other vehicles. For example, the electric vehicle 3A may be an electric scooter as shown in
The charging controller 17 may communicate with the management computer 4 without going through the charging station 2. For example, the charging controller 17 may communicate with the management computer 4 via a mobile communications network.
In the above embodiment, the identification information includes the identifier of the management company. However, the identification information may be related to the type of battery 12, and is not limited to the identifier of the management company. For example, identification information may include an identifier that indicates battery 12. The identifier indicating the battery 12 may indicate the type, model number, or product number of the battery 12, for example. The identification information may include an identifier that indicates the electric vehicle. The identifier indicating the electric vehicle may indicate the type, model number, or product number of the electric vehicle.
The power transmission device 14 and the power receiving device 16 may transmit power by wire. That is, the power transmission device 14 and the power receiving device 16 may be connected to each other by a cable. The power transmission device 14 may transmit electric power to the power receiving device 16 via the cable.
The charging sequence is not limited to that of the above embodiment, and may be changed. For example, the waveform of the output voltage in the charging sequence may be changed. The waveform of the output current in the charging sequence may be changed.
Number | Date | Country | Kind |
---|---|---|---|
2021-201896 | Dec 2021 | JP | national |