1. Technical Field
The present invention relates generally to the field of radar systems, and more particularly, but not exclusively, to a system and method for combining Displaced Phase Center Antenna (DPCA) and Space-Time Adaptive Processing (STAP) techniques in order to enhance clutter suppression and target detection in radar systems located on moving platforms.
2. Description of Related Art
Moving Target Indication (MTI) radar systems are used to reject signals received from fixed objects (“clutter”), and enhance the detection of signals received from valid, moving targets. Typically, coherent MTI systems use the Doppler shift effect of moving targets to distinguish them from the fixed objects or clutter. Essentially, clutter is a collective term referring to those objects that are not valid targets and cause unwanted radar reflections to mix with target reflections. Examples of clutter are non-moving objects on land surfaces and/or sea surfaces, such as buildings, trees, ocean waves, clouds, rain, etc. As such, clutter is a form of radar interference that hinders the identification of valid, moving targets.
Numerous techniques exist for the suppression of clutter by stationary, ground-based radars, where the primary clutter return signals are reflections from fixed objects. However, with moving radar platforms (e.g., ship-based radar, airborne radar, space-based radar), the suppression of clutter is a relatively difficult problem, because the clutter also appears to be moving due to the movement of the radar platform. Consequently, the detection of valid, moving targets within a moving clutter environment is a significant technical problem that exists. Thus, it would be advantageous to have an improved radar system and method that can detect valid targets within a moving clutter environment. The present invention provides such an improved radar system and method.
The present invention provides a system and method for enhancing the suppression of clutter and target detection in a radar system located on a moving platform. In a preferred embodiment of the invention, a radar system including an MTI subsystem is located on a moving platform (e.g., ship-based, airborne or space-based radar system) with a DPCA processing unit located nearer to the front end of the radar receiver, and a STAP processing unit located nearer to the back end of the onboard processing subsystem. The DPCA processing unit provides gross cancellation and suppression of the received clutter signals, and the STAP processing unit provides fine tuning for the clutter suppression process. In other words, the front end DPCA processing unit removes most of the rapidly varying clutter, which gives the back end STAP processing unit a more benign clutter environment to process. As such, using a DPCA processing unit or stage on a space-based radar platform improves system performance, because the space-based platform is relatively stable and not subject to air turbulence or wave motion. Also, using a DPCA processing unit or stage provides independence from clutter statistics, which is important because relatively little empirical clutter data is available from space-based radar platforms. Using a STAP processing unit or stage for clutter suppression on the space-based radar platform provides fine tuning of the suppression process.
The novel features believed characteristic of the invention are set forth in the appended claims. The invention itself, however, as well as a preferred mode of use, further objectives and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:
Referring now to the figures,
Preferably, for this embodiment, radar system 102 includes a phased-array antenna subsystem that can generate an electronically-shaped and electronically-steerable antenna radiation pattern 104. As shown, radiation pattern 104 depicts a principal lobe of the antenna pattern, which is directed towards a moving target (e.g., aircraft) 112. Also, certain secondary lobes of antenna pattern 104 are shown directed, for example, towards land-based clutter 108 and sea-based clutter 110. For this embodiment, the electronically-steerable antenna subsystem can be a phased-array, but it can also include any appropriate antenna structure that can be divided into at least two antenna segments (e.g., typically sharing antenna elements) or one antenna with a plurality of phase centers, which can be used for DPCA processing.
For this exemplary embodiment, radar system 200 includes an electronically steerable antenna subsystem 202, with a plurality of antenna elements 204a-204n. For example, antenna subsystem 202 can be a phased array antenna subsystem, or an adaptive array antenna subsystem. Preferably, antenna subsystem 202 is any appropriate antenna structure that can be divided into at least two antenna segments (e.g., typically sharing antenna elements) or one antenna with a plurality of phase centers, which can be used for DPCA processing.
A beam steering controller 206 is connected to electronically steerable antenna subsystem 202 for directing the radiation pattern of antenna elements 204a-204n. An exciter/transmitter stage 210 is connected to a circulator 208, which couples the transmission pulses generated by exciter/transmitter stage 210 to antenna subsystem 202 and antenna elements 204a-204n. Circulator 208 is also connected to a receiver stage 212 and couples received signals from antenna elements 204a-204n through antenna subsystem 202 to receiver stage 212. Receiver stage 212 is connected to a programmable onboard processing subsystem 214, so that the raw data in the receiver stage 212 is coupled to programmable onboard processing subsystem 214.
Programmable onboard processing subsystem 214 is connected to an onboard processing configurator stage 220 and a communication subsystem 226. System health and status data, and mode or context control data, are coupled from/to programmable onboard processing subsystem 214 to/from onboard processing configurator stage 220, respectively. Processed data and target report data are coupled from programmable onboard processing subsystem 214 to communication subsystem 226, which enables communications between programmable onboard processing subsystem 214 and a ground station (not shown) via an uplink/downlink antenna.
A real-time waveform designer stage 218 is connected to onboard processing configurator stage 220, beam steering controller stage 206, exciter/transmitter stage 210, receiver stage 212, and a spacecraft attitude determination and control stage 216. As such, the real-time waveform designer stage couples waveform design parameters and synchronization signals between stages 220, 206, 210, 212 and 216. A radar event scheduler/time line generator stage 222 is connected to real-time waveform designer stage 218, programmable onboard processing subsystem 214, spacecraft attitude determination and control stage 216, spacecraft guidance navigation and control stage 224, and communication subsystem 226. Thus, the data coupled from control stages 216, 224 and subsystems 214 and 226 to real-time waveform designer stage 218 are used to generate timing and synchronization information for the radar system 200 and its space-based platform. Spacecraft attitude and position are coupled to the beam steering controller stage 206 to point the beam at the desired location on the earth. In this manner, the attitude, direction and velocity of the space-based platform can be considered and synchronized with the timing of the radar system's transmitter and receiver stages.
MTI processing system 300 includes an Analog-to-Digital (A/D) converter unit 302 coupled to the back end of a suitable receiver stage. Thus, for this example, analog signals (e.g., targets, clutter, etc.) input from the receiver's front end (e.g., coupled from circulator 208 in
A/D converter 302 is connected to a DPCA processing unit 304. Alternatively, for example, DPCA processing unit 304 could be implemented before the A/D converter 302 (e.g., in the antenna manifold). For this exemplary embodiment, the primary purpose of DPCA processing unit 304 is to provide gross cancellation and suppression of received clutter signals. For illustrative purposes, refer now to
DPCA antenna structure 400 can be located on a single platform and include a plurality of identical antennas (e.g., two identical antennas having shared antenna elements) 402, 404 with separate forward and aft phase centers 406, 408, respectively. Alternatively, DPCA antenna structure 400 can include one antenna with a plurality of phase centers 406, 408. At an appropriate time (e.g., determined by the velocity of the platform for radar system 200 in
As such, in accordance with the present invention, a DPCA processing technique is used to subtract the radar return signals received in response to two transmissions, which cancels most of the rapidly-varying clutter signals received. This technique effectively cancels out the motion of the platform and, therefore, makes the onboard radar sensor appear to be stationary. In other words, subtracting the radar returns from the two transmissions cancels a large part of the stationary clutter (e.g., mountains, buildings, etc.) and ideally leaves only moving targets of interest for further processing. However, although this DPCA processing technique mitigates the clutter returns from stationary objects, some residual clutter can remain (e.g., return signals due to tree branches and leaves blowing in the wind, ocean wave motion, etc.). As a practical matter, performance of the DPCA technique is primarily a function of: (1) how well the two antenna segments are matched; (2) the preciseness of the timing of the transmission of the second pulse; and (3) the location of the aft phase center 408 relative to the location of the forward phase center 406 when the respective transmissions and receptions occur.
Returning to
Returning to
In this regard, processing units 602 and 604 can perform Doppler filtering and processing for 256 pulses, each range gate (e.g., 71,983 range gates), each beam (e.g., 4 beams), and each sub-band (e.g., 1 sub-band) involved. The output of processing unit 604 (e.g., and Doppler processing unit 308) can include, for example, 256 Dopplers for 71,993 range gates, 4 beams, and 1 sub-band. The Doppler processing and filtering can be performed twice on staggered sets of received pulses to generate an output with additional temporal degrees of freedom to support post-Doppler STAP processing. At this point, it should be understood that the present invention is not intended to be limited to the above-described staggered implementation and can also include other implementations such as, for example, beam-staggered STAP implementations and element-staggered implementations.
Each 1 by N vector from vector multiplication processing unit 704 is applied to the input of an N-point Inverse FFT (IFFT) processing unit 706, which performs an IFFT function on the data from the M by N matrix. In this manner, for this example, processing units 702, 704 and 706 perform a frequency domain convolution on the input pulses (e.g., pulses from 89,991 range gates). For example, this processing can be performed as one large FFT, or more practically, with a number of smaller FFTs using overlap-add or overlap-save techniques. Preferably, the input pulses are uncompressed LFM Chirp waveform length TBD range gates. As such, a linear convolution may be performed on this data in the time domain or the frequency domain. For this example, processing units 702, 704 and 706 perform frequency domain convolution (e.g., forward FFT performed by processing unit 702, element-by-element vector multiplication performed by processing unit 704, and inverse FFT performed by processing unit 706). The output of the overall convolution process is provided in an M by N matrix at the output of N-point IFFT processing unit 706. As such, an “overlap save” function can be performed if the FFT size either cannot handle all ranges or is inefficient in a single execution. Preferably, for this embodiment, for frequency domain convolution, the uncompressed waveform matched-filter weights and/or the frequency domain representation (transformation) are pre-computed.
The M by N matrix created by processing unit 706 is applied to a select/truncate processing unit 708, which performs a truncation. Thus, as a result, the output of select/truncate processing unit 708 can provide 71,993 ranges, and thus pulse compression processing is provided by processing units 702, 704, 706 and 708 (e.g., by pulse compression processing unit 310 in
Returning to
Essentially, in spatial adaptive processing, energy arriving at the antenna elements at different times and phases is used to determine the direction from which unwanted or undesired signals are arriving. The environment is sampled. The sampled data are used to create a training matrix. The training matrix is inverted and solved against desired steering vectors to generate adaptive weights which, when applied to the incoming signals, maximize sensitivity to signals in the desired directions, while nulling out or canceling unwanted or undesired signals. This spatial adaptation technique can be extended to STAP processing by forming a covariance (training) matrix across the input antenna elements (spatial diversity) and the radar pulses (temporal diversity), and then solving for adaptive weights. Adding a temporal aspect allows the STAP technique to be used for clutter cancellation as well as jammer nulling. As such, DPCA processing may be considered a degenerate form of STAP with only two degrees of freedom.
As such, as a result of the processing performed by processing units 802, 804 and 806 in
Thus, in accordance with the present invention, the STAP beam-forming processing unit 312 can compute the power for each beam, whereby the beam nearest the center of the clutter is used to select 500 samples to form the sample matrix and for computing the adaptive weights (e.g., the selection of the 500 samples can be performed by the Doppler processing unit 308 in
Returning to
In operation, for this exemplary embodiment, the input to the CFAR processing function 900A is a real sequence formed from the magnitude of the returns for each range cell. For each range cell of interest, a window of N cells is formed around the cell of interest, and the average energy of the returns in the window (excluding the cell of interest and one or more “guard cells” on either side of the cell of interest is computed. This average is used to establish a local threshold which will be used to declare the presence or absence of a target when compared with the magnitude of the return in the cell of interest. The threshold is set to maximize the Probability of Detection (PD) and minimize the Probability of False Alarm (PFA), while attempting to avoid the making of a decisional error, such as, for example, declaring no target when a target is actually present, or declaring a target when none is present. The “window” can be slid from cell to cell, or through the entire sequence of range cells. However, care must be taken when dealing with range cells on the extremes, because the window from which the samples are taken is not symmetric.
As such, a number of techniques may be used to compute the average and use the threshold. For example, the average can be computed from scratch each time. Also, a more computationally efficient approach realizes that, for the next movement of the window, most of the “sum” already exists. Adding the contributions from the leading edge of the window and the left-most guard cell from the previous window, and subtracting the contributions from the trailing edge of the window and the right-most guard cell from the previous window, is all that is needed to create the new sum. It is also possible to perform this summation as a sliding matrix multiplication of the input cells with a . . . 111110000011111 . . . mask.
In accordance with the present invention, the output of CFAR processing unit 900A in
In operation, CFAR processing unit 900B can perform a 2-dimensional CFAR function. A sliding window cell-averaging algorithm can be used for sizing purposes. A primary difference between the 2-dimensional CFAR in
It is important to note that while the present invention has been described in the context of a fully functioning radar processing system, those of ordinary skill in the art will appreciate that the processes of the present invention are capable of being distributed in the form of a computer readable medium of instructions and a variety of forms and that the present invention applies equally regardless of the particular type of signal bearing media actually used to carry out the distribution. Examples of computer readable media include recordable-type media, such as a floppy disk, a hard disk drive, a RAM, CD-ROMs, DVD-ROMs, and transmission-type media, such as digital and analog communications links, wired or wireless communications links using transmission forms, such as, for example, radio frequency and light wave transmissions. The computer readable media may take the form of coded formats that are decoded for actual use in a particular radar processing system.
The description of the present invention has been presented for purposes of illustration and description, and is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art. The embodiment was chosen and described in order to best explain the principles of the invention, the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.