The present invention relates to systems and methods for precisely coating a substrate with highly viscous material.
Various types of systems and methods are known in the art for coating substrates.
The present invention seeks to provide an improved system and method for coating substrates with highly viscous material.
There is thus provided in accordance with a preferred embodiment of the present invention a method for coating of a donor material onto a laser radiation transparent substrate having a straight surface portion, the method including providing a layer thickness uniformizing blade pivotably mounted onto a linearly displaceable blade support about a pivot axis, the blade having a straight edge, initially positioning the linearly displaceable blade support relative to the laser radiation transparent substrate such that the straight edge lies coplanar with the straight surface portion of the laser radiation transparent substrate, wherein the straight surface portion lies along a blade engagement axis which is perpendicular to the pivot axis, thereafter locking the layer thickness uniformizing blade against pivotable movement relative to the linearly displaceable blade support about the pivot axis, thereafter repositioning the linearly displaceable blade support and the layer thickness uniformizing blade about a linear displacement axis which is perpendicular to the blade engagement axis and perpendicular to the pivot axis to a position at which the straight edge is separated from the straight surface portion of the laser radiation transparent substrate by a separation distance, which is uniform along the straight edge of the layer thickness uniformizing blade, applying the donor material to the laser radiation transparent substrate, providing mutual displacement between the layer thickness uniformizing blade and the laser radiation transparent substrate along an axis parallel to the pivot axis, thereby to reduce the thickness of the initial layer of the donor material and maintaining the separation distance.
Preferably, the method also includes sequentially repeating the repositioning and the providing mutual displacement steps at least once thereby to sequentially reduce the thickness of the donor material.
In accordance with a preferred embodiment of the present invention the providing mutual displacement includes reducing the thickness of the donor material to a thickness between 10 and 2000 microns.
In accordance with a preferred embodiment of the present invention the initially positioning the linearly displaceable blade support includes measuring a force exerted by the layer thickness uniformizing blade on the laser radiation transparent substrate. Additionally or alternatively, the initially positioning includes initially positioning the layer thickness uniformizing blade such that a portion of the straight edge of the blade touches the laser radiation transparent substrate, while the blade is free to pivot about the pivot axis. Additionally, the initially positioning further includes thereafter lowering the layer thickness uniformizing blade such that the straight edge lies in parallel touching engagement with the laser radiation transparent substrate, while the blade is free to pivot about the pivot axis. Preferably, the initially positioning further includes thereafter further lowering the layer thickness uniformizing blade until a measured three of the layer thickness uniformizing blade on the laser radiation transparent substrate is about 150 grams, while the straight edge of the layer thickness uniformizing blade lies in parallel touching engagement with the laser radiation transparent substrate and the layer thickness uniformizing blade remains free to pivot about the pivot axis.
In accordance with a preferred embodiment of the present invention the locking the layer thickness uniformizing blade against pivotable movement relative to the linearly displaceable blade support about the pivot axis is provided by operation of an electromagnet mounted onto the linearly displaceable blade support by attracting a locking arm, fixed to the layer thickness uniformizing blade.
Preferably, the repositioning takes place when the layer thickness uniformizing blade is not free to pivot about the pivot axis.
There is also provided in accordance with another preferred embodiment of the present invention a system for coating of a donor material onto a laser radiation transparent substrate, the system including a donor material applicator, applying donor material to the laser radiation transparent substrate, a multi-pass precise donor material thickness determiner for providing a desired thickness of the donor material on the laser radiation transparent substrate and including a linearly displaceable blade support, a layer thickness uniformizing blade lockably pivotably mounted onto the linearly displaceable blade support about a pivot axis, the blade having a straight edge and a blade position maintainer operative for maintaining the straight edge at a desired separation distance from the laser radiation transparent substrate, the separation distance being uniform along the straight edge of the layer thickness uniformizing blade.
In accordance with a preferred embodiment of the present invention the desired thickness of the donor material on the laser radiation transparent substrate is between 10 and 2000 microns.
In accordance with a preferred embodiment of the present invention the linearly displaceable blade support is linearly displaceable perpendicular to the pivot axis.
In accordance with a preferred embodiment of the present invention the linearly displaceable blade support also supports an electromagnet. Additionally, the electromagnet is selectable actuable for locking the layer thickness uniformizing blade relative to the linearly displaceable blade support against rotation of the layer thickness uniformizing blade about the pivot axis, when the straight edge of the layer thickness uniformizing blade is positioned at a desired separation distance from the laser radiation transparent substrate.
Preferably, the blade position maintainer includes a force sensor for sensing a force exerted by the layer thickness uniformizing blade on the laser radiation transparent substrate.
In accordance with a preferred embodiment of the present invention the multi-pass precise donor material thickness determiner also includes a linear displacer for linearly displacing the linearly displaceable blade support between sequential passes to sequentially reduce the thickness of the donor material until the desired thickness is reached.
The present invention will be understood and appreciated more fully from the following detailed description, taken in conjunction with the drawings in which:
Reference is now made to
As seen in
Preferably mounted on base assembly 110 is a Y-axis positioner 120, such as a Thorlabs NRT-100, which in turn supports a Y-Z adapter arm 130, typically formed of 6061 T6 aluminum plate.
Preferably mourned onto Y-Z adapter arm 130 is a precise Z-axis positioner 140, such as a Thorlabs MTS25-Z8-25 mm, which in turn supports a mounting bracket 150, typically formed of 6061 T6 aluminum plate. Mounting bracket 150 supports a layer thickness uniformizing blade positioning subsystem 160.
Reference is now additionally made to
Layer thickness uniformizing blade 170 is rotatably mounted, for rotation about an axis 175, onto a blade and electromagnet mounting bracket 180, described in greater detail hereinbelow with reference to
Blade and electromagnet mounting bracket 180 also supports an electromagnet 190, such as a Magnetech R-0515-12, which selectably lockably engages a locking arm 200, which is preferably formed of ferromagnetic sheet steel, such as 1020-1030. Locking arm 200 is selectably fixed, as by fasteners, not shown, onto layer thickness uniformizing blade assembly 170, such that locking of locking arm 200 by magnetic engagement thereof by electromagnet 190, fixes the angular orientation of layer thickness uniformizing blade 170 about axis 175.
Blade and electromagnet mounting bracket 180 is mounted, as by fasteners, not shown, onto a force sensor 210, such as a VISHAY LPS Loadcell, which is in turn supported by mounting bracket 150.
Reference is now made to
Blade front surface 306 terminates upwardly at a crosswise protrusion 310 above which are located locking arm mounting surfaces including an attachment surface 312, including threaded locking mounting arm fastener attachment apertures 314 and a recessed locking arm engagement surface 316. Surfaces 312 and 316 terminate at a blade top surface 320, which is preferably perpendicular thereto and to surface 300.
Reference is now made to
Raised edge surface 360 terminates in a second end surface 362, which extends, generally perpendicular to top surface 350 to an inclined surface 364, which, in turn terminates in an intermediate bottom surface 366, which is generally parallel to top surface 350. Bottom surface 366 terminates in a third end surface 367, which, in turn, terminates in an inclined surface 368. Inclined surface 368 terminates in a bottom surface 390, which is parallel to top surface 350. Bottom surface 390 terminates in an inclined surface 392, which terminates in first end surface 352. Blade and electromagnetic mounting bracket 180 is formed with a generally flat front surface 394, seen best in
Blade and electromagnetic mounting bracket 180 is formed with a throughgoing bearing receiving bore 400, having an inwardly directed rim 402 at front surface 394, and being configured for receiving and retaining therein bearings 184. Blade and electromagnetic mounting bracket 180 is also formed with a throughgoing electromagnet receiving bore 410, and being configured for receiving electromagnet 190.
A slit 420 extends between bore 410 and top surface 350. Slit 420 enables clamping electromagnet 190 within bore 410 by tightening the bore via tightening screws, not shown, which engage threaded apertures 422 on opposite sides of slit 420.
A recess 430 extends between bores 400 and 410 and is formed with a threaded aperture 432. A recess 440 is located alongside bore 410 and is formed with an aperture 442. Recesses 430 and 440 and corresponding apertures 432 and 442 are provided for receiving bearing retaining screws, not shown, which retain bearings 184 in place in bore 400 of blade and electromagnetic mounting bracket 180.
Reference is now made to
Reference is now made to
Reference is now made to
As seen in
It is appreciated that the separation distances between blade engagement edge 308 and substrate 114 described above, which reduce the thickness of the donor material 510 on substrate 114 to the desired final thickness, are uniform along the entire blade engagement edge 308. As described above, the separation distance varies as blade 170 is lowered relative to substrate 114. By decreasing the separation distance, the thickness of donor material 510 is preferably reduced to a final thickness, preferably between 10 and 2000 microns, defined by the final separation distance.
It will be appreciated by persons skilled in the art that the present invention is not limited to what has been specifically described and shown herein but also includes combinations and sub-combinations of features described herein and modifications thereof which are not in the prior art.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IL2020/050015 | 1/6/2020 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62791814 | Jan 2019 | US |