The invention relates to the provisioning of wireless capacity using the citizens band radio spectrum (CBRS).
Operators of mobile systems, such as Universal Mobile Telecommunications Systems (UMTS) and its offspring including LTE (Long Term Evolution) and LTE-Advanced, are increasingly relying on wireless small cell radio access networks (RANs) in order to deploy indoor voice and data services to enterprises and other customers. Such small cell RANs typically utilize multiple-access technologies capable of supporting communications with multiple users using radio frequency (RF) signals and sharing available system resources such as bandwidth and transmit power. While such small cell RANs operate satisfactorily in many applications, there exists a need for further improvements in small cell RAN technologies.
One such improvement includes use of the citizens band radio spectrum. The citizens broadband radio spectrum is a band now used primarily by Navy radars in coastal areas as well as PtP WiMax links at 25,000 locations. As diagrammed in
The new SAS will control access to the band according to various priorities and devices need to be authorized by the SAS for radiating in the allocated spectrum. Having first priority are the incumbent users, e.g., the Navy, PtP links, and so on. The second priority will be CBSDs operating with priority access licenses (these are generally three-year licenses per census tract, but are renewable).
The third priority will be CBSDs operating according to a Generic Authorized Access (GAA) model, which is based on a license-by-rule framework.
In more detail, and referring to
In the new system, the 150 MHz band will be channeled into the noted 15 unpaired 10 MHz blocks (see
The lower 100 MHz will operate according to the noted three tier model, and the upper 50 MHz will operate according to a two-tier model.
Lower 100 MHz:
Tier 1: Incumbents (Navy radars and FSS Space-to-Earth stations)
Tier 2: CBRS Priority Access Licensees (PAL)
Tier 3: CBRS Generic Authorized Access (GAA)
Upper 50 MHz:
Tier 1: Incumbents (mainly PtP Fixed WiMax links @ 25,000 known locations)
Tier 2: CBRS GAA (after a transition period (˜5 yrs), one model will apply, and incumbents will re-classified as GAA)
The SAS will detect activity by incumbents, e.g., Navy radars, and will operate so as to push down to the CBSD information about such activity so as to allow dynamic allocation in a way to vacate channels needed for incumbent use. That is, the SAS is responsible for installing sensors so as to allow an environment sensing capability (ESC). An implementation of the SAS would be by one or more servers operating, e.g., as a cloud service, with an appropriate domain.
The priority access licenses (PAL) will operate as follows. Such are only available for the lower 100 MHz band (see figure above), and will be allocated per census tract. It is noted in this regard that approximately 74,000 census tracts are in the US, and the design targets an optimal population of 4000 for each tract. There will be a maximum of seven PAL licenses given for any census tract (only seven, such that the SAS can dynamically adjust channel usage if needed, e.g., if an incumbent is detected). One licensee can have at most 4 PAL licenses or channels in any given census tract.
PAL licensing will be by a competitive bidding process every three years, with an automatic expiration after that time. For the very first licensing period, a PAL license may be acquired for 3+3 years. All PAL licenses will expire at the same time, so all PAL's will be re-auctioned every three years.
PAL licenses to a tract will be awarded only if there are more bidders than available PAL channels. Otherwise, no PAL licenses will be awarded, and all channels will be available as GAA.
GAA may potentially apply for the whole 150 MHz band, i.e., up to 15 channels. A “license by rule” framework will be applied, where the premises owner has de facto control of on-site deployments. As stated by the FCC, there may be limited opportunities for citizens broadband radio service users to deploy and utilize CBSDs in indoor areas without the permission of facility owners. In addition, an SAS can authorize GAA devices into PAL channels that are not used.
This Background is provided to introduce a brief context for the Summary and Detailed Description that follow. This Background is not intended to be an aid in determining the scope of the claimed subject matter nor be viewed as limiting the claimed subject matter to implementations that solve any or all of the disadvantages or problems presented above.
Systems and methods according to present principles provide ways to use the CBRS in advantageous ways, particularly in the applications of radio access networks.
In a first aspect, the invention is directed towards a method of operating radio nodes, the method including the steps of: a. configuring each of the radio nodes with dual identities, a first identity of the dual identities being a primary cell identity, a second identity of the dual identities being a secondary cell identity; b. operating the primary cell identity to provide a stable coverage layer; and c. operating the secondary cell identity to provide a dynamic capacity layer.
Implementations of the invention may include one or more of the following. The operating the primary cell identity may use one or more PAL channels. The operating the secondary cell identity may use one or more GAA channels. The method of operating radio nodes may operate the radio nodes within a citizens broadband radio service. The operating the primary cell identity may use one or more PAL channels, and the operating the secondary cell identity may use one or more GAA channels, the one or more GAA channels selected from channels not allocated to the primary cell identity. The primary cell using PAL may be protected from interference from the secondary cell using GAA. The method may further include associating a services node with the radio nodes, where the services node provides a self organizing network functionality for the radio nodes. The self organizing network functionality may provide an optimized allocation of GAA channels provided by SAS across the radio nodes. The method of operating radio nodes may operate the radio nodes within a citizens broadband radio service, and may further include associating a services node with the radio nodes, where the services node acts as a domain proxy for the citizens band radio service. The radio nodes may act as CBSDs.
In a second aspect, the invention is directed towards a radio node for use within a plurality of radio nodes, the radio nodes organized by a services node, the services node providing a self organizing functionality for the radio nodes, the radio node configured to have dual identities, a first identity of the dual identities being a primary cell identity, a second identity of the dual identities being a secondary cell identity, such that the primary cell identity is configured to provide a stable coverage layer, and the secondary cell identity is configured to provide a dynamic capacity layer.
Implementations of the invention may include one or more of the following. The primary cell identity may use one or more PAL channels. The secondary cell identity may use one or more GAA channels. The radio nodes may be may use part of a citizens broadband radio service. The primary cell identity uses one or more PAL channels, and the secondary cell identity may use one or more GAA channels, the one or more GAA channels selected from channels not allocated to the primary cell identity. The primary cell using PAL may be protected from interference from the secondary cell using GAA. The method may further include a services node configured to provide a self organizing network functionality for the radio nodes. The self organizing network functionality may provide an optimized allocation of GAA channels provided by SAS across the radio nodes. The radio nodes may be configured to operate within a citizens broadband radio service, and may further include a services node providing a self organizing network functionality for the radio nodes, where the services node is a domain proxy for the citizens band radio service. The radio nodes may be configured as CBSDs.
Advantages of the invention may include, in certain embodiments, one or more of the following. The PCell using PAL has guaranteed interference protection from GAA users by the SAS. The PCell using PAL is less likely to change, and may be modified only in response to incumbent users and not in response to GAA users. The PCell provides a steady robust coverage layer for UEs. The SCell uses GAA channels that change more frequently than PAL, but without interrupting PCell connectivity. Other advantages will be understood from this description.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
Like reference numerals indicate like elements in the drawings. Elements are not drawn to scale unless otherwise indicated.
Systems and methods according to implementations of principles disclosed here provide an LTE E-RAN employing a hierarchical architecture with a central controller or coordinator controlling multiple LTE radio nodes (RNs). The central controller or coordinator may form a portion of a services node (SN) in communication with RNs that service user equipment or UEs. These RNs may be configured as individual cells (i.e, with different physical cell identities (PCIs)) within the small cell network. Details of these systems are described below with respect to
This architecture may be advantageously employed within the context of CBRS as follows. The SN may act as a domain proxy for the CBRS, and may provide centralized SON (self-organizing network) functionality. The SN as the domain proxy may have a single SAS interface for multiple RNs, where the RNs act as the CBSDs. Centralized SON allows an optimized allocation of GAA channels provided by SAS across RNs. That is, given a set of channels, the centralized SON can determine the best allocation given a current network situation.
In one implementation, and as described below in connection with
In
In the implementations of
The below description discusses a particular implementation of a services node as described above, as well as one way in which dual cell identities may be implemented.
The size of the enterprise 105 and the number of cells deployed in the small cell RAN 110 may vary. In typical implementations, the enterprise 105 can be from 50,000 to 500,000 square feet and encompass multiple floors and the small cell RAN 110 may support hundreds to thousands of users using mobile communication platforms such as mobile phones, smartphones, tablet computing devices, and the like (referred to as “user equipment” (UE) and indicated by reference numerals 1251-N in
In this particular illustrative example, the small cell RAN 110 includes one or more services nodes (represented as a single services node 130 in
The environment 100 also generally includes Evolved Node B (eNB) base stations, or “macrocells”, as representatively indicated by reference numeral 155 in
Along with macrocells 155, the small cell RAN 110 forms an access network, i.e., an Evolved UMTS Terrestrial Radio Access Network (E-UTRAN) under 3GPP as represented by reference numeral 205 in
The SeGW 135 is also connected to the MME 210 and S-GW 215 in the EPC 140 using the appropriate S1 connections. Accordingly, as each of the radio nodes 115 in the small cell RAN 110 is operatively coupled to the services node 130 (as representatively shown by lines 225), the connections from the radio nodes 115 are aggregated to the EPC 140. Such aggregation preserves the flat characteristics of the LTE network while reducing the number of S1 connections that would otherwise be presented to the EPC 140. The small cell RAN 110 thus essentially appears as a single eNB 230 to the EPC 140, as shown.
The services node includes a central scheduler 235 as shown in
A UE 125 connected to the LTE network environment 100 will actively or passively monitor an E-UTRAN cell. As shown in
As noted above, a significant architectural difference between LTE and UMTS is that the standard LTE E-UTRAN has a flat architecture with multiple eNBs directly connecting to the LTE EPC. Another key difference relates to mobility across cells—LTE does not support Soft Handover (SHO) as in UMTS at a cell-edge and instead uses Hard Handover (HHO). As shown in
The lack of traditional macro-diversity schemes in LTE at cell-edge can result in poor spectral efficiency and also the potential for a poor handover success rate. For example, poor coordination of transmissions from adjacent eNBs can result in excessive inter-cell interference to cell-edge UEs and may result in handover failures due to poor SIR (Signal-to-Interference Ratio) both in the downlink (DL) and UL (uplink). Communications in indoor environments with low time dispersion (delay-spread) can also experience frequency-flat fading, which can result in loss of entire transmissions. In UMTS, by contrast, SHO enables macro-diversity which reduces the impact of flat fading on one of the links. In addition, in typical small cell FDD (Frequency Division Duplexing) deployments, both due to the lack of DL/UL reciprocity in an FDD system and due to unequal interference seen in DL and UL, it is common to observe an imbalance in the relative signal strengths of different eNBs in the DL and UL. For example, a cell-edge UE may find that Cell A is stronger than Cell B in the DL while Cell B is stronger than Cell A in the UL. Such an imbalance may result in a poor handover success rate but can generally be mitigated with macro-diversity. The impact of poor handover performance can be particularly noticeable in some conventional small cell networks.
There are two RRC (Radio Resource Control) states in LTE: RRC_Connected or RRC_Idle. A UE in the RRC_Connected state is referred to here as being either active or inactive depending on whether it has data to be transferred or not. When the UE is in the RRC_Connected state, one EPS (Evolved Packet Switch) bearer/E-RAB (E-UTRAN Radio access bearer) is established when the UE connects to a PDN (packet data network), and it remains established throughout the lifetime of the PDN connection to provide the UE with always-on IP connectivity to that PDN (
The advantage of keeping a UE in C-DRX state is the much-reduced latency in transferring newly arriving data when compared to a UE in the RRC_Idle state. However, as a UE in the C-DRX state moves within a conventional small cell RAN, it would need to perform a HHO operation for each physical transition from one radio node to another as it traverses the network 505, as shown in
As shown in
As shown in
Both the functional layers of the architecture 800 (
Localization may be accomplished by RF measurements received or performed at the radio node (1325) in order to detect adjacent cells having a fixed signal strength offset from the UE's serving cell. For example, the UE can report measurements via RRC MRM (Measurement Report Message) (1330) such as reference signal received power (RSRP) and reference signal received quality (RSRQ). Such reporting may be performed periodically or be event-driven. CQI (Channel Quality Indication) reports from the UE (1335) may also be used separately or in combination with other measurements to assist in localization.
Location information may also be inferred at the radio node using physical layer measurements (1340) such as SRS (Sounding Reference Signal) measurements. In some cases, it may be necessary to determine separate downlink and uplink detected sets for each UE, since downlink and uplink channel conditions may vary significantly. The dedicated PCI identity 1310 may also be configured to operate at lower power than normal, in some implementations as described below, to reduce interference with the common PCI identity 1315 (1345).
As noted above, the common PCI identity 1315 is operated to facilitate macro diversity (1350) for common signals/channels (1355) and for shared physical channels using hybrid joint processing (1360) as described below. The common PCI identity 1315 coordinates with other cells in the detected set so that transmission of the common PCI is performed in a time-synchronized manner (1365). The common PCI identity 1315 may also implement inter-cell interference mitigation techniques (1370) in some implementations. For example the CRS of a dedicated PCI identity may be offset in frequency (1375) from that of the common PCI identity by using different PCIs from the same PCI group. Control channel interference from the common PCI overlay network may be minimized by using the same control region as the dedicated PCI identity but using semi-persistent scheduling for UEs on the common PCI overlay network (1380). Thus, control channels on the dedicated PCI identities would see limited interference from the common PCI identities. RB (Resource Block) allocation for data transfers may then be coordinated between a centralized common PCI overlay network scheduler (e.g., scheduler 235 implemented in the services node 130 shown in
As noted above, the network topology 1400 may be optionally configured to selectively operate the common PCI identity of cells in the overlay network 1405. For example, the reference signals and common channels associated with the common PCI may be localized so that they are not transmitted from cells in the overlay network that are not part of any UE's detected set. In this case, the common PCI identity could be turned off for those overlay network cells.
At block 1540, cells in the detected set are configured to transmit common control and data signals using their common PCI identities in the overlay network 1405 to the UE. The common transmission enables the detected set cells to appear as a single cell to the UE. Thus, no HHOs are needed as the UE moves through the small cell network while being serviced by the overlay network 1405.
At decision block 1545 if the user ceases to be a sensitive user (for example, by terminating a VoIP session), or if new data arrives at a UE's buffer in the C-DRX state (so that the UE is no longer in an inactive state), then the UE is handed back to the underlay network 1410 using dedicated PCIs and the UE operates conventionally with HHOs as required as it moves between cells in the network (1550).
Without received MRMs, localization of the UEs within the small cell RAN is performed at the small cells using other techniques. As shown in the illustrative method 1900 in the flowchart in
The remaining steps of the method 1900 are similar to those in the above example. The UE 125 can initiate a connection to a common PCI identity of a cell in the overlay network 1805 (1915). Cells in the detected set are configured to transmit common control and data signals using their common PCI identities in the overlay network 1405 to the UE (1920) so that the detected set cells appear as a single cell to the UE.
In the discussion of protocol stacks that follows, the acronyms used in the drawings (
NAS Non-access stratum
RRC Radio Resource Control
PDCP Packet Data Convergence Protocol RLC Radio Link Control
MAC Media Access Control
PHY Physical layer
TCP/IP Transmission Control Protocol/Internet Protocol
IPsec ESP Internet Protocol Security Encapsulating Security Payload
SCTP Stream Control Transmission Protocol
GTP-UGPRS Tunneling Protocol User Plane (GPRS—General Packet Radio Service)
UDP User Datagram Protocol
The presence of the services node 130 enables use of the hybrid joint processing techniques noted above in the text accompanying element 1360 in
For example, in the downlink, for certain UEs, the L2 stack (PDCP/RLC/MAC) may be hosted on the services node 130 while the L1 processing (PHY) remains on the radio nodes 115 (see the user plane protocol stack 2415 in
With the MAC layer residing on the services node 130, the latency between the radio nodes 115 and the services node may be larger than the fastest HARQ (Hybrid Automatic Repeat Request) turn-around time of 8 ms. Therefore, hosting the L2 stack on the services node would be feasible for lower data rate users that can tolerate larger HARQ delays (It is noted that DL HARQ is asynchronous and thus retransmissions may be delayed) or those that can operate without HARQ retransmissions (e.g., VoIP users configured to have very low first-transmission block error rate (BLER)).
In the uplink, for certain UEs, the L2 stack may again be hosted on the services node 130 while the L1 processing remains on the radio nodes 115. The centralized scheduler 235 may instruct multiple radio nodes 115 to simultaneously decode a UE's transmission and these scheduling decisions are communicated to the individual schedulers 240 in the radio nodes. The decoded MAC PDUs (Protocol Data Unit) may be delivered separately from the individual radio nodes to the MAC layer in the L2 stack at the services node.
The MAC layer on the services node 130 will typically need to be enhanced to perform de-duplication of MAC PDUs before HARQ retransmissions. The benefit of macro-diversity is that a HARQ retransmission may be avoided even if only one among the multiple radio nodes successfully decodes the UL transmission from the UE. It is noted that this is unlike HSUPA (High Speed Uplink Packet Access), where the de-duplication and reordering operations are performed in the MAC-es layer in the RNC (Radio Network Controller) after HARQ retransmissions.
In an illustrative example, hybrid joint processing techniques may be implemented using the network topology 1600 shown in
An RF processor 2515 implements various signal processing functions for the downlink including the lower level L1 processing. The RF processor 2515 may include one or more sub-processors 2520 or cores that are configured to handle specific tasks or functions. A memory 2525 stores computer-readable code 2530 that is executable by one or more processors in the dual identity radio node 1305 (
The code 2530 in typical deployments is arranged to be executed by the one or more processors to implement the dual identity features shown in
The hardware infrastructure may also include various interfaces (I/Fs) including a communication I/F 2540 which may be used, for example, to implement a link to the services node 130 (
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods described in the foregoing detailed description and illustrated in the accompanying drawing by various blocks, modules, components, circuits, steps, processes, algorithms, etc. (collectively referred to as “elements”). These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. By way of example, an element, or any portion of an element, or any combination of elements may be implemented with a “processing system” that includes one or more processors.
Examples of processors include microprocessors, microcontrollers, digital signal processors (DSPs), field programmable gate arrays (FPGAs), programmable logic devices (PLDs), state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionalities described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. The software may reside on computer-readable media. Computer-readable media may include, by way of example, a magnetic storage device (e.g., hard disk, floppy disk, magnetic strip), an optical disk (e.g., compact disk (CD), digital versatile disk (DVD)), a smart card, a flash memory device (e.g., card, stick, key drive), random access memory (RAM), read only memory (ROM), programmable ROM (PROM), erasable PROM (EPROM), electrically erasable PROM (EEPROM), a register, a removable disk, and any other suitable media for storing or transmitting software. The computer-readable media may be resident in the processing system, external to the processing system, or distributed across multiple entities including the processing system. Computer-readable media may be embodied in a computer-program product. By way of example, a computer-program product may include one or more computer-readable media in packaging materials. Those skilled in the art will recognize how best to implement the described functionality presented throughout this disclosure depending on the particular application and the overall design constraints imposed on the overall system.
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
This application claims benefit of priority of U.S. Provisional Application No. 62/369,342, filed Aug. 1, 2016, entitled SYSTEM AND METHOD FOR CBRS DUAL CELL RADIO NODE, owned by the assignee of the present application and incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4099137 | Alm, Jr. et al. | Jul 1978 | A |
9271278 | Heo | Feb 2016 | B2 |
9544761 | Nama et al. | Jan 2017 | B2 |
20080200202 | Montojo et al. | Aug 2008 | A1 |
20100034135 | Kim et al. | Feb 2010 | A1 |
20110170517 | Bakker et al. | Jul 2011 | A1 |
20110194630 | Yang et al. | Aug 2011 | A1 |
20110244869 | Olofsson et al. | Oct 2011 | A1 |
20120140660 | Kang et al. | Jun 2012 | A1 |
20120176996 | Kim et al. | Jul 2012 | A1 |
20130203350 | Etchegoyen et al. | Aug 2013 | A1 |
20140010171 | Morrill et al. | Jan 2014 | A1 |
20140066055 | Balakrishnan et al. | Mar 2014 | A1 |
20140126438 | Zhu et al. | May 2014 | A1 |
20140211690 | Nama | Jul 2014 | A1 |
20140301371 | Maeda et al. | Oct 2014 | A1 |
20150011219 | Sally et al. | Jan 2015 | A1 |
20150373628 | Hwang | Dec 2015 | A1 |
20160014626 | Yi | Jan 2016 | A1 |
20160037406 | Centonza | Feb 2016 | A1 |
20160190707 | Park | Jun 2016 | A1 |
20160205534 | Fujishiro et al. | Jul 2016 | A1 |
20160212624 | Mueck | Jul 2016 | A1 |
20160286449 | Choi | Sep 2016 | A1 |
20160295613 | Wager | Oct 2016 | A1 |
20170070312 | Yi et al. | Mar 2017 | A1 |
20170188241 | Mueck | Jun 2017 | A1 |
20170195887 | Jovancevic | Jul 2017 | A1 |
20170208454 | Knisely | Jul 2017 | A1 |
20170289960 | Moustafa et al. | Oct 2017 | A1 |
20170295497 | MacMullan | Oct 2017 | A1 |
20170318470 | Srikanteswara | Nov 2017 | A1 |
20170331447 | Lee et al. | Nov 2017 | A1 |
20180054237 | Tseng et al. | Feb 2018 | A1 |
20180132111 | Mueck | May 2018 | A1 |
20180146380 | Srikanteswara | May 2018 | A1 |
20180270721 | Cui | Sep 2018 | A1 |
Entry |
---|
Author Unknown, “Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 13),” Technical Specification 36.300, Version 13.4.0, 3GPP Organizational Partners, Jun. 2016, 310 pages. |
Non-Final Office Action for U.S. Appl. No. 13/752,358, dated Jan. 15, 2015, 21 pages. |
Non-Final Office Action for U.S. Appl. No. 13/752,358, dated Jul. 29, 2015, 30 pages. |
Final Office Action for U.S. Appl. No. 13/752,358, dated Mar. 31, 2016, 21 pages. |
Notice of Allowance and Examiner-Initiated Interview Summary for U.S. Appl. No. 13/752,358, dated Aug. 31, 2016, 11 pages. |
Author Unknown, “Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification (Release 14),” Technical Specification 36.331, Version 14.3.0, Jun. 2017, 3GPP Organizational Partners, 745 pages. |
Non-Final Office Action for U.S. Appl. No. 15/815,248, dated Sep. 7, 2018, 12 pages. |
Non-Final Office Action for U.S. Appl. No. 15/815,248, dated Mar. 26, 2019, 14 pages. |
Final Office Action for U.S. Appl. No. 15/815,248, dated Sep. 19, 2019, 15 pages. |
Number | Date | Country | |
---|---|---|---|
20180035301 A1 | Feb 2018 | US |
Number | Date | Country | |
---|---|---|---|
62369342 | Aug 2016 | US |