This application pertains to an apparatus and a method of producing ultra-thin walled extruded polymer products using a polymer extruder.
Polymer extruders are used to produce polymer tubes and ducts and to coat circular, rectangular, stranded and coiled conductors (such as electrical wires, ribbons, cables and coils) with polymer material. As used herein, the term “biomedical wires” is used to refer to any such conductor adapted for implantation within a patient. Coated biomedical wires have a variety of applications within medical devices including electrical stimulation of tissue and biosensing applications.
A common type of extruder employed in manufacturing such extruded polymer products is a “⅜-inch single screw cross-head” extruder 300 shown in
By the time the polymer has traveled the length of the extruder barrel 320, it is completely melted. The molten polymer, i.e., polymer melt, is then forced through “breaker plate 345,” which is housed in the body of the adapter 346. Breaker plate 345 causes the polymer melt to flow in a linear direction as opposed to a helical direction.
Breaker plate 345 is a metal cylinder which provides five channels, for polymer melt flow, running along the length of the cylinder. For example, the breaker plate that is provided in a typical ⅜-inch extruder is approximately 0.377 inches in length and has an overall diameter of approximately 0.748 inches and provides five channels each having a diameter of approximately 0.110 inches. Accordingly, the overall cross-sectional area of the standard breaker plate is 0.439 square inches and the cross-sectional area provided for polymer flow is approximately 0.047 square inches (the sum of the cross-sectional area of all five channels). Accordingly, the ratio of the total cross-sectional area provided for polymer flow to the overall cross-sectional area of the breaker plate is 0.107.
Breaker plate 345 may also support a filter which is used to remove contaminants from the polymer melt. Typical filters used in polymer extrusion range from 100 to 400 mesh (100-400 lines per square inch).
The polymer melt, after flowing through the breaker plate 345 and filter exits the adapter and enters a crosshead assembly 350 where it is forced through an extruder die 360. The polymer melt emerging from the extruder die 360 is referred to as an extrudate. The shape of the extrudate immediately leaving the extruder die 360 is not the final shape. For example, in wire coating, a wire 318 travels along a wire path through the crosshead assembly where it comes into contact with the polymer melt which coats the wire. Upon emerging from extruder die 360, the walls of the polymer coating rather than being uniformly concentric and parallel forms a cone around the wire. This phenomena is partially attributed to extrudate swell. As the wire is further drawn away from the extruder die 360, the coating walls become uniformly parallel under ideal conditions.
Reference is also made to U.S. Pat. No. 6,814,803 which discloses an extruder having a unitary crossbody head.
An ultra-thin coating (e.g., less than 50.8 microns in wall thickness) is frequently necessary in biomedical implants, where wires with diameters as small as 25.4 microns (0.001 inch) are used and must substantially retain their inherent flexibility and small diameters. Complete coverage of the wire with polymer is necessary to prevent unintended contact between the bare conductor and body fluids and tissue. When attempts to place ultra-thin coatings on such wires have been made, the resulting coating is often incomplete or covered with “pinholes.”
U.S. Pat. No. 6,814,557 discloses a system in which imaging and/or video equipment is utilized to ensure uniform coating about the medical wires. Although the '557 patent provides a significant improvement over conventional extruders, there are some limitations remaining. For example, opaque extrusion material prevents the imaging functionality of the '557 patent from permitting the operator from discerning whether the extrudate is actually uniformly coating the wire during operation of the extruder. The '557 patent is hereby incorporated herein by reference.
In one embodiment, a method of operating an extruder to coat biomedical wires with insulative material, comprises: feeding a length of biomedical wire through a tip of the extruder; providing extrudate, concurrently with the feeding, through an extruder die of the extruder, wherein the tip is adjustable relative to the extruder die; measuring a back pressure of extrudate behind the tip and extruder die multiple times for multiple locations of the tip relative to the extruder die; selecting a position for the tip relative to the extruder die in relation to a maximum back pressure value determined, in part, by the measuring.
The foregoing has outlined rather broadly certain features and/or technical advantages in order that the detailed description that follows may be better understood. Additional features and/or advantages will be described hereinafter which form the subject of the claims. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the appended claims. The novel features, both as to organization and method of operation, together with further objects and advantages will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the appended claims.
An extruder system for providing thin coatings to biomedical wires is shown as system 10 in
The amount of heat output may be controlled by several methods. In one method, a uniform and steady electric current of approximately 5-20 amps, preferably 10-13 amps, is passed through heating element 13 by an electrical source causing heating element 13 to heat the extrudate emerging from the die. The electric current may be regulated by a feedback controller. Another method of controlling the heating of the extrudate swell is through regulated temperature control. A thermocouple 200 (
In
In
As shown in
The increased cross-sectional area provided by breaker plate 200 minimizes polymer melt flow resistance and corresponding die pressure. Also, the increased flow area reduces the residence time of the polymer melt in the extruder barrel. This reduction minimizes the thermal degradation of the polymer, thereby minimizing the formation of polymer melt contaminants such as gels and thermal polymer degradation products. In addition, the increased area also allows for use of finer filters for filtering out polymer melt contaminants. These contaminants promote pin-hole formation in ultra-thin extrusions. Filters larger than 3 microns, e.g., 100-400 mesh, have been found to be insufficient for ultra-thin wall extrusion.
Control system 501 includes a processor 502 and control software 503. Through its coupling to the extruder system, control system 501 is able to start and stop the operation of the extruder. Control system 501 is also capable of adjusting the relative positions of die 22 and tip 520 using one or more adjustment mechanisms 530. By adjusting the relative positions, control system 501 is able to control the uniformity of the coating applied to the biomedical wire. In one preferred embodiment, control system 501 automatically controls adjustment mechanisms 530 in response to back pressure measurements, e.g., either during a set-up process or in real time during coating of biomedical wire by the extruder system.
It has been discovered by the inventor that the back pressure measured by sensor 510 is highest when the coating of the wire is substantially uniform. Control system 501 uses this discovery to automatically control the operations of extruder.
In one embodiment, control system 510 may position tip 520 in a relatively nominal neutral position relative to die 22. Control system 510 may then vary the relative position of die 22 and tip 520 along a first axis (e.g., the “X” position) while holding the relative position along the other axis constant. Control system 510 may record back pressure measurements at various positions along the first axis. Control system 510 may then generate an interpolation or suitable polynomial fitting of the back pressure measurements along the first axis. From the interpolation or fitting, control system 510 then calculates a position along the first axis that is likely to generate a greatest back pressure measurement along the first axis. This process is then preferably repeated for the other axis. After completing the measurements and calculations for both axes, control system 510 has identified a two-dimensional relative location for die 22 relative to tip 520 which should provide a relative uniform coating during operation of the extruder. In another embodiment, the variation of relative positions, measurement of back pressure, and calculation of an optimal relative position may be performed in an iterative manner using the previously calculated optimal position as a starting point.
Some embodiments provide an efficient and automatic set-up process to permit the operation of an extruder system to provide uniform coating of biomedical wires. In certain other embodiments, the back pressure can be monitored during operation of the extruder to ensure that the uniform coating of the biomedical wire is continuing as expected. Although one particular process of back pressure measurements has been described, the present invention is not so limited. Any suitable sampling of measurements and/or subsequent calculations may occur to identify a location likely to provide a greatest amount of back pressure and, hence, a greatest amount of coating uniformity. Also, although the process is preferably automated, manual performance of the set-up procedure using back pressure measurements may be performed according to alternative embodiments.
Although certain representative embodiments and advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate when reading the present application, other processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the described embodiments may be utilized. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
This application claims the benefit of U.S. Provisional Application No. 61/101,382, filed Sep. 20, 2008, which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61101382 | Sep 2008 | US |