The present invention relates generally to the field of radio frequency (RF) multiple-input-multiple-output (MIMO) systems and in particular to systems and methods for enhanced performance of RF MIMO systems using RF beamforming and/or digital signal processing.
Active antenna systems may implement 1-dimensional and 2-dimensional multi-beam base stations that focus transmission and reception into narrow sub-sectors, facilitate reduced interference to neighboring cells, and enable reuse of the radio spectrum at its own cell by activating independent simultaneous co-channel non-overlapping beams.
Base stations may separate transmission and reception by using different frequencies or different time divisions for transmission and reception. For example, cellular protocols, such as GSM (Global System for Mobile Communications), WiMAX (Worldwide Interoperability for Microwave Access), and LTE (Long-Term Evolution), may sync (synchronize) all transmission and receiving channels using time-division. WiFi base stations, which may incorporate a multi-beamforming cluster of co-located, co-channel Wi-Fi access points, may not inherently include such syncing capabilities and may operate inefficiently when in close proximity, due to the nature of the CSMA/CA (Carrier sense multiple access with collision avoidance) property of the Wi-Fi protocol, which requires yielding to all first-come Wi-Fi data transmission in order to avoid transmission collisions or jamming. While co-located, co-channel Wi-Fi access points may provide super-isolation of data transmission via RF manipulation methods, performance may be improved by distinguishing between identified channel capturing signals originated locally (e.g., from another AP in the same cluster) and originated remotely (e.g., signals coming from UEs or non-cluster APs).
A wireless communication system may include a plurality of co-located transceivers. The plurality of transceivers may be configured to transmit data to at least one user equipment, according to a collision sense multiple access/collision avoidance (CSMA/CA) protocol. A processor may receive a signal preamble and a sender address of the signal preamble and determine whether the sender address is included in the stored list of addresses. If the sender address is included in the stored list of addresses, the processor may allow simultaneous data transmission from two or more of the co-located transceivers.
The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, together with objects, features, and advantages thereof, may best be understood by reference to the following detailed description when read with the accompanying drawings in which:
It will be appreciated that for simplicity and clarity of illustration, elements shown in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. Further, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements.
In the following description, various aspects of the present invention will be described. For purposes of explanation, specific configurations and details are set forth in order to provide a thorough understanding of the present invention. However, it will also be apparent to one skilled in the art that the present invention may be practiced without the specific details presented herein. Furthermore, well known features may be omitted or simplified in order not to obscure the present invention.
Unless specifically stated otherwise, as apparent from the following discussions, it is appreciated that throughout the specification discussions utilizing terms such as “processing,” “computing,” “calculating,” “determining,” or the like, refer to the action and/or processes of a computer or computing system, or similar electronic computing device, that manipulates and/or transforms data represented as physical, such as electronic, quantities within the computing system's registers and/or memories into other data similarly represented as physical quantities within the computing system's memories, registers or other such information storage, transmission or display devices.
Embodiments of the invention may be described in reference to the IEEE (Institute of Electrical and Electronics Engineer) 802.11 standard for implementing wireless local area networks (WLAN). “802.11xx” may refer to any version of the 802.11 standard, such as 802.11a, 802.11g, or 802.11ac, for example. Versions of the 802.11 standard may operate using a technique called Collision Sense Multiple Access/Collision Avoidance (CSMA/CA), a networking method which aims to prevent transmission collisions before they occur. While embodiments of the invention are described in terms of the 802.11 protocol, other network protocols built on the CSMA/CA concept may be used.
Access points (AP's) using a CSMA/CA wireless network, including IEEE 802.11 WiFi networks, may determine whether a radio channel is clear, prior to broadcasting or transmitting data in the channel. The AP may do this by performing a clear channel assessment (CCA), which includes two functions: listening to received energy on an RF interface (termed “energy detection”), or detecting and decoding an incoming Wi-Fi signal preamble from a nearby AP. For energy detection, the AP may delay signal or data transmission if it detects an energy level predetermined by the 802.11 protocol. For preamble detection, a signal preamble may be a signal used to synchronize transmission timing between two devices and may occur at the beginning of every data packet. In a communication standard such as Wi-Fi, a preamble may have a predefined structure and data fields organized in a way that all devices communicating on the standard understand. A CCA is deemed ‘busy’ and thus not available if an AP's receiver can sense radio energy, from another AP, above a CCA sensitivity level or if an AP detects an incoming WiFi signal preamble. The AP may also maintain a Network Allocation Vector (NAV), which acts as a countdown timer to when the AP may begin to transmit data. Based on signals from nearby AP's which may indicate the length of a transmitted data packet, an AP's NAV may update the time to transmission, causing further delay to an AP's data transmission. An AP may defer from using the channel to transmit data until both conditions (e.g., CCA deemed ‘busy’ and the NAV timer) have expired.
AP's or transceivers operating in according with CSMA/CA protocols may also implement a backoff procedure to further delay transmission until no other nearby AP's are transmitting. When an AP desires to transmit right after a NAV counter has reached zero, there may be other AP's in the area with NAV counters or timers reaching zero at the same time. Thus, more than one AP may desire to transmit simultaneously. If this occurs and the AP's detect each other, according to a CSMA/CA protocol, a backoff procedure may introduce a pseudo-random amount of time or delay for both of the AP's that desire to transmit. This may normally ensure that each AP delays transmission for a different amount of time, so that when one AP's backoff counter has reached zero, it is more likely to be able to transmit without interference, since the other nearby AP may still be waiting until its backoff counter or timer has reached zero. However, both AP's may still check to determine whether the channel is available before transmitting or whether another backoff procedure may be required.
Embodiments of the invention may describe an enhancement to the operation of CSMA/CA (Collision Sense Multiple Access/Collision Avoidance) radio networks by, for example, increasing the carrying capacity CSMA/CA networks which incorporate directional antennas. For example, a Multibeam Access Point, which may act as a Wi-Fi base station, may include a cluster of co-located Wi-Fi access points or transceivers, each access point with independent transmit and receive capabilities. As used herein, transceiver and AP may be used interchangeably as any device having independent transmit and receive functions and capable of acting as an 802.11xx access point. Each access point or transceiver may use directive antennas to focus the radio energy on an azimuth covering an intended user on a user equipment (UE), enabling one or the same radio frequency or frequency channel (e.g., the same or overlapping frequency spectrum) to be used simultaneously or concurrently on a different azimuth beam which points to a different UE. Transceivers or access points may be co-located if, under ordinary usage of the CSMA/CA technique, data transmission from one transceiver prevents simultaneous data transmission from another transceiver on the same channel or frequency. The transceivers' co-location or proximity to each other may cause, for example, RF interference, a busy CCA resulting in an updated NAV, or activation of a backoff procedure. Co-located transceivers may be clustered or grouped together into one base station that serves UE's in a limited geographical area. Co-located transceivers may share processing tasks or may each have separate processing capabilities. Embodiments of the invention may, for example, alter the operation of CSMA/CA techniques to minimize interference between the co-located transceivers.
Due to the properties of the IEEE 802.11 protocol, transceivers 102 co-located on one base station 100 and communicating with UE's 106 on the same frequency channel may be prevented or suppressed from transmitting data simultaneously due to a CCA energy detection or preamble detection, as explained above. For example, a first transceiver 102a may desire to transmit data on a channel to a UE 106a, and it may first determine if the channel is being used by another transceiver 102b nearby. Through a CCA, the first transceiver 102a may detect that the second transceiver 102b is currently transmitting to a second UE 106b. Although data transmission between the second transceiver 102b and the second UE 106b should not affect data transmission between the first transceiver 102a and 106a, the 802.11 protocol may require the first transceiver 102a to delay transmission until the second transceiver 102b is finished transmitting. With other transceivers 102c and 102d at the base station 100, the first transceiver 102a which desires to transmit may, according to the 802.11 standard, be required to delay transmission until all other transceivers 102c and 102d have finished transmitting on the same frequency.
Depending on the frequency of data transmission, energy detection thresholds may vary. For example, the 802.11 standard may require that transceivers 102a-d delay data transmission if they detect power levels from other nearby transceivers of −62 dBm at 20 MHz, −59 dBm at 40 MHz, or −56 dBm at 80 MHz. Thus, the minimum signal to trigger any energy detection may be −62 dBm. If, for example, the antennas 104a-d transmit at +22 dBm power, and three active transceivers contribute 10*log(3) dBm or +4.7 dBm, a minimum isolation required between each of the transceivers may be 93.7 dBm (e.g., 67 dBm+22 dBm+4.7 dBm). Adding in an error margin, a minimum isolation between each of the transceivers 102a-d may be 100 dBm with 6.3 dBm error tolerance. While such isolation may deter against delay due to energy detection, the isolation may not be enough to prevent a preamble detection from delaying data transmission. Since preambles may be sent at a higher power of about 14 dBm, receiver 110 of each co-located AP 102a-d may still detect a preamble even with RF and antenna isolation. Further, uncontrollable environmental conditions may affect RF isolation between transceivers 102a-d, and interference may be exacerbated when multiple transceivers are added to the MBAP.
For preamble detection, a first transceiver 102a may update its NAV timer based on a preamble received from another co-located transceiver (e.g., 102b, 102c, or 102d) and withhold transmission for a period described in the NAV. Embodiments of the invention, described herein, may adjust the response to the 802.11 protocol between co-located Wi-Fi transceivers, yet follow the protocol in response to incoming signals from Wi-Fi transceivers from other base stations or from UE's.
According to embodiments of the invention, first transceiver 205 may desire to transmit data on a beam 220a with an azimuth directed toward a UE 218, for example. Based on the IEEE 802.11xx standard, first transceiver 205 may, prior to transmitting, determine whether a frequency channel is occupied by another transceiver or access point, or a UE transmitting to first transceiver 205. If processor 214 identifies data transmission 222 on the same or one channel or frequency as transmissions by second transceiver 204 which is co-located with first transceiver 205, processor 214 may allow (e.g., by controlling or sending signals to the transceiver or other equipment) first transceiver 205 to transmit data simultaneously with data transmission by second transceiver 204. If, as an example, base station 202a includes more than two co-located transceivers, processor 214 may allow first transceiver 205 to transmit data simultaneously with two or more of its co-located transceivers, e.g., three or four co-located transceivers may be able to transmit simultaneously. By allowing simultaneous data transmission from or by first transceiver 204 and second transceiver 205, processor 214 may be ignoring the CSMA/CA rules of the IEEE 802.11 protocol for the case of co-located AP transmission. Processor 214 may identify that second transceiver 204 is transmitting, because during data transmission between second transceiver 204 and UE 218a, first transceiver 205 may receive and decode part of that data transmission, such as a signal preamble, for example. A short time after the signal preamble, first transceiver 205 may receive and decode a sender address field that indicates a basic service set identification (BSSID) of a transceiver that transmitted the signal preamble. Processor 214 may compare the received sender address with a stored list of addresses. The stored list of addresses may be stored in memory 216, for example, and may be a list indicating the BSSID's of transceivers co-located with first transceiver 205 (e.g., processor 214 would store the BSSID of second transceiver 204). The list of co-located transceivers may be programmed into memory 216 prior to use of base station 202a, for example. Referring to
In
For other data transmission that is received and decoded by first transceiver 205, processor 214 may follow the CSMA/CA rules of the IEEE 802.11xx standard. For example, UE 218b, which is being served by a beam transmitted by first transceiver 205, may desire to transmit back to first transceiver 205. First transceiver 205 may follow CSMA/CA rules when receiving data from UE 218b, because data transmission from UE 218b would not be identified as coming from second transceiver 204. Therefore, first transceiver 205 may delay transmission until the CCA is deemed clear, e.g., UE has stopped transmitting. In another example, a UE 218c being served by another base station 202b may be near first base station 202a and may transmit data 224 in order to be acknowledged or recognized by first base station 202a. First transceiver may follow CSMA/CA rules when receiving data from UE 218c, because it is not identified as second transceiver 204.
First transceiver 205 and second transceiver 204 of
Different embodiments are disclosed herein. Features of certain embodiments may be combined with features of other embodiments; thus certain embodiments may be combinations of features of multiple embodiments.
Embodiments of the invention may include an article such as a computer or processor readable non-transitory storage medium, such as for example a memory, a disk drive, or a USB flash memory device encoding, including or storing instructions, e.g., computer-executable instructions, which when executed by a processor or controller, cause the processor or controller to carry out methods disclosed herein.
In various embodiments, computational modules may be implemented by e.g., processors (e.g., a general purpose computer processor or central processing unit executing software), or digital signal processors (DSPs), or other circuitry. The baseband modem may be implanted, for example, as a DSP. A beamforming matrix can be calculated and implemented for example by software running on general purpose processor. Beamformers, gain controllers, switches, combiners, and phase shifters may be implemented, for example using RF circuitries.
While the invention has been described with respect to a limited number of embodiments, these should not be construed as limitations on the scope of the invention, but rather as exemplifications of some of the preferred embodiments. Other possible variations, modifications, and applications are also within the scope of the invention. Different embodiments are disclosed herein. Features of certain embodiments may be combined with features of other embodiments; thus certain embodiments may be combinations of features of multiple embodiments.
This application claims benefit of U.S. Provisional Patent Application No. 61/865,462 filed on Aug. 13, 2013 which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4044359 | Applebaum et al. | Aug 1977 | A |
4079318 | Kinoshita | Mar 1978 | A |
4359738 | Lewis | Nov 1982 | A |
4540985 | Clancy et al. | Sep 1985 | A |
4628320 | Downie | Dec 1986 | A |
5162805 | Cantrell | Nov 1992 | A |
5363104 | Richmond | Nov 1994 | A |
5444762 | Frey et al. | Aug 1995 | A |
5732075 | Tangemann et al. | Mar 1998 | A |
5915215 | Williams et al. | Jun 1999 | A |
5936577 | Shoki et al. | Aug 1999 | A |
5940033 | Locher et al. | Aug 1999 | A |
6018317 | Dogan et al. | Jan 2000 | A |
6026081 | Hamabe | Feb 2000 | A |
6046655 | Cipolla | Apr 2000 | A |
6094165 | Smith | Jul 2000 | A |
6101399 | Raleigh et al. | Aug 2000 | A |
6163695 | Takemura | Dec 2000 | A |
6167286 | Ward et al. | Dec 2000 | A |
6215812 | Young et al. | Apr 2001 | B1 |
6226507 | Ramesh et al. | May 2001 | B1 |
6230123 | Mekuria et al. | May 2001 | B1 |
6259683 | Sekine et al. | Jul 2001 | B1 |
6297772 | Lewis | Oct 2001 | B1 |
6321077 | Saitoh et al. | Nov 2001 | B1 |
6335953 | Sanderford et al. | Jan 2002 | B1 |
6370378 | Yahagi | Apr 2002 | B1 |
6377783 | Lo et al. | Apr 2002 | B1 |
6393282 | Iimori | May 2002 | B1 |
6584115 | Suzuki | Jun 2003 | B1 |
6647276 | Kuwahara et al. | Nov 2003 | B1 |
6697622 | Ishikawa et al. | Feb 2004 | B1 |
6697633 | Dogan et al. | Feb 2004 | B1 |
6735182 | Nishimori et al. | May 2004 | B1 |
6834073 | Miller et al. | Dec 2004 | B1 |
6842460 | Olkkonen et al. | Jan 2005 | B1 |
6914890 | Tobita et al. | Jul 2005 | B1 |
6927646 | Niemi | Aug 2005 | B2 |
6934541 | Miyatani | Aug 2005 | B2 |
6975582 | Karabinis et al. | Dec 2005 | B1 |
6987958 | Lo et al. | Jan 2006 | B1 |
7068628 | Li et al. | Jun 2006 | B2 |
7154960 | Liu et al. | Dec 2006 | B2 |
7177663 | Axness et al. | Feb 2007 | B2 |
7190964 | Damnjanovic et al. | Mar 2007 | B2 |
7257425 | Wang et al. | Aug 2007 | B2 |
7299072 | Ninomiya | Nov 2007 | B2 |
7391757 | Haddad et al. | Jun 2008 | B2 |
7392015 | Farlow et al. | Jun 2008 | B1 |
7474676 | Tao et al. | Jan 2009 | B2 |
7499109 | Kim et al. | Mar 2009 | B2 |
7512083 | Li | Mar 2009 | B2 |
7606528 | Mesecher | Oct 2009 | B2 |
7634015 | Waxman | Dec 2009 | B2 |
7646744 | Li | Jan 2010 | B2 |
7719993 | Li et al. | May 2010 | B2 |
7742000 | Mohamadi | Jun 2010 | B2 |
7769107 | Sandhu et al. | Aug 2010 | B2 |
7876848 | Han et al. | Jan 2011 | B2 |
7881401 | Kraut et al. | Feb 2011 | B2 |
7898478 | Niu et al. | Mar 2011 | B2 |
7904086 | Kundu et al. | Mar 2011 | B2 |
7904106 | Han et al. | Mar 2011 | B2 |
7933255 | Li | Apr 2011 | B2 |
7970366 | Arita et al. | Jun 2011 | B2 |
8078109 | Mulcay | Dec 2011 | B1 |
8103284 | Mueckenheim et al. | Jan 2012 | B2 |
8111782 | Kim et al. | Feb 2012 | B2 |
8115679 | Falk | Feb 2012 | B2 |
8155613 | Kent et al. | Apr 2012 | B2 |
8194602 | van Rensburg et al. | Jun 2012 | B2 |
8275377 | Nanda et al. | Sep 2012 | B2 |
8280443 | Tao et al. | Oct 2012 | B2 |
8294625 | Kittinger et al. | Oct 2012 | B2 |
8306012 | Lindoff et al. | Nov 2012 | B2 |
8315671 | Kuwahara et al. | Nov 2012 | B2 |
8369436 | Stirling-Gallacher | Feb 2013 | B2 |
8504098 | Khojastepour | Aug 2013 | B2 |
8509190 | Rofougaran | Aug 2013 | B2 |
8520657 | Rofougaran | Aug 2013 | B2 |
8526886 | Wu et al. | Sep 2013 | B2 |
8571127 | Jiang et al. | Oct 2013 | B2 |
8588844 | Shpak | Nov 2013 | B2 |
8599955 | Kludt et al. | Dec 2013 | B1 |
8599979 | Farag et al. | Dec 2013 | B2 |
8605658 | Fujimoto | Dec 2013 | B2 |
8611288 | Zhang et al. | Dec 2013 | B1 |
8644413 | Harel et al. | Feb 2014 | B2 |
8649458 | Kludt et al. | Feb 2014 | B2 |
8666319 | Kloper et al. | Mar 2014 | B2 |
8670504 | Naguib | Mar 2014 | B2 |
8744511 | Jones et al. | Jun 2014 | B2 |
8754810 | Guo et al. | Jun 2014 | B2 |
8767862 | Abreu et al. | Jul 2014 | B2 |
8780743 | Sombrutzki et al. | Jul 2014 | B2 |
8797969 | Harel et al. | Aug 2014 | B1 |
8891598 | Wang et al. | Nov 2014 | B1 |
8928528 | Harel et al. | Jan 2015 | B2 |
8942134 | Kludt et al. | Jan 2015 | B1 |
8976845 | O'Keeffe et al. | Mar 2015 | B2 |
8995416 | Harel et al. | Mar 2015 | B2 |
9014066 | Wang et al. | Apr 2015 | B1 |
9035828 | O'Keeffe et al. | May 2015 | B2 |
20010029326 | Diab et al. | Oct 2001 | A1 |
20010038665 | Baltersee et al. | Nov 2001 | A1 |
20020024975 | Hendler | Feb 2002 | A1 |
20020051430 | Kasami et al. | May 2002 | A1 |
20020065107 | Harel et al. | May 2002 | A1 |
20020085643 | Kitchener et al. | Jul 2002 | A1 |
20020107013 | Fitzgerald | Aug 2002 | A1 |
20020115474 | Yoshino et al. | Aug 2002 | A1 |
20020181426 | Sherman | Dec 2002 | A1 |
20020181437 | Ohkubo et al. | Dec 2002 | A1 |
20030087645 | Kim et al. | May 2003 | A1 |
20030114162 | Chheda et al. | Jun 2003 | A1 |
20030153322 | Burke et al. | Aug 2003 | A1 |
20030153360 | Burke et al. | Aug 2003 | A1 |
20030186653 | Mohebbi et al. | Oct 2003 | A1 |
20030203717 | Chuprun et al. | Oct 2003 | A1 |
20030203743 | Sugar et al. | Oct 2003 | A1 |
20040023693 | Okawa et al. | Feb 2004 | A1 |
20040056795 | Ericson et al. | Mar 2004 | A1 |
20040063455 | Eran et al. | Apr 2004 | A1 |
20040081144 | Martin et al. | Apr 2004 | A1 |
20040121810 | Goransson et al. | Jun 2004 | A1 |
20040125899 | Li et al. | Jul 2004 | A1 |
20040125900 | Liu et al. | Jul 2004 | A1 |
20040142696 | Saunders et al. | Jul 2004 | A1 |
20040147266 | Hwang et al. | Jul 2004 | A1 |
20040156399 | Eran | Aug 2004 | A1 |
20040166902 | Castellano et al. | Aug 2004 | A1 |
20040198292 | Smith et al. | Oct 2004 | A1 |
20040228388 | Salmenkaita | Nov 2004 | A1 |
20040235527 | Reudink et al. | Nov 2004 | A1 |
20040264504 | Jin | Dec 2004 | A1 |
20050068230 | Munoz et al. | Mar 2005 | A1 |
20050068918 | Mantravadi et al. | Mar 2005 | A1 |
20050075140 | Famolari | Apr 2005 | A1 |
20050085266 | Narita | Apr 2005 | A1 |
20050129155 | Hoshino | Jun 2005 | A1 |
20050147023 | Stephens et al. | Jul 2005 | A1 |
20050163097 | Do et al. | Jul 2005 | A1 |
20050245224 | Kurioka | Nov 2005 | A1 |
20050250544 | Grant et al. | Nov 2005 | A1 |
20050254513 | Cave et al. | Nov 2005 | A1 |
20050265436 | Suh et al. | Dec 2005 | A1 |
20050286440 | Strutt et al. | Dec 2005 | A1 |
20050287962 | Mehta et al. | Dec 2005 | A1 |
20060041676 | Sherman | Feb 2006 | A1 |
20060092889 | Lyons et al. | May 2006 | A1 |
20060094372 | Ahn et al. | May 2006 | A1 |
20060098605 | Li | May 2006 | A1 |
20060111149 | Chitrapu et al. | May 2006 | A1 |
20060135097 | Wang et al. | Jun 2006 | A1 |
20060183503 | Goldberg | Aug 2006 | A1 |
20060203850 | Johnson et al. | Sep 2006 | A1 |
20060227854 | McCloud et al. | Oct 2006 | A1 |
20060264184 | Li et al. | Nov 2006 | A1 |
20060270343 | Cha et al. | Nov 2006 | A1 |
20060271969 | Takizawa et al. | Nov 2006 | A1 |
20060285507 | Kinder et al. | Dec 2006 | A1 |
20070041398 | Benveniste | Feb 2007 | A1 |
20070058581 | Benveniste | Mar 2007 | A1 |
20070076675 | Chen | Apr 2007 | A1 |
20070093261 | Hou et al. | Apr 2007 | A1 |
20070097918 | Cai et al. | May 2007 | A1 |
20070115882 | Wentink | May 2007 | A1 |
20070115914 | Ohkubo et al. | May 2007 | A1 |
20070152903 | Lin et al. | Jul 2007 | A1 |
20070217352 | Kwon | Sep 2007 | A1 |
20070223380 | Gilbert et al. | Sep 2007 | A1 |
20070223525 | Shah | Sep 2007 | A1 |
20070249386 | Bennett | Oct 2007 | A1 |
20070298742 | Ketchum et al. | Dec 2007 | A1 |
20080043867 | Blanz et al. | Feb 2008 | A1 |
20080051037 | Molnar et al. | Feb 2008 | A1 |
20080081671 | Wang et al. | Apr 2008 | A1 |
20080095163 | Chen et al. | Apr 2008 | A1 |
20080108352 | Montemurro et al. | May 2008 | A1 |
20080125120 | Gallagher et al. | May 2008 | A1 |
20080144737 | Naguib | Jun 2008 | A1 |
20080165732 | Kim et al. | Jul 2008 | A1 |
20080238808 | Arita et al. | Oct 2008 | A1 |
20080240314 | Gaal et al. | Oct 2008 | A1 |
20080247370 | Gu et al. | Oct 2008 | A1 |
20080267142 | Mushkin et al. | Oct 2008 | A1 |
20080280571 | Rofougaran et al. | Nov 2008 | A1 |
20080285637 | Liu et al. | Nov 2008 | A1 |
20090003299 | Cave et al. | Jan 2009 | A1 |
20090028225 | Runyon et al. | Jan 2009 | A1 |
20090046638 | Rappaport et al. | Feb 2009 | A1 |
20090058724 | Xia et al. | Mar 2009 | A1 |
20090121935 | Xia et al. | May 2009 | A1 |
20090137206 | Sherman et al. | May 2009 | A1 |
20090154419 | Yoshida et al. | Jun 2009 | A1 |
20090187661 | Sherman | Jul 2009 | A1 |
20090190541 | Abedi | Jul 2009 | A1 |
20090227255 | Thakare | Sep 2009 | A1 |
20090239486 | Sugar et al. | Sep 2009 | A1 |
20090268616 | Hosomi | Oct 2009 | A1 |
20090279478 | Nagaraj et al. | Nov 2009 | A1 |
20090285331 | Sugar et al. | Nov 2009 | A1 |
20090322610 | Hants et al. | Dec 2009 | A1 |
20090322613 | Bala et al. | Dec 2009 | A1 |
20090323608 | Adachi et al. | Dec 2009 | A1 |
20100002656 | Ji et al. | Jan 2010 | A1 |
20100037111 | Ziaja et al. | Feb 2010 | A1 |
20100040369 | Zhao et al. | Feb 2010 | A1 |
20100067473 | Cave et al. | Mar 2010 | A1 |
20100087227 | Francos et al. | Apr 2010 | A1 |
20100111039 | Kim et al. | May 2010 | A1 |
20100117890 | Vook et al. | May 2010 | A1 |
20100135420 | Xu et al. | Jun 2010 | A1 |
20100150013 | Hara et al. | Jun 2010 | A1 |
20100172429 | Nagahama et al. | Jul 2010 | A1 |
20100195560 | Nozaki et al. | Aug 2010 | A1 |
20100195601 | Zhang | Aug 2010 | A1 |
20100208712 | Wax et al. | Aug 2010 | A1 |
20100222011 | Behzad | Sep 2010 | A1 |
20100232355 | Richeson et al. | Sep 2010 | A1 |
20100234071 | Shabtay et al. | Sep 2010 | A1 |
20100278063 | Kim et al. | Nov 2010 | A1 |
20100283692 | Achour et al. | Nov 2010 | A1 |
20100285752 | Lakshmanan et al. | Nov 2010 | A1 |
20100291931 | Suemitsu et al. | Nov 2010 | A1 |
20100303170 | Zhu et al. | Dec 2010 | A1 |
20100316043 | Doi et al. | Dec 2010 | A1 |
20110019639 | Karaoguz et al. | Jan 2011 | A1 |
20110032849 | Yeung et al. | Feb 2011 | A1 |
20110032972 | Wang et al. | Feb 2011 | A1 |
20110085465 | Lindoff et al. | Apr 2011 | A1 |
20110085532 | Scherzer et al. | Apr 2011 | A1 |
20110105036 | Rao et al. | May 2011 | A1 |
20110116489 | Grandhi | May 2011 | A1 |
20110134816 | Liu et al. | Jun 2011 | A1 |
20110150050 | Trigui et al. | Jun 2011 | A1 |
20110150066 | Fujimoto | Jun 2011 | A1 |
20110151826 | Miller et al. | Jun 2011 | A1 |
20110163913 | Cohen et al. | Jul 2011 | A1 |
20110205883 | Mihota | Aug 2011 | A1 |
20110205998 | Hart et al. | Aug 2011 | A1 |
20110228742 | Honkasalo et al. | Sep 2011 | A1 |
20110249576 | Chrisikos et al. | Oct 2011 | A1 |
20110250884 | Brunel et al. | Oct 2011 | A1 |
20110273977 | Shapira et al. | Nov 2011 | A1 |
20110281541 | Borremans | Nov 2011 | A1 |
20110299437 | Mikhemar et al. | Dec 2011 | A1 |
20110310827 | Srinivasa et al. | Dec 2011 | A1 |
20110310853 | Yin et al. | Dec 2011 | A1 |
20120014377 | Joergensen et al. | Jan 2012 | A1 |
20120015603 | Proctor et al. | Jan 2012 | A1 |
20120020396 | Hohne et al. | Jan 2012 | A1 |
20120027000 | Wentink | Feb 2012 | A1 |
20120028638 | Mueck et al. | Feb 2012 | A1 |
20120028655 | Mueck et al. | Feb 2012 | A1 |
20120028671 | Niu et al. | Feb 2012 | A1 |
20120033761 | Guo et al. | Feb 2012 | A1 |
20120034952 | Lo et al. | Feb 2012 | A1 |
20120045003 | Li et al. | Feb 2012 | A1 |
20120051287 | Merlin et al. | Mar 2012 | A1 |
20120064838 | Miao et al. | Mar 2012 | A1 |
20120069828 | Taki et al. | Mar 2012 | A1 |
20120076028 | Ko et al. | Mar 2012 | A1 |
20120076229 | Brobston et al. | Mar 2012 | A1 |
20120088512 | Yamada et al. | Apr 2012 | A1 |
20120092217 | Hosoya et al. | Apr 2012 | A1 |
20120100802 | Mohebbi | Apr 2012 | A1 |
20120115523 | Shpak | May 2012 | A1 |
20120155349 | Bajic et al. | Jun 2012 | A1 |
20120155397 | Shaffer et al. | Jun 2012 | A1 |
20120163257 | Kim et al. | Jun 2012 | A1 |
20120163302 | Takano | Jun 2012 | A1 |
20120170453 | Tiwari | Jul 2012 | A1 |
20120170672 | Sondur | Jul 2012 | A1 |
20120201153 | Bharadia et al. | Aug 2012 | A1 |
20120201173 | Jain et al. | Aug 2012 | A1 |
20120207256 | Farag et al. | Aug 2012 | A1 |
20120212372 | Petersson et al. | Aug 2012 | A1 |
20120213065 | Koo et al. | Aug 2012 | A1 |
20120218962 | Kishiyama et al. | Aug 2012 | A1 |
20120220331 | Luo et al. | Aug 2012 | A1 |
20120230380 | Keusgen et al. | Sep 2012 | A1 |
20120251031 | Suarez et al. | Oct 2012 | A1 |
20120270531 | Wright et al. | Oct 2012 | A1 |
20120270544 | Shah | Oct 2012 | A1 |
20120281598 | Struhsaker et al. | Nov 2012 | A1 |
20120314570 | Forenza et al. | Dec 2012 | A1 |
20120321015 | Hansen et al. | Dec 2012 | A1 |
20120327870 | Grandhi et al. | Dec 2012 | A1 |
20130010623 | Golitschek | Jan 2013 | A1 |
20130012134 | Jin et al. | Jan 2013 | A1 |
20130017794 | Kloper et al. | Jan 2013 | A1 |
20130023225 | Weber | Jan 2013 | A1 |
20130044877 | Liu et al. | Feb 2013 | A1 |
20130051283 | Lee et al. | Feb 2013 | A1 |
20130058239 | Wang et al. | Mar 2013 | A1 |
20130070741 | Li et al. | Mar 2013 | A1 |
20130079048 | Cai et al. | Mar 2013 | A1 |
20130094437 | Bhattacharya | Apr 2013 | A1 |
20130094621 | Luo et al. | Apr 2013 | A1 |
20130095780 | Prazan et al. | Apr 2013 | A1 |
20130101073 | Zai et al. | Apr 2013 | A1 |
20130150012 | Chhabra et al. | Jun 2013 | A1 |
20130156016 | Debnath et al. | Jun 2013 | A1 |
20130156120 | Josiam et al. | Jun 2013 | A1 |
20130170388 | Ito et al. | Jul 2013 | A1 |
20130172029 | Chang et al. | Jul 2013 | A1 |
20130188541 | Fischer | Jul 2013 | A1 |
20130190006 | Kazmi et al. | Jul 2013 | A1 |
20130208587 | Bala et al. | Aug 2013 | A1 |
20130208619 | Kudo et al. | Aug 2013 | A1 |
20130223400 | Seo et al. | Aug 2013 | A1 |
20130229996 | Wang et al. | Sep 2013 | A1 |
20130229999 | Da Silva et al. | Sep 2013 | A1 |
20130235720 | Wang et al. | Sep 2013 | A1 |
20130242853 | Seo et al. | Sep 2013 | A1 |
20130242899 | Lysejko et al. | Sep 2013 | A1 |
20130242965 | Horn et al. | Sep 2013 | A1 |
20130242976 | Katayama et al. | Sep 2013 | A1 |
20130252621 | Dimou et al. | Sep 2013 | A1 |
20130272437 | Eidson et al. | Oct 2013 | A1 |
20130301551 | Ghosh et al. | Nov 2013 | A1 |
20130304962 | Yin et al. | Nov 2013 | A1 |
20130331136 | Yang et al. | Dec 2013 | A1 |
20130343369 | Yamaura | Dec 2013 | A1 |
20140010089 | Cai et al. | Jan 2014 | A1 |
20140010211 | Asterjadhi et al. | Jan 2014 | A1 |
20140029433 | Wentink | Jan 2014 | A1 |
20140071873 | Wang et al. | Mar 2014 | A1 |
20140079016 | Dai et al. | Mar 2014 | A1 |
20140086077 | Safavi | Mar 2014 | A1 |
20140086081 | Mack et al. | Mar 2014 | A1 |
20140098681 | Stager et al. | Apr 2014 | A1 |
20140119288 | Zhu et al. | May 2014 | A1 |
20140185501 | Park et al. | Jul 2014 | A1 |
20140185535 | Park et al. | Jul 2014 | A1 |
20140192820 | Azizi et al. | Jul 2014 | A1 |
20140204821 | Seok et al. | Jul 2014 | A1 |
20140241182 | Smadi | Aug 2014 | A1 |
20140242914 | Monroe | Aug 2014 | A1 |
20140269409 | Dimou et al. | Sep 2014 | A1 |
20140307653 | Liu et al. | Oct 2014 | A1 |
20150016438 | Harel et al. | Jan 2015 | A1 |
20150018042 | Radulescu et al. | Jan 2015 | A1 |
20150085777 | Seok | Mar 2015 | A1 |
20150124634 | Harel et al. | May 2015 | A1 |
20150139212 | Wang et al. | May 2015 | A1 |
Number | Date | Country |
---|---|---|
1 189 303 | Mar 2002 | EP |
1 867 177 | May 2010 | EP |
2 234 355 | Sep 2010 | EP |
2 498 462 | Sep 2012 | EP |
2009-182441 | Aug 2009 | JP |
2009-278444 | Nov 2009 | JP |
WO 03047033 | Jun 2003 | WO |
WO 03073645 | Sep 2003 | WO |
WO 2010085854 | Aug 2010 | WO |
WO 2011060058 | May 2011 | WO |
WO 2013192112 | Dec 2013 | WO |
Entry |
---|
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/630,146 dated Jan. 22, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/630,146 dated Mar. 27, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,159 dated Apr. 16, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,191 dated May 2, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,188 dated May 15, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,204 dated May 21, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/770,255 dated Jun. 6, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,068 dated Jun. 11, 2013. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,159 dated Jun. 20, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated Jul. 17, 2013. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,191 dated Jul. 19, 2013. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/630,146 dated Jul. 31, 2013. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/762,188 dated Aug. 19, 2013. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/770,255 dated Sep. 17, 2013. |
Ahmadi-Shokouh et al., “Pre-LNA Smart Soft Antenna Selection for MIMO Spatial Multiplexing/Diversity System when Amplifier/Sky Noise Dominates”, European Transactions on Telecommunications, Wiley & Sons, Chichester, GB, vol. 21, No. 7, Nov. 1, 2010, pp. 663-677. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/889,150 dated Sep. 25, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,320 dated Oct. 15, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,204 dated Oct. 23, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/925,454 dated Oct. 28, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,194 dated Oct. 30, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/013,190 dated Nov. 5, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,068 dated Nov. 5, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/010,771 dated Dec. 17, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/065,182 dated Dec. 17, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/068,863 dated Dec. 17, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/011,521 dated Dec. 23, 2013. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated Jan. 7, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/018,965 dated Jan. 13, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/858,302 dated Jan. 16, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/042,020 dated Jan. 16, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/102,539 dated Jan. 27, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/087,376 dated Jan. 29, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,204 dated Jan. 31, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/094,644 dated Feb. 6, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,320 dated Feb. 21, 2014. |
Huang et al., “Antenna Mismatch and Calibration Problem in Coordinated Multi-point Transmission System,” IET Communications, 2012, vol. 6, Issue 3, pp. 289-299. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/109,904 dated Feb. 27, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/925,454 dated Mar. 7, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/172,500 dated Mar. 26, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/065,182 dated Mar. 25, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/068,863 dated Mar. 25, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/010,771 dated Apr. 4, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/085,352 dated Apr. 7, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/889,150 dated Apr. 9, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/955,194 dated Apr. 9, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/097,765 dated Apr. 22, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/087,376 dated May 9, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/143,580 dated May 9, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/776,068 dated May 13, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/013,190 dated May 20, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/085,252 dated Jun. 18, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/094,644 dated Jun. 24, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/102,539 dated Jun. 24, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/011,521 dated Jul. 1, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/109,904 dated Jul. 2, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/889,150 dated Jul. 8, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/250,767 dated Jul. 10, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/085,352 dated Jul. 23, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/013,190 dated Jul. 25, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/198,280 dated Jul. 29, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/042,020 dated Jul. 31, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/010,771 dated Aug. 6, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/306,458 dated Aug. 13, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/297,898 dated Aug. 15, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/085,252 dated Aug. 27, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/181,844 dated Aug. 29, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/296,209 dated Sep. 4, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/097,765 dated Sep. 8, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/143,580 dated Sep. 8, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/198,155 dated Sep. 12, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/449,431 dated Oct. 10, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/171,736 dated Oct. 16, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/011,521 dated Oct. 20, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/320,920 dated Oct. 23, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/889,150 dated Nov. 10, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated Nov. 17, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/198,280 dated Nov. 18, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/480,920 dated Nov. 18, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/481,319 dated Nov. 19, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/273,866 dated Nov. 28, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/042,020 dated Dec. 1, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/888,057 dated Dec. 3, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/297,898 dated Dec. 5, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/281,358 dated Dec. 16, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/250,767 dated Dec. 26, 2014. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/097,765 dated Dec. 31, 2014. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/181,844 dated Jan. 5, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/306,458 dated Jan. 9, 2015. |
International Search Report and Written Opinion for International Application No. PCT/US14/65958 dated Jan. 13, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/198,155 dated Jan. 26, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/296,209 dated Jan. 27, 2015. |
International Search Report and Written Opinion for PCT International Application No. PCT/US2014/064346 dated Jan. 29, 2015. |
Mitsubishi Electric, “Discussion on Antenna Calibration in TDD”, 3GPP Draft; R1-090043, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, No. Ljubljana; 20090107, Jan. 7, 2009, pp. 1-4. |
Alcatel-Lucent Shanghai Bell et al., “Antenna Array Calibration for TDD CoMP”, 3GPP Draft; R1-100427, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. RAN WG1, No. Valencia, Spain; 20100118, Jan. 12, 2010, pp. 1-5. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/925,454 dated Feb. 3, 2015. |
International Search Report and Written Opinion for PCT International Application No. PCT/US2014/064185 dated Feb. 5, 2015. |
Kai Yang et al., “Coordinated Dual-Layer Beamforming for Public Safety Network: Architecture and Algorithms”, Communications (ICC), 2012 IEEE International Conference on, IEEE, Jun. 10, 2012, pp. 4095-4099. |
Songtao et al., “A Distributed Adaptive GSC Beamformer over Coordinated Antenna Arrays Network for Interference Mitigation”, Asilomar Conference on Signals, Systems and Computers, Conference Record, IEEE Computer Society, US, Nov. 4, 2012, pp. 237-242. |
International Search Report and Written Opinion for PCT International Application No. PCT/US2014/065635 dated Feb. 13, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/171,736 mailed Feb. 20, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/320,920 dated Feb. 23, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated Mar. 23, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/449,431 dated Mar. 23, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/273,866 dated Mar. 25, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/517,114 dated Apr. 6, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/925,454 dated Apr. 14, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/543,357 dated Apr. 23, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/450,625 dated Apr. 28, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/250,767 dated Apr. 29, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/181,844 dated May 13, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/775,886 dated May 26, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/320,920 dated May 29, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/481,319 dated Jun. 12, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/505,655 dated Jun. 17, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/472,759 dated Jun. 18, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/042,020 dated Jun. 19, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/480,920 dated Jun. 22, 2015. |
International Search Report and Written Opinion for PCT International Application No. PCT/US2014/062116 dated Jun. 22, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/467,415 dated Jun. 30, 2015. |
International Search Report and Written Opinion for PCT International Application No. PCT/US2014/063304 dated Jul. 8, 2015. |
Bandyopadhyay, S. et al., “An Adaptive MAC Protocol for Wireless Ad Hoc Community Network (WACNet) Using Electronically Steerable Passive Array Radiator Antenna”, Globecom '01 : IEEE Global Telecommunications Conference; San Antonio, Texas, USA, Nov. 25-29, 2001, IEEE Operations Center, Piscataway, NJ, vol. 5, Nov. 25, 2001, pp. 2896-2900. |
Du, Yongjiu et al., “iBeam: Intelligent Client-Side Multi-User Beamforming in Wireless Networks”, IEEE INFOCOM 2014—IEEE Conference on Computer Communications, IEEE, Apr. 27, 2014, pp. 817-825. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 13/888,057 dated Jul. 9, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/517,114 dated Jul. 28, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/672,634 dated Aug. 12, 2015. |
Notice of Allowance issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/543,357 dated Sep. 2, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/450,625 dated Sep. 10, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/320,920 dated Sep. 21, 2015. |
Office Action issued by the United States Patent and Trademark Office for U.S. Appl. No. 14/181,844 dated Sep. 25, 2015. |
Number | Date | Country | |
---|---|---|---|
20150049680 A1 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
61865462 | Aug 2013 | US |