System and method for classifying an object based on an aggregated behavior results

Information

  • Patent Grant
  • 10432649
  • Patent Number
    10,432,649
  • Date Filed
    Friday, January 15, 2016
    8 years ago
  • Date Issued
    Tuesday, October 1, 2019
    5 years ago
Abstract
Techniques for detecting malicious behavior of content (object) are described herein. An object is processed within a virtual machine. Responsive to receiving the result of the processing (response object), a parser parses the response object into a plurality of sub-objects. The plurality of sub-objects include a first sub-object and a second sub-object. A first behavior match result is determined based, at least in part, on whether information within the first sub-object corresponds to a identifiers associated with malicious activity. Also, a second behavior match result is determined based, at least in part, on whether information within the second sub-object corresponds to identifiers associated with malicious activity. Thereafter, the first and second behavior match results are aggregated to produce an aggregated result, wherein a malicious behavior score is calculated based, at least in part, on the aggregated result. The object is classified according to the malicious behavior score.
Description
FIELD OF THE INVENTION

Embodiments of the present invention relate generally to detecting malicious content. More particularly, embodiments of the invention relate to detecting suspicious behavior of executed objects within network content that may be indicative of malware.


BACKGROUND

Malicious software, or malware for short, may include any program or file that is harmful by design to a computer. Malware includes computer viruses, worms, Trojan horses, adware, spyware, and any programming that gathers information about a computer or its user or otherwise operates without permission. The owners of the computers are often unaware that these programs have been added to their computers and are often similarly unaware of their function.


Malicious network content is a type of malware distributed over a network via websites, e.g., servers operating on a network according to a hypertext transfer protocol (HTTP) standard or other well-known standard. Malicious network content distributed in this manner may be actively downloaded and installed on a computer, without the approval or knowledge of its user, simply by the computer accessing the web site hosting the malicious network content (the “malicious web site”). Malicious network content may be embedded within objects associated with web pages hosted by the malicious web site. Malicious network content may also enter a computer on receipt or opening of email. For example, email may contain an attachment, such as a PDF document, with embedded malicious executable programs. Furthermore, malicious content may exist in files contained in a computer memory or storage device, having infected those files through any of a variety of attack vectors.


Various processes and devices have been employed to prevent the problems associated with malicious content. For example, computers often run antivirus scanning software that scans a particular computer for viruses and other forms of malware. The scanning typically involves automatic detection of a match between content stored on the computer (or attached media) and a fingerprint library or database of known malware. The scanning may be initiated manually or based on a schedule specified by a user or system administrator associated with the particular computer. Unfortunately, by the time malware is detected by the scanning software, some damage on the computer, loss of privacy or intellectual property may have already occurred, and the malware may have propagated from the infected computer to other computers. Additionally, it may take days or weeks for new fingerprints to be manually created, the scanning fingerprint library updated and received for use by the scanning software, and the new fingerprints employed in new scans.


Moreover, anti-virus scanning utilities may have limited effectiveness to protect against all exploits by polymorphic malware. Polymorphic malware has the capability to mutate to defeat the fingerprint match process while keeping its original malicious capabilities intact. Fingerprints generated to identify one form of a polymorphic virus may not match against a mutated form. Thus polymorphic malware is often referred to as a family of virus rather than a single virus, and improved anti-virus techniques to identify such malware families is desirable.


Another type of malware detection solution employs virtual environments to replay or otherwise process content within a sandbox established by one or more virtual machines (VMs). Such solutions monitor content during execution to detect anomalies that may signal the presence of malware. One such system offered by FireEye, Inc., the assignee of the present patent application, employs a two-phase malware detection approach to detect malware contained in network traffic monitored in real-time. In a first or “static” phase, a heuristic is applied to network traffic to identify and filter packets that appear suspicious in that they exhibit characteristics associated with malware. In a second or “dynamic” phase, the suspicious packets (and typically only the suspicious packets) are processed within one or more virtual machines. For example, if a user is trying to download a file over a network, the file is extracted from the network traffic and analyzed in the virtual machine. The results of the analysis aids in determining whether the file is classified as malicious.


New malware (“zero day”) and polymorphic malware may not have valid fingerprints available in the matching database for traditional detection using anti-virus scanning or traditional two-phase malware detection. Additionally, traditional malware detection may only trigger malware notification or alerts when certain known malicious fingerprints are present. When attempting to classify content as malicious it can be especially important to minimize false positives, and false negatives, and strike an appropriate balance between the false positives and false negatives. Therefore, traditional malware detection schemes may ignore potentially benign behaviors even though the behaviors also may indicate malware.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are illustrated by way of example and not limitation in the figures of the accompanying drawings in which like references indicate similar elements.



FIG. 1 is block diagram of a communication system deploying a plurality of malware content detection systems having a framework for malicious behavior detection, in one embodiment;



FIG. 2A is a flow diagram of data associated with malicious behavior detection, in one embodiment;



FIG. 2B is a detailed block diagram of logic associated with malicious behavior detection, in one embodiment;



FIG. 3 is a flow diagram illustrating a method for malicious behavior detection, in one embodiment; and



FIG. 4 is a block diagram illustrating an example of a data processing system which may be used with one embodiment of the invention.





DETAILED DESCRIPTION

Various embodiments and aspects of the inventions will be described with reference to details discussed below, and the accompanying drawings will illustrate the various embodiments. The following description and drawings are illustrative of the invention and are not to be construed as limiting the invention. Numerous specific details are described to provide a thorough understanding of various embodiments of the present invention. However, in certain instances, well-known or conventional details are not described in order to provide a concise discussion of embodiments of the present inventions.


Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in conjunction with the embodiment can be included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification do not necessarily all refer to the same embodiment.


In one embodiment, a set of generic behaviors detected as a result of processing or triggering a malicious content suspect are analyzed together in aggregate and scored to determine maliciousness likelihood of the malicious content suspect. For example, generic behavior may be general behavior potentially performed by benign as well as malicious content and may not be specific to any known malware or malware family. Although the generic behaviors detected herein may be potentially benign in isolation, the combination of different generic behaviors detected from a single malicious content suspect can provide an overall indication of maliciousness.


In one embodiment, in response to processing or triggering the malicious content suspect (also referred to herein as the input object), a malicious behavior detector (MBD) can analyze the observed result (e.g., execution and/or communication response objects) in a controlled environment. As used herein, response objects can include any object resulting from or created in response to triggering or processing the malicious content suspect. For example, response objects may include files, processes, packets, or request instructions. Response objects may also include all or some portions or characteristics of the malicious content suspect itself.


One or more detector managers (e.g., a communication and/or execution detector manager) can assign behavior detectors (e.g., modules, engines, or plugins) to detect suspicious identifiers within the response objects. In some embodiments, a communication response object is parsed into communication sub-objects. A communication detector manager may assign the communication sub-objects to compatible communication behavior detectors. Each respective behavior detector (e.g., communication or execution detectors) can detect generic behaviors used by MBD to aggregate into an ultimate maliciousness determination for the malicious content suspect. For example, a communication behavior detector may determine whether the communication response object includes any identifiers related to email communication, suspicious Dynamic Domain Name System (DDNS) servers, or communication data related to data theft. In one embodiment, behavior detector output (e.g., match or no match to identifiers) from a plurality of behavior detectors has an assigned weight and all output is aggregated. MBD can provide a malicious behavior score to a classifier according to the aggregated output, the score related to the probability that the malicious content suspect is malware. In one embodiment, the malicious content suspect is reported as malicious when the weighted score reaches a predetermined threshold. Therefore, generic behavior (e.g., email communication) that may not be considered maliciousness in isolation may be analyzed together to form an overall maliciousness determination of the malicious content suspect.


The term “object” generally refers to a collection of data, whether in transit (e.g., over a network) or at rest (e.g., stored), often having a logical structure or organization that enables it to be classified for purposes of analysis. During analysis, for example, the object may exhibit a set of expected characteristics and, during processing, a set of expected behaviors. The object may also exhibit a set of unexpected characteristics and a set of unexpected behaviors that may evidence an exploit and potentially allow the object to be classified as an exploit. In some embodiments, objects may be further separated or divided into “sub-objects” or resulting objects. For example, a parser as described in greater detail below may take as input an object and subdivide or sort one or more sections or parts of the object into multiple sub-objects.


Examples of objects may include one or more flows or a self-contained element within a flow itself. A “flow” generally refers to related packets that are received, transmitted, or exchanged within a communication session. For convenience, a packet is broadly referred to as a series of bits or bytes having a prescribed format, which may include packets, frames, or cells.


As an illustrative example, an object may include a set of flows such as (1) a sequence of transmissions in accordance with a particular communication protocol (e.g., User Datagram Protocol (UDP); Transmission Control Protocol (TCP); or Hypertext Transfer Protocol (HTTP); etc.), or (2) inter-process communications (e.g. Remote Procedure Call “RPC” or analogous processes, etc.). Similar, as another illustrative example, the object may be a self-contained element, where different types of such objects may include an executable file, non-executable file (such as a document or a dynamically link library), a Portable Document Format (PDF) file, a JavaScript file, Zip file, a Flash file, a document (for example, a Microsoft Office® document), an electronic mail (email), downloaded web page, an instant messaging element in accordance with Session Initiation Protocol (SIP) or another messaging protocol, or the like.


An “exploit” may be construed broadly as information (e.g., executable code, data, command(s), etc.) that attempts to take advantage of a vulnerability. Typically, a “vulnerability” is a coding error or artifact of software (e.g., computer program) that allows an attacker to alter legitimate control flow during processing of the software (computer program) by an electronic device, and thus, causes the electronic device to experience undesirable or unexpected behaviors. The undesired or unexpected behaviors may include a communication-based anomaly or an execution-based anomaly, which, for example, could (1) alter the functionality of an electronic device executing application software in a malicious manner; (2) alter the functionality of the electronic device executing that application software without any malicious intent; and/or (3) provide unwanted functionality which may be generally acceptable in another context. To illustrate, a computer program may be considered as a state machine, where all valid states (and transitions between states) are managed and defined by the program, in which case an exploit may be viewed as seeking to alter one or more of the states (or transitions) from those defined by the program.


Malware may be construed broadly as computer code that executes an exploit and/or is intended to cause harm or co-opt operation of an electronic device (e.g., by misappropriating, modifying, or unauthorized attempted exfiltration of data). Conventionally, malware is often said to be designed with malicious intent. An object may constitute or contain malware.



FIG. 1 is an exemplary block diagram of a communication system deploying one or more Malicious Content Detection (MCD) systems having framework for MBD 101.


MCD systems 1101-N (N>1, e.g. N=3) may be an electronic device adapted to analyze information associated with network traffic routed over a communication network 130 between at least one server device 132 and at least one client device 134. The communication network 130 may include a public network such as the Internet, in which case an optional firewall 136 (represented by dashed lines) may be interposed prior to accessing client device 134. Alternatively, the communication network 130 may be a private network such as a wireless telecommunication network, wide area network, or local area network, or a combination of networks. While embodiments of the invention are described as being conducted on objects in transit over the communication network 130, other embodiments may include communication sent within a virtual network of a virtual machine (e.g., by virtual network interfaces 1981-N).


As shown in FIG. 1, MCD system 1101 can include static analysis engine 150, database 175, database 175, scheduler 180, storage device 185, dynamic analysis engine 190, and reporting module 195. In some embodiments, a virtual (e.g., virtual network interface 1981-N) and physical (not shown) network interface may be contained within the one or more of MCD systems 1101-N. Static analysis engine 150, scheduler 180 and/or dynamic analysis engine 190 may be software modules executed by a processor (e.g., processor 401) that receives one or more objects and performs analysis on the object, which may involve accessing one or more non-transitory machine-readable storage mediums operating as database 175, storage device 185, and/or reporting module 195. In some embodiments, static analysis engine 150 may be one or more software modules at least partially forming a static framework, where such software modules are executed by a processor. Static analysis engine 150 and dynamic analysis engine 190 may be one or more software modules executed by the same processor or different processors, where these different processors are possibly located at geographically remote locations, located within the same processor package (e.g. different processor cores) and/or communicatively coupled for example via a network.


In general, static analysis engine 150 may be communicatively coupled to receive one or more objects associated with network traffic routed over communication network 130, such as an object that is part of a series of HTTP packets forming the network traffic for example. Static analysis engine 150 may be configured to conduct static scanning operations on the object.


In one embodiment, the object may be presented to dynamic analysis engine 190 for in-depth dynamic analysis using one or more virtual machines (VMs) 1921-N (N>1, e.g. N=3) for processing of an executable, file or other object in a run-time environment in which content within the objects is virtually executed.


Scheduler 180 may retrieve, provision, and/or otherwise configure one or more of the VMs 1921-N with a runtime environment having a software profile for processing the malicious content suspect. For example, where the malicious content suspect is a downloaded web page, the environment can include a web browser in addition to the operating system. Where the malicious content suspect is an email application, the environment can include an email application in addition to the operating system. Where the malicious content suspect is a PDF, the environment can include an adobe reader or other PDF reader in addition to the operating system. Where the malicious content suspect is a office/productivity document (e.g., a word processing or spreadsheet document), the environment can include office/productivity software (e.g., Microsoft® Word for a word processing document or Microsoft® Excel for a spreadsheet document) in addition to the operating system. Alternatively, the runtime environment can have a software profile that mimics that of a specific client device such as client device 134.


In one embodiment, scheduler 180 may determine the features of client device 134 that are affected by the malicious content suspect (e.g., by receiving and analyzing the network traffic from network interface 138). Such features of client device 134 may include any hardware and/or software functionality that can be virtualized within virtual execution logic 191, such as: (i) virtual ports that are configured to receive the content or may be used by applications running in a virtual environment to process the content for outbound communications, (ii) certain virtual device drivers that are to respond to the content or to applications that process the content, (iii) software applications on client device 132 or software that the object would need to process the content, and/or (iv) any other devices coupled to or software contained within the client device 134 that can respond to the content.


Dynamic analysis engine 190 is adapted to execute virtual execution logic 191 including one or more VMs (e.g., VM 1921-N) to simulate the receipt and execution, and sometimes transmission of potentially “malicious” content within an object under analysis (e.g., malicious content suspect) within a run-time environment as expected by type of object as noted above. Dynamic analysis engine 190 analyzes the effects of objects upon the run-time environment, such as client device 134. This detection process is referred to as a dynamic malicious content detection. In one embodiment, processing the object may trigger at least two types of behaviors on the run-time environment (e.g., execution or communication). Behaviors may be expected or unexpected for the particular objects processed in that environment. For example, an expected execution behavior may reasonably include a word processing software accessing a spell check database on the storage device of the client. Unexpected behaviors are called anomalies, and either individually or in combination can be indicative of an exploit or malware. For example, an unexpected behavior may include the word processing document attempting to terminate another process within an operating system. In one embodiment, the dynamic analysis engine 190 may further include logic for MBD 101 as shown in greater detail below with regards to FIG. 2.


In some embodiments, a virtual network interface (e.g., virtual network interfaces 1981-N) is configured to simulate a physical network interface, such as a network interface card, a network gateway device of a local area network (LAN), or a remote node such as a Web server, that the network content would normally access. The virtual network interface may be a virtual network interface of a VM (e.g., VM 1921) processing the content suspect or alternatively, the virtual network interface may be represented by different VM (e.g., VM 192N) hosted by the same host operating system or VM controller. In one embodiment, because the malicious content suspect is contained or sandboxed within a VM (e.g., VM 1921), the suspect cannot actually access an external network (e.g., Internet) without express MCD permission. As a result, the malware does not succeed with exfiltration or collection of malware detection information and cannot interfere with the malware detection process.


In one embodiment, reporting module 195 may issue alerts indicating the presence of malware, and using pointers and other reference information to identify what message(s) (e.g. packet(s)) may contain malware. Additionally, server device 132 may be added to a list of malicious network content providers, and future network transmissions originating from server device 132 may be subjected to deep forensic malware analysis and/or blocked from reaching their intended destinations (e.g., by firewall 136).


In one embodiment, reporting module 195 triggers a malware alert when score generator 270 outputs a detection result or score that exceeds a predetermined threshold. For example, the scoring system may have a predetermined range (e.g., 1 to 10) and threshold (e.g., 7 or greater is malicious) such that each output score may be classified (e.g., by classifier 275) as indicating or not indicating maliciousness of the malicious content suspect. In some embodiments, other score ranges and other thresholds are possible and meeting the threshold may trigger an alert to a designated system, user, or administrator.


In one embodiment, reporting module 195 can generate malware fingerprints for use by a MCD system. The fingerprints may be in addition to or instead of the reporting described above. The MCD system can use the discovered fingerprints for future or subsequent detection and blocking of specific malware fingerprints. In one embodiment, a fingerprint may be based upon data extracted from malicious content as described in greater detail below.


In order to convey maliciousness determination findings, MCD system 1101 may provide one or more screen displays for conveying a more detailed summary of malicious files being detected by MCD system 1101. In some embodiments, MCD system 1101 may also contain remediation logic (not shown) to initiate remediation of identified malware and recovery from the identified exploit.


In lieu of or in addition to static and dynamic scanning or operations being conducted by MCD systems 1101-N, it is contemplated that cloud or distributed computing services 140 may be implemented to perform one or more aspects of the MCD system, as described herein. In some embodiments, MCD system 1101 is used for static analysis and MCD system 1101 is used for dynamic analysis. MCD system 1101 and MCD system 110N may be located in separate or remote physical locations. In one embodiment, static and/or dynamic analysis is performed in MCD system 1101, and the aggregating and scoring in MCD system 110N. In accordance with this embodiment, aspects of a MCD system (e.g., MCD systems 1101-N) may be adapted to establish secured communications with cloud computing services 140 for exchanging information. For example, storage device 185, database 185, or other aspects of the MCD system may be a remote or cloud based component accessed via secured communication.


Referring to FIG. 1, MCD systems 1101-N may be communicatively coupled to management system 120 via network 125. In general, management system 120 is adapted to manage MCD systems 1101-N and provide updates to their operation systems and software programs used in their virtual environments. In one embodiment, management system 120 may cause malware fingerprints generated by one MCD system (e.g., MCD system 1101) to be shared with one or more of the other MCD systems (e.g., MCD system 110N) for example, on a subscription basis.



FIG. 2A illustrates data components accessed by or associated with a malicious behavior detector, in one embodiment. In one embodiment, in response to triggering or processing malicious content suspect 205, MBD 101 receives execution response object 211 and communication response object 216. Communication response object 216 may be parsed (e.g., by parser 225 described below with respect to FIG. 2B) into one or more communication sub-objects (e.g., 2261-N). One or more respective communication behavior detectors (e.g., communication behavior detectors 2351-N described below with respect to FIG. 2B) can detect matches to one or more suspicious communication identifiers within parsed sub-objects 2261-N. In some embodiments, in addition to, or instead of the communication behavior detector(s), one or more execution behavior detectors (e.g., execution behavior detectors 2361-N described below with respect to FIG. 2B) can analyze execution response object 211 to detect matches to one or more suspicious execution identifiers. An aggregator (e.g., aggregator 250 described below with respect to FIG. 2B) may aggregate the detection results from the behavior detectors into an aggregate score 232. A classifier (e.g., classifier 275 described below with respect to FIG. 2B) may read aggregate score 232 to produce maliciousness classification 237 of malicious content suspect 205.



FIG. 2B is a detailed block diagram of logic associated with MBD. In one embodiment MBD can retrieve or access (e.g., from storage device 185) malicious content suspect 205 (input object) to perform behavior monitoring or analysis. MBD can trigger, “detonate,” or otherwise process the malicious content suspect 205 within a sandboxed or virtualized environment (e.g., VM 1921). For example, malicious content suspect 205 may be a file such as a document (e.g., word processing document, PDF, or other). Triggering the file may include opening the file in an associated program (e.g., Microsoft® Word, or Adobe® Reader). Malicious content suspect 205 may also be an executable file, and triggering may include loading and processing the executable within the VM. The malicious content suspect 205 may also be Internet content such as a web page, and triggering may include reading or accessing the Internet content with an associated program such as a web browser.


In one embodiment, MBD may detect one or more behavior responses resulting from the triggering or processing the malicious content suspect. For example, MBD may include a communication (i.e., network) behavior analyzer (CBA) for communication related behaviors and an execution (i.e., host) behavior analyzer (EBA) for execution related behaviors.


Communication behavior as used herein includes any communication attempted to be sent from, and in some embodiments intended to be received by, the MCD host virtual machine (e.g., VM 1921) during processing or triggering of malicious content suspect 205. Communication behavior may include attempted or realized communication (e.g., outbound traffic or transmission requests) across a network connection in response to processing or triggering an input object (e.g., traffic initiated by malicious content suspect 205). For example, malware may utilize a network connection in order to request instructions (e.g., from a malicious server), or to send out captured data. For example, the communication may be over a real or virtual network connection (e.g., via virtual network interfaces 1981-N) provided by the VM. As used herein, communication may include any data or content transmitted over a network. Communication behavior may include text, software, images, audio, or other digital data. An example of communication behavior includes web content, or any network data that may be transmitted using a Hypertext Transfer Protocol (HTTP), Hypertext Markup Language (HTML) protocol, File Transfer Protocol (FTP), transmitted in a manner suitable for display on a Web browser software application, or any network data that is transferred using other data transfer protocols). Another example of communication behavior includes email messages, which may be transmitted using an email protocol such as Simple Mail Transfer Protocol (SMTP), Post Office Protocol version 3 (POP3), or Internet Message Access Protocol (IMAP4). A further example of communication behavior includes Instant Messages, which may be transmitted using an Instant Messaging protocol such as Session Initiation Protocol (SIP) or Extensible Messaging and Presence Protocol (XMPP). In one embodiment, communication behaviors are stored or accessed within the MCD system as communication response objects as described in greater detail below.


Execution behavior, as used herein, includes initiating changes to the operating system, memory, or local file system. In some embodiments, changes include starting a separate process within the OS, creating a file, deleting a file, terminating processes, or changing a registry setting, just to name a few. Changes to the operating system, memory, or local file system may occur within a sandboxed virtual machine environment (e.g., MCD 1101). In one embodiment, execution behaviors are stored or accessed within the MCD system as execution response objects as described in greater detail below.


As introduced above, MBD 101 can receive communication and/or execution behaviors as a result of triggering or processing a malicious content suspect. MBD 101 may include communication behavior extractor 220 to capture detected network data for analysis by communication behavior analyzer 245 and/or execution behavior extractor 210 to capture host related response objects for analysis by the execution behavior analyzer 215.


Communication behavior extractor 220 may include processing logic to perform packet capture of outbound network traffic or content. Communication behavior extractor 220 may be implemented as part of a network stack (e.g., TCP/IP stack) and/or within a firewall of a guest operating system that hosts a VM in which malicious content suspect 205 is triggered or processed. Captured packets may be temporarily stored in a buffer (e.g., a MBD memory buffer) before being processed by a communication behavior analyzer (CBA). In one embodiment, communication behavior extractor 220 processes communication behavior into one or more communication response objects.


In one embodiment, in addition to or in place of communication behavior extractor 220, MBD 101 includes execution behavior extractor 210 to capture host related response objects for analysis by execution behavior analyzer 215 described in greater detail below. Execution behavior extractor 210 may include processing logic to capture requests received at VM 1921 to make changes to the operating system, memory, or local file system in which the malicious content suspect is triggered or processed. In some embodiments, execution behavior extractor 210 is part of dynamic analysis engine 190 and/or within a guest operating system that hosts a VM (e.g., VM 1921). In one embodiment, execution behavior extractor 210 processes execution behavior into one or more execution response objects.


In one embodiment, CBA 245 receives one or more communication response objects (e.g., communication response object 216) created as a result of processing or triggering the malicious content suspect within a VM. For example, communication response objects may be sent to CBA 245 from communication behavior extractor 220. In one embodiment, CBA 245 includes a parser (e.g., communication parser 225) to parse the communication response object into sub-objects. In one embodiment, CBA 245 further includes a communication detector manager (e.g., communication detector manager 230) to select particular sub-objects determined by the communication detector manager as compatible with one or more communication behavior detectors (e.g., communication behavior detector 2351-N). In some embodiments, the communication behavior analyzer 245 may operate independently from and in parallel (e.g., in an overlapping operating manner) to execution behavior extractor 210 and execution behavior analyzer 215 described in detail below.


In one embodiment, each communication behavior detector determines whether a respective sub-object (e.g., the compatible type sub-object assigned by a respective detector manager) matches a predetermined behavior or identifier. CBDs and EBDs may be directed towards matching predetermined sub-object characteristics to identifiers (e.g., suspicious behaviors). For example, identifiers may be email communication identifiers, content exfiltration identifiers, suspicious DDNS identifiers, or other identifiers. In some embodiments, identifiers may be stored on storage device 185, for example within a database, archive, or file and each CBD can access the identifiers when performing a match to sub-objects.


In one embodiment, a parser (e.g., parser 225) sub-divides communication response objects received from communication behavior extractor 220 (e.g., in response to MBD 101 triggering or processing of the malicious content suspect) into communication sub-objects. Parser 225 can receive, as input, the communication response object and perform a packet inspection on the network packets or content within the packets (e.g., network content within the communication response object). For example, triggering or processing the malicious content suspect may result in an attempt to send one or more communication traffic (e.g., network packets) from a VM to another machine (e.g., a remote machine). In some embodiments, the communication response object is a communication received from an external server. The communication response object may be stored in storage device 185 and sent to parser 225 by communication behavior extractor 220. In one embodiment, parser 225 identifies protocols so as to separate different types of communication within a particular data stream. For example, parser 225 can parse the network content for ports, content, and structures that indicate known protocols (e.g., HTTP, FTP, DNS, SMTP, etc.). The parser may apply parsing rules to extract chunks of data from the communication response object. For example, the rules may be related to headers in a packet and/or rules as to where to find header or destination address.


Parser 225 can output a sub-object (e.g., resulting object) for each different type of network content. In some embodiments, parser 225 provides high-level identification of each sub-object content type. For example, the parser may tag sub-content related to email communication with an email tag for easy association with communication behavior detectors compatible with email communication type sub-objects.


Although parser 225 is illustrated in FIG. 2B as integrated with the communication behavior analyzer 245, in some embodiments, parser 225 is separate and independent from the communication behavior analyzer 245. Parser 225 may be implemented as part of the network stack/firewall or integrated with a detector manager in some embodiments. In other embodiments, parser 225 and communication behavior extractor 220 may be integrated as a single unit. The communication behavior extractor 220 and parser 225 may be implemented in any one or more of the layers of a network stack, such as, an application layer, a transport control protocol (TCP) layer, an Internet protocol (IP) layer, and/or a media access control (MAC) layer, etc.


In one embodiment, communication detector manager 230 receives parsed content (e.g., sub-objects) from parser 225 and selects or invokes one or more specific compatible behavior detectors for each of the sub-objects. For example, communication detector manager 230 may select an email communication behavior detector to process a sub-object containing email communication. In some embodiments, communication detector manager 230 determines which communication behavior detectors to use as well as the order in which the behavior detectors will be applied. For example, communication detector manager 230 may determine processing an email CBD before a DDNS CBD may yield a more accurate malware determination. In other embodiments, CBDs may operate in parallel with other CBDs (e.g., in an overlapping operating manner).


In one embodiment, a DDNS CBD (e.g., one of communication behavior detectors 2351-N) determines whether a sub-object contains a match to known suspicious DDNS identifiers. For example, the DDNS CBD can detect network data referencing free DDNS servers. Although free (e.g., openly and publicly available, and accessible without monetary payment) DDNS services may be used for legitimate purposes, free DDNS is also often used by certain malware. Therefore, detection of these suspicious DDNS services within network content may contribute to the overall determination of whether the malicious content suspect is actually malicious. In some embodiments, a database of free DDNS services are stored in memory and each free DDNS is a separate suspicious DDNS identifier referenced by the DDNS CBD in determining whether there is a match or no match to the sub-object.


In one embodiment, a content exfiltration CBD (e.g., one of communication behavior detectors 2351-N) determines whether network data (e.g., predetermined a network traffic pattern) in a sub-object matches content exfiltration identifiers (e.g., of a host VM or physical host machine to the sub-object) directed towards general data theft. The content exfiltration identifiers may include the unique or almost unique environmental properties of the physical host machine, such as, for example, a computer name or NetBIOS name, hardware identifying information (e.g., hardware identifiers such as serial numbers for processor, motherboard, basic input/output system (BIOS), network interface, and/or storage device), application identifying information (e.g., software product IDs), and/or user identifying information (e.g., username or user ID, security ID).


In one embodiment, an email CBD (e.g., one of communication behavior detectors 2351-N) can detect when the malicious content suspect response attempts to send email communication. For example, the email CBD can attempts to match an email communication identifier to the sub-object. The email communication identifier may include mail exchanger (MX) records and MXDNS requests specific to mail servers, data related to email, or other mail related network data/protocol.


In one embodiment, each CBD outputs notification of success or failure in matching particular suspicious identifiers to the sub-object. For example, the DDNS CBD may output notification that the sub-object contains a match to a known suspicious DDNS. Similarly, the email CBD may output notification that email communication is present (e.g., a email communication protocol match) in the sub-object.


In one embodiment, MBD includes an execution behavior analyzer (EBA) to receive execution response objects (e.g., execution response object 211) created as a result of processing or triggering the malicious content suspect within a VM. For example, execution response objects may be sent to EBA 215 from execution behavior extractor 210.


In one embodiment, execution detector manager 231 can select or invoke compatible execution behavior detectors (EBDs) based on the execution response object. For example, execution detector manager 231 may determine the execution response object contains a request for an operating system configuration change and can initiate processing of the execution response object by an EBD compatible with operating system configuration identifiers.


In one embodiment, each respective behavior detector (e.g., CBD and EBD) outputs match results to aggregator 250. Aggregator 250 can combine behavior match results and calculate an overall maliciousness score (e.g., determined by score generator 270). In one embodiment, aggregator 250 assigns a weight to each behavior match result according suspiciousness of the respective behavior match result compared to other behavior match results. For example, detecting email communication may be considered more likely benign than detecting a suspicious DDNS server. Behavior match results more likely to be benign may be adjusted to have lower relative weight when aggregated with other behavior match results. Alternatively, or additionally, behavior match results more likely to be malicious may have their weight increased relative to other less likely behavior match results.


In some embodiments, match results may be pre-weighted by each respective behavior detector. For example, the email CBD may output a match result and an associated weight to be used by aggregator 250 and score generator 270 when determining aggregate score. In some embodiments, a behavior detector may output multiple match results, each match result having an independent weight. For example, a behavior detector may have multiple possible identifiers to match and may output a match result for each separate identifier. For example, DDNS CBD may output a match to a DDNS server “X” identifier as well as a match to DDNS server “Y” identifier if both servers are referenced within a sub-object. In this prior example, the DDNS CBD may provide a separately calculated weight for each different match result according to suspiciousness of the matched identifier (e.g., respective free or suspicious DDNS servers “X” and “Y”). For example, certain free or suspicious DDNS servers may be more popular or more likely to be used by malware authors. Configuration settings associated with respective behavior detector may define how an identifier match is weighted relative to other identifiers for the same behavior detector.


In some embodiments, EBA 215 and CBA 245 behavior match results are aggregated separately (e.g., pre-aggregation) such that all EBA behavior match results produce an EBA aggregate score and CBA behavior match results produce a separate CBA aggregate score. The EBA aggregate score and CBA aggregate score may be adjusted or weighted as a set according to configuration preferences. For example, configuration preferences for MBD 101 may set the relative weight of the EBA aggregate score independently from the CBA aggregate score. Therefore, the EBA and CBA aggregate score weight adjustment can influence which behavior analysis carries a greater influence in determining the final or overall aggregate score.


In one embodiment, aggregator 250 includes a score generator 270 to output an aggregate score for the malicious content suspect. The aggregate score can relate to the probability that behavior match results indicate the malicious content subject should be classified as malware. In one embodiment, the score reflects an observed combination of behavior match results carries a higher probability for determining maliciousness of the malicious content suspect than the individual behavioral probabilities. For example, generic email communication in isolation may not be suspicious or anomalous behavior, however in combination with detecting suspicious DDNS servers, or other suspicious behaviors, the aggregated result can create a more accurate malware detection scheme.


In one embodiment, MBD includes a classifier (e.g., classifier 275) to interpret the output of MBD 101 (e.g., aggregate score 232) and provide an ultimate determination of whether the malicious content suspect should be classified as malicious. In some embodiments, the classifier determines whether the aggregate score 232 meets a predetermined score threshold for classifying the malicious content suspect as malware. The score threshold may be set by a user and saved to a configuration file accessibly by the classifier. In response to determining whether the score threshold is met, classifier 275 may flag malicious content by outputting a status or MBD result (e.g., maliciousness classification 237) to reporting module 195. In some embodiments, when the score threshold is not met, the classifier can output a benign classification for the malicious content suspect or request further analysis to be performed by the MCD or MBD.


In response to determining the malicious content suspect is malicious, MBD can trigger an alert or generate a fingerprint associated with one or more aspects of the malicious content suspect. A malware fingerprint or other unique identifier can enable detection of specific malicious behavior. For example, MBD 101 can determine specific malicious behaviors (e.g., fingerprints) related to suspicious generic behaviors and can apply the specific malicious behaviors in future malware detection. In contrast to generic behaviors, fingerprints as used herein are specific and unique identifiers to identify malware. Fingerprints can be used to identify malware without aggregating multiple behavior match results. For example, a behavior detector may find a match to an identifier that includes a general file transfer request to download an executable file and the specific requested URL (e.g., “http://example.com/bad.exe”) associated with the generic behavior can be saved into memory (e.g., URL may be saved to storage device 185). In response to determining the malicious content suspect is classified as malware, one or more portions of the URL (e.g., “example.com/bad.exe”) accessed by the generic behavior (e.g., HTTP request) can be saved to storage device 185 as a fingerprint useful for detecting malware.



FIG. 3 is a flowchart illustrating malicious behavior detection, in one embodiment. At block 305, the embodiment (e.g., MBD 101) processes a malicious content suspect within a virtual machine that simulates a target operating environment associated with the malicious content suspect. For example, MBD can process an object within a sandboxed environment in order to perform dynamic behavior detector on the malicious content suspect.


At block 310, the embodiment receives a communication response object as a result of processing the malicious content suspect. The communication response object may be a communication behavior received by the communication behavior extractor and output to the CBA.


At block 315, the embodiment optionally receives an execution response object as a result of processing the malicious content suspect. The execution response object may be an execution behavior received by the execution behavior extractor and output to the EBA.


At block 320, the embodiment parses the communication response into a plurality of communication sub-objects. In one embodiment, parser 225 receives the communication response object and outputs a plurality of communication sub-objects, each sub-object compatible with one or more communication behavior detectors.


At block 325, the embodiment selects a compatible communication behavior detector for each of the plurality of communication response sub-objects. In one embodiment, communication detector manager 230 selects one or more compatible CBDs for each sub-object.


At block 330, the embodiment optionally selects a compatible execution behavior detector for each of the execution response objects. In one embodiment, execution detector manager 231 selects one or more compatible EBDs to process the execution response object.


At block 335, the embodiment determines a first behavior match result for a first sub-object of the response object, and a second behavior match result for a second sub-object of the response object. The first and second behavior match results may be respective communication behavior match result outputs from compatible CBAs.


At block 340, the embodiment optionally determines execution behavior match results for each execution response object.


At block 345, the embodiment aggregates behavior match results to create a malicious behavior score. For example, the embodiment may aggregate the first behavior match result with the second behavior match result, wherein a malicious behavior score is calculated according to an aggregated result from all matches. In some embodiments, each match result has an associated weight for determining the malicious behavior score. For example, the MBD can detect generic communication or execution behavior and assign a weight to detected behaviors. MBD can aggregate multiple behavior scores to provide an ultimate maliciousness determination.


At block 350, the embodiment classifies the malicious content suspect according to the malicious behavior score. MBD can determine if the aggregate score meets a maliciousness threshold. In response to determining maliciousness, an alert (e.g., a malware alert notification) may be sent to an administrator, and/or a fingerprint may be generated to aid in future malware detection.



FIG. 4 is a block diagram illustrating an example of a data processing system which may be used with one embodiment of the invention. In one embodiment, system 400 represents one or more MCD systems MC1101-N. In some embodiments, system 400 represents one or more sub-components of the MCD system 1101. For example, system 400 may perform any of the processes or methods described above, for example FIG. 3. System 400 may represent a firewall, network router, electronic device, network router, hub, wireless access point (AP), repeater, or any combination thereof.


Referring to FIG. 4, in one embodiment, system 400 includes processor 401 and peripheral interface 402, also referred to herein as a chipset, to couple various components to processor 401 including memory 403 and devices 405-408 via a bus or an interconnect. Processor 401 may represent a single processor or multiple processors with a single processor core or multiple processor cores included therein. Processor 401 may represent one or more general-purpose processors such as a microprocessor, a central processing unit (CPU), or the like. More particularly, processor 401 may be a complex instruction set computing (CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor, or processor implementing other instruction sets, or processors implementing a combination of instruction sets. Processor 401 may also be one or more special-purpose processors such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), a network processor, a graphics processor, a network processor, a communications processor, a cryptographic processor, a co-processor, an embedded processor, or any other type of logic capable of processing instructions. Processor 401 is configured to execute instructions for performing the operations and steps discussed herein.


Peripheral interface 402 may include memory control hub (MCH) and input output control hub (ICH). Peripheral interface 402 may include a memory controller (not shown) that communicates with a memory 403. Peripheral interface 402 may also include a graphics interface that communicates with graphics subsystem 404, which may include a display controller and/or a display device. Peripheral interface 402 may communicate with graphics device 404 via an accelerated graphics port (AGP), a peripheral component interconnect (PCI) express bus, or other types of interconnects.


An MCH is sometimes referred to as a Northbridge and an ICH is sometimes referred to as a Southbridge. As used herein, the terms MCH, ICH, Northbridge and Southbridge are intended to be interpreted broadly to cover various chips who functions include passing interrupt signals toward a processor. In some embodiments, the MCH may be integrated with processor 401. In such a configuration, peripheral interface 402 operates as an interface chip performing some functions of the MCH and ICH. Furthermore, a graphics accelerator may be integrated within the MCH or processor 401.


Memory 403 may include one or more volatile storage (or memory) devices such as random access memory (RAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), static RAM (SRAM), or other types of storage devices functioning as non-transitory machine-readable storage mediums. Memory 403 may store information including sequences of instructions that are executed by processor 401, or any other device. For example, executable code and/or data of a variety of operating systems, device drivers, firmware (e.g., input output basic system or BIOS), and/or applications can be loaded in memory 403 and executed by processor 401. An operating system can be any kind of operating systems, such as, for example, Windows® operating system from Microsoft®, Mac OS®/iOS® from Apple, Android® from Google®, Linux®, Unix®, or other real-time or embedded operating systems such as VxWorks.


Peripheral interface 402 may provide an interface to IO devices such as devices 405-408, including wireless transceiver(s) 405, input device(s) 406, audio IO device(s) 407, and other IO devices 408. Wireless transceiver 405 may be a WiFi transceiver, an infrared transceiver, a Bluetooth transceiver, a WiMax transceiver, a wireless cellular telephony transceiver, a satellite transceiver (e.g., a global positioning system (GPS) transceiver) or a combination thereof. Input device(s) 406 may include a mouse, a touch pad, a touch sensitive screen (which may be integrated with display device 404), a pointer device such as a stylus, and/or a keyboard (e.g., physical keyboard or a virtual keyboard displayed as part of a touch sensitive screen). For example, input device 406 may include a touch screen controller coupled to a touch screen. The touch screen and touch screen controller can, for example, detect contact and movement or break thereof using any of a plurality of touch sensitivity technologies, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with the touch screen.


Audio IO 407 may include a speaker and/or a microphone to facilitate voice-enabled functions, such as voice recognition, voice replication, digital recording, and/or telephony functions. Other optional devices 408 may include a storage device (e.g., a hard drive, a flash memory device), universal serial bus (USB) port(s), parallel port(s), serial port(s), a printer, a network interface, a bus bridge (e.g., a PCI-PCI bridge), sensor(s) (e.g., a motion sensor, a light sensor, a proximity sensor, etc.), or a combination thereof. Optional devices 408 may further include an imaging processing subsystem (e.g., a camera), which may include an optical sensor, such as a charged coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS) optical sensor, utilized to facilitate camera functions, such as recording photographs and video clips.


Note that while FIG. 4 illustrates various components of a data processing system, it is not intended to represent any particular architecture or manner of interconnecting the components; as such details are not germane to embodiments of the present invention. It will also be appreciated that network computers, handheld computers, mobile phones, and other data processing systems which have fewer components or perhaps more components may also be used with embodiments of the invention.


Some portions of the preceding detailed descriptions have been presented in terms of methods, logic, and symbolic representations of operations on data bits within a computer memory. These method descriptions and representations are the ways used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art.


It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the above discussion, it is appreciated that throughout the description, discussions utilizing terms such as those set forth in the claims below, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.


The techniques shown in the FIGS. 2-3 can be implemented using code and data stored and executed on one or more electronic devices. Such electronic devices store and communicate (internally and/or with other electronic devices over a network) code and data using computer-readable media, such as non-transitory computer-readable storage media (e.g., magnetic disks; optical disks; random access memory; read only memory; flash memory devices; phase-change memory) and transitory computer-readable transmission media (e.g., electrical, optical, acoustical or other form of propagated signals—such as carrier waves, infrared signals, digital signals).


The processes or methods depicted in the preceding figures may be performed by processing logic that comprises hardware (e.g. circuitry, dedicated logic, etc.), firmware, software (e.g., embodied on a non-transitory computer readable medium), or a combination of both. Although the processes or methods are described above in terms of some sequential operations, it should be appreciated that some of the operations described may be performed in a different order. Moreover, some operations may be performed in parallel rather than sequentially.


In the foregoing specification, embodiments of the invention have been described with reference to specific exemplary embodiments thereof. It will be evident that various modifications may be made thereto without departing from the broader spirit and scope of the invention as set forth in the following claims. The specification and drawings are, accordingly, to be regarded in an illustrative sense rather than a restrictive sense.

Claims
  • 1. A computer-implemented method for detecting malicious behavior, comprising: processing an object within a virtual machine;receiving a response object resulting from or created in response to the processing of the object within the virtual machine;parsing the response object by at least subdividing the response object into a plurality of sub-objects, the plurality of sub-objects including a first sub-object and a second sub-object;determining a first behavior match result based, at least in part, on whether information associated with the first sub-object corresponds to at least one of a first plurality of identifiers associated with malicious activity;determining a second behavior match result based, at least in part, on whether information associated with the second sub-object corresponds to at least one of a second plurality of identifiers associated with malicious activity;aggregating at least the first behavior match result with the second behavior match result to produce an aggregated result, wherein a malicious behavior score is calculated based, at least in part, on the aggregated result; andclassifying the object according to the malicious behavior score.
  • 2. The method of claim 1, wherein the aggregated result includes aggregating behavior match results for each of the plurality of sub-objects, the behavior match results are determined based, at least in part, by determining whether information associated with the each of the plurality of sub-objects corresponds to one or more identifiers associated with malicious activity.
  • 3. The method of claim 1, wherein the first behavior match result is determined by comparing a behavior characteristic of the first sub-object to an identifier.
  • 4. The method of claim 3, wherein the identifier includes one or more of: a suspicious Dynamic Domain Name System (DDNS) identifier,an email communication identifier, ora network traffic pattern related to data theft.
  • 5. The method of claim 1, wherein prior to determining the first behavior result and the second behavior result, the method further comprising: sending the first sub-object to a first communication behavior detector in response to determining the first sub-object is a compatible input for the first communication behavior detector; andsending the second sub-object to a second communication behavior detector in response to determining the second sub-object is a compatible input for the second communication behavior detector.
  • 6. The method of claim 1, wherein the malicious behavior score is related to a probability that the object should be classified as malware.
  • 7. The method of claim 1, wherein the first plurality of identifiers are different from the second plurality of identifiers.
  • 8. A data processing system, comprising: a hardware processor; anda memory coupled to the processor for storing instructions that, when executed by the processor, causes the processor to: process an object within a virtual machine,parse a response object resulting from or created in response to the processing of the object within the virtual machine by at least subdividing the response object into a plurality of sub-objects, the plurality of sub-objects including a first sub-object and a second sub-object,determine a first behavior match result based, at least in part, on whether information associated with the first sub-object corresponds to at least one of a first plurality of identifiers associated with malicious activity,determine a second behavior match result based, at least in part, on whether information associated with the second sub-object corresponds to at least one of a second plurality of identifiers associated with malicious activity,aggregate at least the first behavior match result with the second behavior match result to produce an aggregated result, wherein a malicious behavior score is calculated based, at least in part, on the aggregated result, andclassify the object according to the malicious behavior score.
  • 9. The system of claim 8, wherein the aggregated result includes aggregating behavior match results for each of the plurality of sub-objects, the behavior match results are determined based, at least in part, by determining whether information associated with the each of the plurality of sub-objects corresponds to one or more identifiers associated with malicious activity.
  • 10. The system of claim 8, wherein the first behavior match result is determined by comparing a behavior characteristic of the first sub-object to an identifier.
  • 11. The system of claim 10, wherein the identifier includes one or more of: a suspicious Dynamic Domain Name System (DDNS) identifier,an email communication identifier, ora network traffic pattern related to data theft.
  • 12. The system of claim 8, wherein prior to determining the first behavior result and the second behavior result, the processor is further configured during execution of the instructions, to perform operations comprising: sending the first sub-object to a first communication behavior detector in response to determining the first sub-object is a compatible input for the first communication behavior detector; andsending the second sub-object to a second communication behavior detector in response to determining the second sub-object is a compatible input for the second communication behavior detector.
  • 13. The system of claim 8, wherein the malicious behavior score is related to a probability that the response object indicates the object should be classified as malware.
  • 14. The system of claim 8, wherein the first plurality of identifiers are different from the second plurality of identifiers.
  • 15. A system for detecting malicious behavior, comprising: a hardware processor; anda memory communicatively coupled to the hardware processor, the memory comprises a behavior analyzer that, when executed by the processor, receives a response object resulting from or created in response to processing of an object within a virtual machine, the behavior analyzer comprises: a parser, when executed by the processor, to parse the response object by at least subdividing the response object into a plurality of sub-objects including at least a first sub-object and a second sub-object,a first behavior detector, when executed by the processor, to determine a first behavior match result for the first sub-object of the received information,a second behavior detector, when executed by the processor, to determine a second behavior match result for the second sub-object of the received information,a detector manager communicatively coupled to the parser, the first behavior detector and the second behavior detector, the detector manager, when executed by the processor, to receive at least the first sub-object and the second sub-object from the parser, provide the first sub-object to the first behavior detector in response to determining that the first sub-object is compatible with the first behavior detector, and provide the second sub-object to the second behavior detector in response to determining the second sub-object is compatible with the second behavior detector,an aggregator, when executed by the processor, to aggregate the first behavior match result with the second behavior match result, wherein a malicious behavior score is calculated according to an aggregated result from at least the first behavior match result with the second behavior match result, anda classifier, when executed by the processor, to classify the object according to the malicious behavior score.
  • 16. The system of claim 15, wherein the first behavior detector, when executed by the processor, determines whether information within the first sub-object matches one or more identifiers associated with malicious activity.
  • 17. The system of claim 16, wherein the first behavior detector, when executed by the processor, determines the first behavior match result by comparing a behavior characteristic of the first sub-object to an identifier.
  • 18. The system of claim 15, wherein the malicious behavior score is related to a probability that the response object indicates the object should be classified as malware.
  • 19. The system of claim 15, wherein the memory further comprising: a reporting module, when executed by the processor, creates a malware alert notification or a malicious fingerprint in response to the classifier determining that the malicious behavior score exceeds a predetermined threshold.
  • 20. The method of claim 1, wherein the information associated with the first sub-object is within the first sub-object.
  • 21. The method of claim 1, wherein the information associated with the second sub-object is within the second sub-object.
  • 22. The system of claim 8, wherein the information associated with the first sub-object is within the first sub-object.
  • 23. The system of claim 8, wherein the information associated with the second sub-object is within the second sub-object.
  • 24. A non-transitory, computer-readable storage medium having stored thereon instructions that, when executed by a processor, cause performance of operations comprising: processing an object within a virtual machine;receiving a response object resulting from or created in response to the processing of the object within the virtual machine;parsing the response object by at least subdividing the response object into a plurality of sub-objects, the plurality of sub-objects including a first sub-object and a second sub-object;determining a first behavior match result based, at least in part, on whether information associated with the first sub-object corresponds to at least one of a first plurality of identifiers associated with malicious activity;determining a second behavior match result based, at least in part, on whether information associated with the second sub-object corresponds to at least one of a second plurality of identifiers associated with malicious activity;aggregating at least the first behavior match result with the second behavior match result to produce an aggregated result, wherein a malicious behavior score is calculated based, at least in part, on the aggregated result; andclassifying the object according to the malicious behavior score.
  • 25. The storage medium of claim 24, wherein the aggregated result includes aggregating behavior match results for each of the plurality of sub-objects, the behavior match results are determined based, at least in part, by determining whether information within the each of the plurality of sub-objects corresponds to one or more identifiers associated with malicious activity.
  • 26. The storage medium of claim 24, wherein the first behavior match result is determined by comparing a behavior characteristic of the first sub-object to an identifier.
  • 27. The storage medium of claim 26, wherein the identifier includes one or more of: a suspicious Dynamic Domain Name System (DDNS) identifier,an email communication identifier, ora network traffic pattern related to data theft.
  • 28. The storage medium of claim 24, wherein prior to determining the first behavior result and the second behavior result, the instructions that, when executed by the processor, cause performance of further operations comprising: sending the first sub-object to a first communication behavior detector in response to determining the first sub-object is a compatible input for the first communication behavior detector; andsending the second sub-object to a second communication behavior detector in response to determining the second sub-object is a compatible input for the second communication behavior detector.
  • 29. The storage medium of claim 24, wherein the malicious behavior score is related to a probability that the response object indicates the object should be classified as malware.
  • 30. The storage medium of claim 24, wherein the first plurality of identifiers are different from the second plurality of identifiers.
  • 31. The storage medium of claim 24, wherein the information associated with the first sub-object is within the first sub-object.
  • 32. The storage medium of claim 24, wherein the information associated with the second sub-object is within the second sub-object.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/221,199 filed on Mar. 20, 2014, now U.S. Pat. No. 9,241,010, the entire contents of which are incorporated by reference herein.

US Referenced Citations (544)
Number Name Date Kind
4292580 Ott et al. Sep 1981 A
5175732 Hendel et al. Dec 1992 A
5440723 Arnold et al. Aug 1995 A
5490249 Miller Feb 1996 A
5657473 Killean et al. Aug 1997 A
5842002 Schnurer et al. Nov 1998 A
5978917 Chi Nov 1999 A
6088803 Tso et al. Jul 2000 A
6094677 Capek et al. Jul 2000 A
6108799 Boulay et al. Aug 2000 A
6269330 Cidon et al. Jul 2001 B1
6272641 Ji Aug 2001 B1
6279113 Vaidya Aug 2001 B1
6298445 Shostack et al. Oct 2001 B1
6329994 Gever Dec 2001 B1
6357008 Nachenberg Mar 2002 B1
6424627 Sørhaug et al. Jul 2002 B1
6442696 Wray et al. Aug 2002 B1
6484315 Ziese Nov 2002 B1
6487666 Shanklin et al. Nov 2002 B1
6493756 O'Brien et al. Dec 2002 B1
6550012 Villa et al. Apr 2003 B1
6775657 Baker Aug 2004 B1
6831893 Ben Nun et al. Dec 2004 B1
6832367 Choi et al. Dec 2004 B1
6895550 Kanchirayappa et al. May 2005 B2
6898632 Gordy et al. May 2005 B2
6907396 Muttik et al. Jun 2005 B1
6941348 Petry et al. Sep 2005 B2
6971097 Wallman Nov 2005 B1
6981279 Arnold et al. Dec 2005 B1
7007107 Ivchenko et al. Feb 2006 B1
7028179 Anderson et al. Apr 2006 B2
7043757 Hoefelmeyer et al. May 2006 B2
7069316 Gryaznov Jun 2006 B1
7080407 Zhao et al. Jul 2006 B1
7080408 Pak et al. Jul 2006 B1
7093002 Wolff et al. Aug 2006 B2
7093239 van der Made Aug 2006 B1
7096498 Judge Aug 2006 B2
7100201 Izatt Aug 2006 B2
7107617 Hursey et al. Sep 2006 B2
7159149 Spiegel et al. Jan 2007 B2
7213260 Judge May 2007 B2
7231667 Jordan Jun 2007 B2
7240364 Branscomb et al. Jul 2007 B1
7240368 Roesch et al. Jul 2007 B1
7243371 Kasper et al. Jul 2007 B1
7249175 Donaldson Jul 2007 B1
7287278 Liang Oct 2007 B2
7308716 Danford et al. Dec 2007 B2
7328453 Merkle, Jr. et al. Feb 2008 B2
7346486 Ivancic et al. Mar 2008 B2
7356736 Natvig Apr 2008 B2
7386888 Liang et al. Jun 2008 B2
7392542 Bucher Jun 2008 B2
7418729 Szor Aug 2008 B2
7428300 Drew et al. Sep 2008 B1
7441272 Durham et al. Oct 2008 B2
7448084 Apap et al. Nov 2008 B1
7458098 Judge et al. Nov 2008 B2
7464404 Carpenter et al. Dec 2008 B2
7464407 Nakae et al. Dec 2008 B2
7467408 O'Toole, Jr. Dec 2008 B1
7478428 Thomlinson Jan 2009 B1
7480773 Reed Jan 2009 B1
7487543 Arnold et al. Feb 2009 B2
7496960 Chen et al. Feb 2009 B1
7496961 Zimmer et al. Feb 2009 B2
7519990 Xie Apr 2009 B1
7523493 Liang et al. Apr 2009 B2
7530104 Thrower et al. May 2009 B1
7540025 Tzadikario May 2009 B2
7546638 Anderson et al. Jun 2009 B2
7565550 Liang et al. Jul 2009 B2
7568233 Szor et al. Jul 2009 B1
7584455 Ball Sep 2009 B2
7603715 Costa et al. Oct 2009 B2
7607171 Marsden et al. Oct 2009 B1
7639714 Stolfo et al. Dec 2009 B2
7644441 Schmid et al. Jan 2010 B2
7657419 van der Made Feb 2010 B2
7676841 Sobchuk et al. Mar 2010 B2
7698548 Shelest et al. Apr 2010 B2
7707633 Danford et al. Apr 2010 B2
7712136 Sprosts et al. May 2010 B2
7730011 Deninger et al. Jun 2010 B1
7739740 Nachenberg et al. Jun 2010 B1
7779463 Stolfo et al. Aug 2010 B2
7784097 Stolfo et al. Aug 2010 B1
7832008 Kraemer Nov 2010 B1
7836502 Zhao et al. Nov 2010 B1
7849506 Dansey et al. Dec 2010 B1
7854007 Sprosts et al. Dec 2010 B2
7869073 Oshima Jan 2011 B2
7877803 Enstone et al. Jan 2011 B2
7904959 Sidiroglou et al. Mar 2011 B2
7908660 Bahl Mar 2011 B2
7930738 Petersen Apr 2011 B1
7937761 Bennett May 2011 B1
7949849 Lowe et al. May 2011 B2
7996556 Raghavan et al. Aug 2011 B2
7996836 McCorkendale et al. Aug 2011 B1
7996904 Chiueh et al. Aug 2011 B1
7996905 Arnold et al. Aug 2011 B2
8006305 Aziz Aug 2011 B2
8010667 Zhang et al. Aug 2011 B2
8020206 Hubbard et al. Sep 2011 B2
8028338 Schneider et al. Sep 2011 B1
8042184 Batenin Oct 2011 B1
8045094 Teragawa Oct 2011 B2
8045458 Alperovitch et al. Oct 2011 B2
8069484 McMillan et al. Nov 2011 B2
8087086 Lai et al. Dec 2011 B1
8171553 Aziz et al. May 2012 B2
8176049 Deninger et al. May 2012 B2
8176480 Spertus May 2012 B1
8201246 Wu et al. Jun 2012 B1
8204984 Aziz et al. Jun 2012 B1
8214490 Vos Jul 2012 B1
8214905 Doukhvalov et al. Jul 2012 B1
8220055 Kennedy Jul 2012 B1
8225288 Miller et al. Jul 2012 B2
8225373 Kraemer Jul 2012 B2
8233882 Rogel Jul 2012 B2
8234640 Fitzgerald et al. Jul 2012 B1
8234709 Viljoen et al. Jul 2012 B2
8239944 Nachenberg et al. Aug 2012 B1
8260914 Ranjan Sep 2012 B1
8266091 Gubin et al. Sep 2012 B1
8286251 Eker et al. Oct 2012 B2
8291499 Aziz et al. Oct 2012 B2
8307435 Mann et al. Nov 2012 B1
8307443 Wang et al. Nov 2012 B2
8312545 Tuvell et al. Nov 2012 B2
8321936 Green et al. Nov 2012 B1
8321941 Tuvell et al. Nov 2012 B2
8332571 Edwards, Sr. Dec 2012 B1
8365286 Poston Jan 2013 B2
8365297 Parshin et al. Jan 2013 B1
8370938 Daswani et al. Feb 2013 B1
8370939 Zaitsev et al. Feb 2013 B2
8375444 Aziz et al. Feb 2013 B2
8381299 Stolfo et al. Feb 2013 B2
8402529 Green et al. Mar 2013 B1
8464340 Ahn et al. Jun 2013 B2
8479174 Chiriac Jul 2013 B2
8479276 Vaystikh et al. Jul 2013 B1
8479291 Bodke Jul 2013 B1
8510827 Leake et al. Aug 2013 B1
8510828 Guo et al. Aug 2013 B1
8510842 Amit et al. Aug 2013 B2
8516478 Edwards et al. Aug 2013 B1
8516590 Ranadive et al. Aug 2013 B1
8516593 Aziz Aug 2013 B2
8522348 Chen et al. Aug 2013 B2
8528086 Aziz Sep 2013 B1
8533824 Hutton et al. Sep 2013 B2
8539582 Aziz et al. Sep 2013 B1
8549638 Aziz Oct 2013 B2
8555391 Demir et al. Oct 2013 B1
8561177 Aziz et al. Oct 2013 B1
8566946 Aziz et al. Oct 2013 B1
8584094 Dadhia et al. Nov 2013 B2
8584234 Sobel et al. Nov 2013 B1
8584239 Aziz et al. Nov 2013 B2
8595834 Xie et al. Nov 2013 B2
8627476 Satish et al. Jan 2014 B1
8635696 Aziz Jan 2014 B1
8638793 Ben-Mayor Jan 2014 B1
8682054 Xue et al. Mar 2014 B2
8682812 Ranjan Mar 2014 B1
8689333 Aziz Apr 2014 B2
8695096 Zhang Apr 2014 B1
8713631 Pavlyushchik Apr 2014 B1
8713681 Silberman et al. Apr 2014 B2
8726392 McCorkendale et al. May 2014 B1
8739280 Chess et al. May 2014 B2
8776229 Aziz Jul 2014 B1
8782792 Bodke Jul 2014 B1
8789172 Stolfo et al. Jul 2014 B2
8789178 Kejriwal et al. Jul 2014 B2
8793787 Ismael et al. Jul 2014 B2
8805947 Kuzkin et al. Aug 2014 B1
8806647 Daswani et al. Aug 2014 B1
8832829 Manni et al. Sep 2014 B2
8850570 Ramzan Sep 2014 B1
8850571 Staniford et al. Sep 2014 B2
8881234 Narasimhan et al. Nov 2014 B2
8881282 Aziz et al. Nov 2014 B1
8898788 Aziz et al. Nov 2014 B1
8935779 Manni et al. Jan 2015 B2
8984638 Aziz et al. Mar 2015 B1
8990939 Staniford et al. Mar 2015 B2
8990944 Singh et al. Mar 2015 B1
8997219 Staniford et al. Mar 2015 B2
9009822 Ismael et al. Apr 2015 B1
9009823 Ismael et al. Apr 2015 B1
9027135 Aziz May 2015 B1
9071638 Aziz et al. Jun 2015 B1
9104867 Thioux et al. Aug 2015 B1
9106694 Aziz et al. Aug 2015 B2
9117079 Huang Aug 2015 B1
9118715 Staniford et al. Aug 2015 B2
9159035 Ismael et al. Oct 2015 B1
9171160 Vincent et al. Oct 2015 B2
9176843 Ismael et al. Nov 2015 B1
9189627 Islam Nov 2015 B1
9195829 Goradia et al. Nov 2015 B1
9197664 Aziz et al. Nov 2015 B1
9223972 Vincent et al. Dec 2015 B1
9225740 Ismael et al. Dec 2015 B1
9241010 Bennett Jan 2016 B1
9251343 Vincent Feb 2016 B1
9262635 Paithane et al. Feb 2016 B2
9282109 Aziz et al. Mar 2016 B1
9294501 Mesdaq et al. Mar 2016 B2
9300686 Pidathala et al. Mar 2016 B2
9306960 Aziz Apr 2016 B1
9306974 Aziz et al. Apr 2016 B1
9311479 Manni et al. Apr 2016 B1
9355246 Wan May 2016 B1
9479357 Fu Oct 2016 B1
9495538 Schneider Nov 2016 B2
9628500 Kesin Apr 2017 B1
20010005889 Albrecht Jun 2001 A1
20010047326 Broadbent et al. Nov 2001 A1
20020018903 Kokubo et al. Feb 2002 A1
20020038430 Edwards et al. Mar 2002 A1
20020091819 Melchione et al. Jul 2002 A1
20020095607 Lin-Hendel Jul 2002 A1
20020116627 Tarbotton et al. Aug 2002 A1
20020144156 Copeland Oct 2002 A1
20020162015 Tang Oct 2002 A1
20020166063 Lachman et al. Nov 2002 A1
20020169952 DiSanto et al. Nov 2002 A1
20020184528 Shevenell et al. Dec 2002 A1
20020188887 Largman et al. Dec 2002 A1
20020194490 Halperin et al. Dec 2002 A1
20030021728 Sharpe et al. Jan 2003 A1
20030074578 Ford et al. Apr 2003 A1
20030084318 Schertz May 2003 A1
20030101381 Mateev et al. May 2003 A1
20030115483 Liang Jun 2003 A1
20030188190 Aaron et al. Oct 2003 A1
20030191957 Hypponen et al. Oct 2003 A1
20030200460 Morota et al. Oct 2003 A1
20030212902 van der Made Nov 2003 A1
20030229801 Kouznetsov et al. Dec 2003 A1
20030237000 Denton et al. Dec 2003 A1
20040003323 Bennett et al. Jan 2004 A1
20040006473 Mills et al. Jan 2004 A1
20040015712 Szor Jan 2004 A1
20040019832 Arnold et al. Jan 2004 A1
20040047356 Bauer Mar 2004 A1
20040083408 Spiegel et al. Apr 2004 A1
20040088581 Brawn et al. May 2004 A1
20040093513 Cantrell et al. May 2004 A1
20040111531 Staniford et al. Jun 2004 A1
20040117478 Triulzi et al. Jun 2004 A1
20040117624 Brandt et al. Jun 2004 A1
20040128355 Chao et al. Jul 2004 A1
20040165588 Pandya Aug 2004 A1
20040236963 Danford et al. Nov 2004 A1
20040243349 Greifeneder et al. Dec 2004 A1
20040249911 Alkhatib et al. Dec 2004 A1
20040255161 Cavanaugh Dec 2004 A1
20040268147 Wiederin et al. Dec 2004 A1
20050005159 Oliphant Jan 2005 A1
20050021740 Bar et al. Jan 2005 A1
20050033960 Vialen et al. Feb 2005 A1
20050033989 Poletto et al. Feb 2005 A1
20050050148 Mohammadioun et al. Mar 2005 A1
20050086523 Zimmer et al. Apr 2005 A1
20050091513 Mitomo et al. Apr 2005 A1
20050091533 Omote et al. Apr 2005 A1
20050091652 Ross et al. Apr 2005 A1
20050108562 Khazan et al. May 2005 A1
20050114663 Cornell et al. May 2005 A1
20050125195 Brendel Jun 2005 A1
20050149726 Joshi et al. Jul 2005 A1
20050157662 Bingham et al. Jul 2005 A1
20050183143 Anderholm et al. Aug 2005 A1
20050201297 Peikari Sep 2005 A1
20050210533 Copeland et al. Sep 2005 A1
20050238005 Chen et al. Oct 2005 A1
20050240781 Gassoway Oct 2005 A1
20050262562 Gassoway Nov 2005 A1
20050265331 Stolfo Dec 2005 A1
20050283839 Cowburn Dec 2005 A1
20060010495 Cohen et al. Jan 2006 A1
20060015416 Hoffman et al. Jan 2006 A1
20060015715 Anderson Jan 2006 A1
20060015747 Van de Ven Jan 2006 A1
20060021029 Brickell et al. Jan 2006 A1
20060021054 Costa et al. Jan 2006 A1
20060031476 Mathes et al. Feb 2006 A1
20060047665 Neil Mar 2006 A1
20060070130 Costea et al. Mar 2006 A1
20060075496 Carpenter et al. Apr 2006 A1
20060095968 Portolani et al. May 2006 A1
20060101516 Sudaharan et al. May 2006 A1
20060101517 Banzhaf et al. May 2006 A1
20060117385 Mester et al. Jun 2006 A1
20060123477 Raghavan et al. Jun 2006 A1
20060143709 Brooks et al. Jun 2006 A1
20060150249 Gassen et al. Jul 2006 A1
20060161983 Cothrell et al. Jul 2006 A1
20060161987 Levy-Yurista Jul 2006 A1
20060161989 Reshef et al. Jul 2006 A1
20060164199 Gilde et al. Jul 2006 A1
20060173992 Weber et al. Aug 2006 A1
20060179147 Tran et al. Aug 2006 A1
20060184632 Marino et al. Aug 2006 A1
20060191010 Benjamin Aug 2006 A1
20060221956 Narayan et al. Oct 2006 A1
20060236393 Kramer et al. Oct 2006 A1
20060242709 Seinfeld et al. Oct 2006 A1
20060248519 Jaeger et al. Nov 2006 A1
20060248582 Panjwani et al. Nov 2006 A1
20060251104 Koga Nov 2006 A1
20060288417 Bookbinder et al. Dec 2006 A1
20070006288 Mayfield et al. Jan 2007 A1
20070006313 Porras et al. Jan 2007 A1
20070011174 Takaragi et al. Jan 2007 A1
20070016951 Piccard et al. Jan 2007 A1
20070019286 Kikuchi Jan 2007 A1
20070033645 Jones Feb 2007 A1
20070038943 FitzGerald et al. Feb 2007 A1
20070064689 Shin et al. Mar 2007 A1
20070074169 Chess et al. Mar 2007 A1
20070094730 Bhikkaji et al. Apr 2007 A1
20070101435 Konanka et al. May 2007 A1
20070128855 Cho et al. Jun 2007 A1
20070142030 Sinha et al. Jun 2007 A1
20070143827 Nicodemus et al. Jun 2007 A1
20070156895 Vuong Jul 2007 A1
20070157180 Tillmann et al. Jul 2007 A1
20070157306 Elrod et al. Jul 2007 A1
20070168988 Eisner et al. Jul 2007 A1
20070171824 Ruello et al. Jul 2007 A1
20070174915 Gribble et al. Jul 2007 A1
20070192500 Lum Aug 2007 A1
20070192858 Lum Aug 2007 A1
20070198275 Malden et al. Aug 2007 A1
20070208822 Wang et al. Sep 2007 A1
20070220607 Sprosts et al. Sep 2007 A1
20070240218 Tuvell et al. Oct 2007 A1
20070240219 Tuvell et al. Oct 2007 A1
20070240220 Tuvell et al. Oct 2007 A1
20070240222 Tuvell et al. Oct 2007 A1
20070250930 Aziz et al. Oct 2007 A1
20070256132 Oliphant Nov 2007 A2
20070271446 Nakamura Nov 2007 A1
20080005782 Aziz Jan 2008 A1
20080018122 Zierler et al. Jan 2008 A1
20080028463 Dagon et al. Jan 2008 A1
20080040710 Chiriac Feb 2008 A1
20080046781 Childs et al. Feb 2008 A1
20080066179 Liu Mar 2008 A1
20080072326 Danford et al. Mar 2008 A1
20080077793 Tan et al. Mar 2008 A1
20080080518 Hoeflin et al. Apr 2008 A1
20080086720 Lekel Apr 2008 A1
20080098476 Syversen Apr 2008 A1
20080120722 Sima et al. May 2008 A1
20080134178 Fitzgerald et al. Jun 2008 A1
20080134334 Kim et al. Jun 2008 A1
20080141376 Clausen et al. Jun 2008 A1
20080184373 Traut et al. Jul 2008 A1
20080189787 Arnold et al. Aug 2008 A1
20080201778 Guo et al. Aug 2008 A1
20080209557 Herley et al. Aug 2008 A1
20080215742 Goldszmidt et al. Sep 2008 A1
20080222729 Chen et al. Sep 2008 A1
20080263665 Ma et al. Oct 2008 A1
20080295172 Bohacek Nov 2008 A1
20080301810 Lehane et al. Dec 2008 A1
20080307524 Singh et al. Dec 2008 A1
20080313738 Enderby Dec 2008 A1
20080320594 Jiang Dec 2008 A1
20090003317 Kasralikar et al. Jan 2009 A1
20090007100 Field et al. Jan 2009 A1
20090013408 Schipka Jan 2009 A1
20090031423 Liu et al. Jan 2009 A1
20090036111 Danford Feb 2009 A1
20090037835 Goldman Feb 2009 A1
20090044024 Oberheide Feb 2009 A1
20090044274 Budko et al. Feb 2009 A1
20090064332 Porras et al. Mar 2009 A1
20090077666 Chen et al. Mar 2009 A1
20090083369 Marmor Mar 2009 A1
20090083855 Apap et al. Mar 2009 A1
20090089879 Wang et al. Apr 2009 A1
20090094697 Provos et al. Apr 2009 A1
20090113425 Ports et al. Apr 2009 A1
20090125976 Wassermann et al. May 2009 A1
20090126015 Monastyrsky et al. May 2009 A1
20090126016 Sobko May 2009 A1
20090133125 Choi et al. May 2009 A1
20090144823 Lamastra et al. Jun 2009 A1
20090158430 Borders Jun 2009 A1
20090172815 Gu et al. Jul 2009 A1
20090187992 Poston Jul 2009 A1
20090193293 Stolfo et al. Jul 2009 A1
20090199296 Xie et al. Aug 2009 A1
20090228233 Anderson et al. Sep 2009 A1
20090241187 Troyansky Sep 2009 A1
20090241190 Todd et al. Sep 2009 A1
20090260085 Kim Oct 2009 A1
20090265692 Godefroid et al. Oct 2009 A1
20090271867 Zhang Oct 2009 A1
20090300415 Zhang et al. Dec 2009 A1
20090300761 Park et al. Dec 2009 A1
20090328185 Berg et al. Dec 2009 A1
20090328221 Blumfield et al. Dec 2009 A1
20100005146 Drako et al. Jan 2010 A1
20100011205 McKenna Jan 2010 A1
20100017546 Poo et al. Jan 2010 A1
20100031353 Thomas Feb 2010 A1
20100037314 Perdisci Feb 2010 A1
20100043073 Kuwamura Feb 2010 A1
20100054278 Stolfo et al. Mar 2010 A1
20100058183 Hamilton, II Mar 2010 A1
20100058474 Hicks Mar 2010 A1
20100064044 Nonoyama Mar 2010 A1
20100077481 Polyakov Mar 2010 A1
20100083376 Pereira et al. Apr 2010 A1
20100115621 Staniford et al. May 2010 A1
20100132038 Zaitsev May 2010 A1
20100154056 Smith et al. Jun 2010 A1
20100180344 Malyshev et al. Jul 2010 A1
20100192223 Ismael et al. Jul 2010 A1
20100220863 Dupaquis et al. Sep 2010 A1
20100235831 Dittmer Sep 2010 A1
20100251104 Massand Sep 2010 A1
20100281102 Chinta et al. Nov 2010 A1
20100281539 Burns Nov 2010 A1
20100281541 Stolfo et al. Nov 2010 A1
20100281542 Stolfo et al. Nov 2010 A1
20100287260 Peterson et al. Nov 2010 A1
20100299754 Amit et al. Nov 2010 A1
20100306173 Frank Dec 2010 A1
20110004737 Greenebaum Jan 2011 A1
20110025504 Lyon et al. Feb 2011 A1
20110041179 St Hlberg Feb 2011 A1
20110047594 Mahaffey et al. Feb 2011 A1
20110047620 Mahaffey Feb 2011 A1
20110055907 Narasimhan et al. Mar 2011 A1
20110078794 Manni et al. Mar 2011 A1
20110093951 Aziz Apr 2011 A1
20110099620 Stavrou et al. Apr 2011 A1
20110099633 Aziz Apr 2011 A1
20110113231 Kaminsky May 2011 A1
20110145918 Jung et al. Jun 2011 A1
20110145920 Mahaffey et al. Jun 2011 A1
20110145934 Abramovici et al. Jun 2011 A1
20110167493 Song et al. Jul 2011 A1
20110167494 Bowen et al. Jul 2011 A1
20110173460 Ito et al. Jul 2011 A1
20110191772 Larimore Aug 2011 A1
20110219449 St. Neitzel et al. Sep 2011 A1
20110219450 McDougal et al. Sep 2011 A1
20110225624 Sawhney et al. Sep 2011 A1
20110225655 Niemela et al. Sep 2011 A1
20110247072 Staniford et al. Oct 2011 A1
20110265182 Peinado et al. Oct 2011 A1
20110289582 Kejriwal et al. Nov 2011 A1
20110302587 Nishikawa et al. Dec 2011 A1
20110307954 Melnik et al. Dec 2011 A1
20110307955 Kaplan et al. Dec 2011 A1
20110307956 Yermakov et al. Dec 2011 A1
20110314546 Aziz et al. Dec 2011 A1
20110321160 Mohandas Dec 2011 A1
20120023593 Puder et al. Jan 2012 A1
20120054869 Yen et al. Mar 2012 A1
20120066698 Yanoo Mar 2012 A1
20120079596 Thomas et al. Mar 2012 A1
20120084859 Radinsky et al. Apr 2012 A1
20120096553 Srivastava et al. Apr 2012 A1
20120110667 Zubrilin et al. May 2012 A1
20120117652 Manni et al. May 2012 A1
20120121154 Xue et al. May 2012 A1
20120124426 Maybee et al. May 2012 A1
20120158851 Kelmenson Jun 2012 A1
20120174186 Aziz et al. Jul 2012 A1
20120174196 Bhogavilli et al. Jul 2012 A1
20120174218 McCoy et al. Jul 2012 A1
20120198279 Schroeder Aug 2012 A1
20120210388 Kolishchak Aug 2012 A1
20120210423 Friedrichs et al. Aug 2012 A1
20120222121 Staniford et al. Aug 2012 A1
20120240230 Lee Sep 2012 A1
20120255015 Sahita et al. Oct 2012 A1
20120255017 Sallam Oct 2012 A1
20120260342 Dube et al. Oct 2012 A1
20120266244 Green et al. Oct 2012 A1
20120278886 Luna Nov 2012 A1
20120297489 Dequevy Nov 2012 A1
20120304244 Xie Nov 2012 A1
20120311709 Kang Dec 2012 A1
20120330801 McDougal et al. Dec 2012 A1
20130014259 Gribble et al. Jan 2013 A1
20130036472 Aziz Feb 2013 A1
20130047257 Aziz Feb 2013 A1
20130074185 McDougal et al. Mar 2013 A1
20130086684 Mohler Apr 2013 A1
20130097699 Balupari et al. Apr 2013 A1
20130097705 Montoro Apr 2013 A1
20130097706 Titonis et al. Apr 2013 A1
20130111587 Goel et al. May 2013 A1
20130117852 Stute May 2013 A1
20130117855 Kim et al. May 2013 A1
20130139264 Brinkley et al. May 2013 A1
20130160125 Likhachev et al. Jun 2013 A1
20130160127 Jeong et al. Jun 2013 A1
20130160130 Mendelev et al. Jun 2013 A1
20130160131 Madou et al. Jun 2013 A1
20130167236 Sick Jun 2013 A1
20130174214 Duncan Jul 2013 A1
20130185789 Hagiwara et al. Jul 2013 A1
20130185795 Winn et al. Jul 2013 A1
20130185798 Saunders et al. Jul 2013 A1
20130191915 Antonakakis et al. Jul 2013 A1
20130196649 Paddon et al. Aug 2013 A1
20130227691 Aziz et al. Aug 2013 A1
20130246370 Bartram et al. Sep 2013 A1
20130263260 Mahaffey et al. Oct 2013 A1
20130291109 Staniford et al. Oct 2013 A1
20130291111 Zhou Oct 2013 A1
20130298243 Kumar et al. Nov 2013 A1
20140053260 Gupta et al. Feb 2014 A1
20140053261 Gupta et al. Feb 2014 A1
20140130158 Wang et al. May 2014 A1
20140137180 Lukacs et al. May 2014 A1
20140169762 Ryu Jun 2014 A1
20140179360 Jackson et al. Jun 2014 A1
20140280889 Nispel Sep 2014 A1
20140328204 Klotsche et al. Nov 2014 A1
20140337836 Ismael Nov 2014 A1
20140351935 Shao et al. Nov 2014 A1
20150012910 Xi Jan 2015 A1
20150013008 Lukacs Jan 2015 A1
20150096025 Ismael Apr 2015 A1
Foreign Referenced Citations (11)
Number Date Country
2439806 Jan 2008 GB
2490431 Oct 2012 GB
0223805 Mar 2002 WO
0206928 Nov 2003 WO
2007117636 Oct 2007 WO
2008041950 Apr 2008 WO
2011084431 Jul 2011 WO
2011112348 Sep 2011 WO
2012075336 Jun 2012 WO
2012145066 Oct 2012 WO
2013067505 May 2013 WO
Non-Patent Literature Citations (75)
Entry
Apostolopoulos, George; hassapis, Constantinos; “V-eM: A cluster of Virtual Machines for Robust, Detailed, and High-Performance Network Emulation”, 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Sep. 11-14, 2006, pp. 117-126.
Baldi, Mario; Risso, Fulvio; “A Framework for Rapid Development and Portable Execution of Packet-Handling Applications”, 5th IEEE International Symposium Processing and Information Technology, Dec. 21, 2005, pp. 233-238.
Cisco “Intrusion Prevention for the Cisco ASA 5500-x Series” Data Sheet (2012).
Clark, John, Sylvian Leblanc,and Scott Knight. “Risks associated with usb hardware trojan devices used by insiders.” Systems Conference (SysCon), 2011 IEEE International. IEEE, 2011.
FireEye Malware Analysis & Exchange Network, Malware Protection System, FireEye Inc., 2010.
FireEye Malware Analysis, Modern Malware Forensics, FireEye Inc., 2010.
FireEye v.6.0 Security Target, pp. 1-35, Version 1.1, FireEye Inc., May 2011.
Gibler, Clint, et al. AndroidLeaks: automatically detecting potential privacy leaks in android applications on a large scale. Springer Berlin Heidelberg, 2012.
Gregg Keizer: “Microsoft's HoneyMonkeys Show Patching Windows Works”, Aug. 8, 2005, XP055143386, Retrieved from the Internet: URL:https://web.archive.org/web/20121022220617/http://www.informationweek-.com/microsofts-honeymonkeys-show-patching-wi/167600716 [retrieved on Sep. 29, 2014].
Heng Yin et al, Panorama: Capturing System-Wide Information Flow for Malware Detection and Analysis, Research Showcase © CMU, Carnegie Mellon University, 2007.
Idika et al., A-Survey-of-Malware-Detection-Techniques, Feb. 2, 2007, Department of Computer Science, Purdue University.
Isohara, Takamasa, Keisuke Takemori, and Ayumu Kubota. “Kernel-based behavior analysis for android malware detection.” Computational intelligence and Security (CIS), 2011 Seventh International Conference on. IEEE, 2011.
Kevin A Roundy et al: “Hybrid Analysis and Control of Malware”, Sep. 15, 2010, Recent Advances in Intrusion Detection, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 317-338, XP019150454 ISBN:978-3-642-15511-6.
Leading Colleges Select FireEye to Stop Malware-Related Data Breaches, FireEye Inc., 2009.
Li et al., A VMM-Based System Call Interposition Framework for Program Monitoring, Dec. 2010, IEEE 16th International Conference on Parallel and Distributed Systems, pp. 706-711.
Lindorfer, Martina, Clemens Kolbitsch, and Paolo Milani Comparetti “Detecting environment-sensitive malware.” Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, 2011.
Lok Kwong et al: “DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic Views for Dynamic Android Malware Analysis”, Aug. 10, 2012, XP055158513, Retrieved from the Internet: URL:https://www.usenix.org/system/files/conference/usenixsecurity12/sec12- -final107.pdf [retrieved on Dec. 15, 2014].
Mori, Detecting Unknown Computer Viruses, 2004, Springer-Verlag Berlin Heidelberg.
Oberheide et al., CloudAV.sub.--N-Version Antivirus in the Network Cloud, 17th USENIX Security Symposium USENIX Security '08 Jul. 28-Aug. 1, 2008 San Jose, CA.
U.S. Pat. No. 8,171,553 filed Apr. 20, 2006, Inter Parties Review Decision dated Jul. 10, 2015.
U.S. Pat. No. 8,291,499 filed Mar. 16, 2012, Inter Parties Review Decision dated Jul. 10, 2015.
Wahid et al., Characterising the Evolution in Scanning Activity of Suspicious Hosts, Oct. 2009, Third International Conference on Network and System Security, pp. 344-350.
Yuhei Kawakoya et al: “Memory behavior-based automatic malware unpacking in stealth debugging environment”, Malicious and Unwanted Software (Malware), 2010 5th International Conference on, IEEE, Piscataway, NJ, USA, Oct. 19, 2010, pp. 39-46, XP031833827, ISBN:978-1-4244-8-9353-1.
Zhang et al., The Effects of Threading, Infection Time, and Multiple-Attacker Collaboration on Malware Propagation, Sep. 2009, IEEE 28th International Symposium on Reliable Distributed Systems, pp. 73-82.
“Mining Specification of Malicious Behavior”—Jha et al, UCSB, Sep. 2007 https://www.cs.ucsb.edu/.about.chris/research/doc/esec07.sub.--mining.pdf-.
“Network Security: NetDetector—Network Intrusion Forensic System (NIFS) Whitepaper”, (“NetDetector Whitepaper”), (2003).
“Packet”, Microsoft Computer Dictionary, Microsoft Press, (Mar. 2002), 1 page.
“When Virtual is Better Than Real”, IEEEXplore Digital Library, available at, http://ieeexplore.ieee.org/xpl/articleDetails.isp?reload=true&arnumbe- r=990073, (Dec. 7, 2013).
Abdullah, et al., Visualizing Network Data for Intrusion Detection, 2005 IEEE Workshop on Information Assurance and Security, pp. 100-108.
Adetoye, Adedayo , et al., “Network Intrusion Detection & Response System”, (“Adetoye”), (Sep. 2003).
AltaVista Advanced Search Results. “attack vector identifier”. Http://www.altavista.com/web/results?Itag=ody&pg=aq&aqmode=aqa=Event+Orch- estrator . . . , (Accessed on Sep. 15, 2009).
AltaVista Advanced Search Results. “Event Orchestrator”. Http://www.altavista.com/web/results?Itag=ody&pg=aq&aqmode=aqa=Event+Orch- esrator . . . , (Accessed on Sep. 3, 2009).
Aura, Tuomas, “Scanning electronic documents for personally identifiable information”, Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM, 2006.
Baecher, “The Nepenthes Platform: An Efficient Approach to collect Malware”, Springer-verlag Berlin Heidelberg, (2006), pp. 165-184.
Bayer, et al., “Dynamic Analysis of Malicious Code”, J Comput Virol, Springer-Verlag, France., (2006), pp. 67-77.
Boubalos, Chris , “extracting syslog data out of raw pcap dumps, seclists.org, Honeypots mailing list archives”, available at http://seclists.org/honeypots/2003/q2/319 (“Boubalos”), (Jun. 5, 2003).
Chaudet, C. , et al., “Optimal Positioning of Active and Passive Monitoring Devices”, International Conference on Emerging Networking Experiments and Technologies, Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, CoNEXT '05, Toulousse, France, (Oct. 2005), pp. 71-82.
Cisco, Configuring the Catalyst Switched Port Analyzer (SPAN) (“Cisco”), (1992-2003).
Cohen, M.I. , “PyFlag—An advanced network forensic framework”, Digital investigation 5120. 5, Elsevier, (2008), pp. S112-S120.
Costa, M. , et al., “Vigilante: End-to-End Containment of Internet Worms”, SOSP '05, Association for Computing Machinery, Inc., Brighton U.K., (Oct. 23-26, 2005).
Crandall, J.R. , et al., “Minos:Control Data Attack Prevention Orthogonal to Memory Model”, 37th International Symposium on Microarchitecture, Portland, Oregon, (Dec. 2004).
Deutsch, P. , “Zlib compressed data format specification version 3.3” RFC 1950, (1996).
Distler, “Malware Analysis: An Introduction”, SANS Institute InfoSec Reading Room, SANS Institute, (2007).
Dunlap, George W. , et al., “ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay”, Proceeding of the 5th Symposium on Operating Systems Design and Implementation, USENIX Association, (“Dunlap”), (Dec. 9, 2002).
Excerpt regarding First Printing Date for Merike Kaeo, Designing Network Security (“Kaeo”), (2005).
Filiol, Eric , et al., “Combinatorial Optimisation of Worm Propagation on an Unknown Network”, International Journal of Computer Science 2.2 (2007).
Goel, et al., Reconstructing System State for Intrusion Analysis, Apr. 2008 SIGOPS Operating Systems Review, vol. 42, issue 3, pp. 21-28.
Hjelmvik, Erik , “Passive Network Security Analysis with NetworkMiner”, (IN)Secure, Issue 18, (Oct. 2008), pp. 1-100.
IEEE Xplore Digital Library Sear Results for “detection of unknown computer worms”. Http://ieeexplore.ieee.org/searchresult.jsp?SortField=Score&SortOrder=desc- &ResultC . . . , (Accessed on Aug. 28, 2009).
Kaeo, Merike , “Designing Network Security”, (“Kaeo”), (Nov. 2003).
Kim, H. , et al., “Autograph: Toward Automated, Distributed Worm Signature Detection”, Proceedings of the 13th Usenix Security Symposium (Security 2004), San Diego, (Aug. 2004), pp. 271-286.
King, Samuel T., et al., “Operating System Support for Virtual Machines”, (“King”) (2003).
Krasnyansky, Max , et al., Universal TUN/TAP driver, available at https://www.kernel.org/doc/Documentation/networking/tuntap.txt (2002) (“Krasnyansky”).
Kreibich, C. , et al., “Honeycomb-Creating Intrusion Detection Signatures Using Honeypots”, 2nd Workshop on Hot Topics in Networks (HotNets-11), Boston, USA, (2003).
Kristoff, J. , “Botnets, Detection and Mitigation: DNS-Based Techniques”, NU Security Day, (2005), 23 pages.
Liljenstam, Michael , et al., “Simulating Realistic Network Traffic for Worm Warning System Design and Testing”, Institute for Security Technology studies, Dartmouth College (“Liljenstam”), (Oct. 27, 2003).
Marchette, David J., “Computer Intrusion Detection and Network Monitoring: A Statistical Viewpoint”, (“Marchette”), (2001).
Margolis, P.E. , “Random House Webster's ‘Computer & Internet Dictionary 3rd Edition’”, ISBN 0375703519, (Dec. 1998).
Moore, D. , et al., “Internet Quarantine: Requirements for Containing Self-Propagating Code”, INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003), pp. 1901-1910.
Morales, Jose A., et al., ““Analyzing and exploiting network behaviors of malware.””, Security and Privacy in Communication Networks. Springer Berlin Heidelberg, 2010. 20-34.
Natvig, Kurt , “SANDBOXII: Internet”, Virus Bulletin Conference, (“Natvig”), (Sep. 2002).
NetBIOS Working Group. Protocol Standard for a NetBIOS Service on a TCP/UDP transport: Concepts and Methods. STD 19, RFC 1001, Mar. 1987.
Newsome, J. , et al., “Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software”, In Proceedings of the 12th Annual Network and Distributed System Security, Symposium (NDSS '05), (Feb. 2005).
Newsome, J. , et al., “Polygraph: Automatically Generating Signatures for Polymorphic Worms”, In Proceedings of the IEEE Symposium on Security and Privacy, (May 2005).
Nojiri, D. , et al., “Cooperation Response Strategies for Large Scale Attack Mitigation”, DARPA Information Survivability Conference and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302.
Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Roonald Perez, Leendert van Doorn, John Linwood Griffin, Stefan Berger., sHype: Secure Hypervisor Appraoch to Trusted Virtualized Systems (Feb. 2, 2005) (“Sailer”).
Silicon Defense, “Worm Containment in the Internal Network”, (Mar. 2003), pp. 1-25.
Singh, S. , et al., “Automated Worm Fingerprinting”, Proceedings of the ACM/USENIX Symposium on Operating System Design and Implementation, San Francisco, California, (Dec. 2004).
Spitzner, Lance , “Honeypots: Tracking Hackers”, (“Spizner”), (Sep. 17, 2002).
The Sniffers's Guide to Raw Traffic available at: yuba.stanford.edu/.about.casado/pcap/section1.html, (Jan. 6, 2014).
Thomas H. Ptacek, and Timothy N. Newsham , “Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection”, Secure Networks, (“Ptacek”), (Jan. 1998).
U.S. Appl. No. 14/221,199, filed Mar. 20, 2014 Non-Final Office Action dated Apr. 24, 2015.
Venezia, Paul , “NetDetector Captures Intrusions”, InfoWorld Issue 27, (“Venezia”), (Jul. 14, 2003).
Whyte, et al., “DNS-Based Detection of Scanning Works in an Enterprise Network”, Proceedings of the 12th Annual Network and Distributed System Security Symposium, (Feb. 2005), 15 pages.
Williamson, Matthew M., “Throttling Viruses: Restricting Propagation to Defeat Malicious Mobile Code”, ACSAC conference, Las Vegas, NV, USA, (Dec. 2002), pp. 1-9.
Continuations (1)
Number Date Country
Parent 14221199 Mar 2014 US
Child 14997443 US