The present invention relates generally to gaming machines, and, more particularly, to a circuit board having low-power circuitry and high-power circuitry for controlling the operation of a gaming machine.
Gaming machines, such as slot machines, video poker machines, and the like, have been a cornerstone of the gaming industry for several years. The electronics of a gaming machine typically include a backplane which provides connectors for connection to various devices of the gaming machine, a logic circuit board which includes a central processing unit, memory, and other logic circuitry, and an I/O circuit board which includes communications and power interfaces to devices of the gaming machine. In one arrangement, the logic circuit board and the I/O circuit board are “piggybacked” to the backplane via separate connectors, and are thus disposed parallel to one another. However, the communications interfaces of the I/O circuit board may also include logic circuitry, so the connector connecting the I/O circuit board to the backplane may carry both low-power digital signals and high-power analog signals. The mixing of digital and high-power signals may cause undesirable crosstalk.
To mitigate crosstalk, the digital and high-power signals from the I/O circuit board are connected to pins on the connector such that a digital signal and a high-power signal are not presented to consecutive pins of the connector. This arrangement imposes design challenges as it is often convenient and intuitive to provide digital and high power signals to consecutive pins on the connector.
In addition, the piggybacking of the logic circuit board and the I/O circuit board may create an undesired electromagnetic coupling between the two boards, which can adversely affect signal integrity as the high-current traces create EM fields that radiate away from the I/O circuit board. Moreover, the backplane is connected to the logic circuit board and the I/O circuit board in a perpendicular relationship, further potentially causing undesired electromagnetic coupling between the backplane and the logic circuit board and the I/O circuit board.
A solution is needed, therefore, to address the foregoing disadvantages.
A gaming control system for use in a gaming machine includes low-power, logic components and high-power components disposed on a gaming control board. The logic components include a CPU which is adapted to execute instructions for randomly selecting a plurality of game outcomes in response to wagers inputted by a player. The high-power components interface the gaming control board with high-power devices of the gaming machine. Examples of high-power devices include lamps, a payoff mechanism, a currency validator, and a power supply.
According to one aspect of the present invention, the gaming control board includes a first connector that carries low-power signals between the logic components on the gaming control board and an interface board coupled thereto, and a second connector that carries high-power signals between the high-power components on the gaming control board and the high-power devices of the gaming machine. Preferably, the high-power components on the gaming control board are located near the second connector for optimal EMI suppression.
According to a specific aspect of the present invention, the interface board and the gaming control board are positioned in a generally coplanar arrangement with respect to each other to reduce undesired electromagnetic coupling between the gaming control board and the interface board.
According to another specific aspect of the present invention, a housing encloses the gaming control board to shield against the undesired effects of electromagnetic interference.
The above summary of the present invention is not intended to represent each embodiment, or every aspect, of the present invention. This is the purpose of the figures and the detailed description which follow.
The foregoing and other advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings.
While the invention is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
A backplane 32 interfaces the devices of the gaming machine including the host 20, the network 22, the money/credit detector 24, the payoff mechanism 26, and the lamps 28 with the communications interface components 16 and the power interface components 18. The devices are connected to the backplane 32 via one or more wiring harnesses, and the backplane 32 is connected to the communications interface components 16 and the power interface components 18 via one or more connectors.
A first connector 52 and a second connector 54 are disposed on the gaming control board 40. The first connector 52 is adapted to mate with a first game interface board connector 56 on a game interface board 60. The second connector 54 is adapted to mate with a second game interface board connector 58 on the game interface board 60. The first connector 52 and the first game interface board connector 56 are complements of each other. For example, the first connector 52 may be a male-type connector and the first game interface board connector 56 may be a female-type connector, or vice versa. Likewise, the second connector 54 and the second game interface board connector 58 are complements of each other. For example, the second connector 54 may be a female-type connector and the second game interface board connector 58 may be a male-type connector, or vice versa.
The first connector 52 is coupled to the digital logic components 46 which carry low-power signals on line 62 to the first game interface board connector 56 when the first connector 52 and the first game interface board connector 56 are connected together. The low-power signals on line 62 include low-power I/O signals such as digital or TTL-level signals or low-power analog signals. The second connector 54 is coupled to the power interface components 50 which carry high-power signals on line 64 to the second game interface board connector 58 when the second s connector 54 and the second game interface board connector 58 are connected together. The high-power signals on line 64 include power-supply signals from a power supply 66 and driver signals which carry electrical power to high-power devices of the gaming machine 10 such as lamps.
The first game interface board connector 56 and the second game interface board connector 58 are disposed on the game interface board 60 to engage and mate with the first connector 52 and second connector 54 of the gaming control board 40 when the gaming control board 40 and the game interface board 60 are connected together. In one embodiment, the connectors 52, 54, 56, 58 are zero-insertion force (ZIF) connectors, and may be locked together with a locking actuator, for example. In another embodiment, a force must be applied to mate connectors 52, 54 to connectors 56, 58, respectively.
In a specific embodiment, the first connector 52 and the first game interface board connector 56 are of a 160-pin, D-sub type, and the second connector 54 and the second game interface board connector 58 are of a 37-pin, D-sub type. As noted above, the low-power I/O signals on line 62 are coupled to the game interface board 60 through the first connector 52 and the first game interface board connector 56. Because of the low-current carrying capacity of these signals, the pins on the connectors 52, 56 may be close together, with relatively little electrical isolation between pins. As a result, the connectors 52, 56 may include substantially more pins than the connectors 54, 58. The high-power signals on line 64 demand greater electrical isolation to prevent electromagnetic coupling between adjacent signals, and therefore, the connectors 54, 58 are not as densely packed with pins as the connectors 52, 56. In a specific embodiment, the ratio of the number of pins on the connectors 52, 56 to the number of pins on the connectors 54, 58 is at least three-to-one, and the spacing between pins of the connectors 54, 58 is about 0.120 inches, and the spacing between pins of the connectors 52, 56 is about 0.040 inches.
The gaming control board 40 may also include one or more other connectors, such as, for example, a serial port connector, a parallel port connector, a USB connector, a video display connector, or a CompactFlash card connector.
Still referring to
In one embodiment, the system memory 44 includes a separate read-only memory (ROM) and battery-backed or nonvolatile random-access memory (RAM). However, it will be appreciated that the system memory 44 may be implemented on any of several alternate types of memory structures or may be implemented on a single memory structure.
The digital logic components 46 may include any combination of the following: a video controller, a host controller, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or any other suitable transistor-transistor logic (TTL) components. The CPU 42 and memory 44 are also digital logic components.
The communications interface components 48 may include a Universal Asynchronous Receiver-Transmitter (UART) integrated circuit and/or a Universal Serial Bus (USB) controller for providing a communications interface with other devices or systems.
The power interface components 50 may include driver circuitry, such as lamp driver circuitry for driving the lamps of the gaming machine 10, motor driver circuitry for driving various motors in the gaming machine 10, and power supply components for converting voltages from the power supply 30 to appropriate levels. These power interface components 50 are preferably disposed proximate the second connector 54 to reduce the effects of undesired electromagnetic coupling generated by the high current levels. The coplanar arrangement of the gaming control board 40 and the game interface board 60 also advantageously reduces the effects of noise that might be coupled from the high-current carrying traces and components.
The gaming control board 40 is mounted on standoffs and enclosed in a housing 78. The housing 78 protects the gaming control board 40 from the effects of electromagnetic interference (EMI) and is made of an EMI-shielded material, such as metal or metal particle-coated plastic.
In one embodiment, the gaming machine 10 operates as follows. The money/credit detector 72 signals the CPU 42 when a player has inserted money or played a number of credits. The money may be provided by coins, bills, tickets, coupons, cards, etc. Then, the CPU 42 operates to execute a game program that causes the display 80 to display simulated symbol-bearing reels. The player may select a number of pay lines to play, an amount to wager, and start game play via a touch screen 90 or push-buttons 92, causing the CPU 42 to set the reels in motion, randomly select a game outcome or a plurality of game outcomes, and then stop the reels to display symbols corresponding to the pre-selected game outcome. In one embodiment, one of the basic game outcomes triggers a bonus feature.
The system memory 44 stores control software, operational instructions and data associated with the gaming machine 10. A payoff mechanism 100 is operable in response to instructions from the CPU 42 to award a payoff to the player in response to certain winning outcomes that might occur in the basic game or the bonus feature. The payoff may be provided in the form of coins, bills, tickets, coupons, cards, etc. The payoff amounts are determined by one or more pay tables stored in the system memory 44.
The housing 78 includes a rear interchangeable panel 130 which includes connector slots dimensioned to receive respective interface connectors on the gaming control board 40. In the embodiment illustrated in
The rear interchangeable panel 130 is removable to facilitate insertion and removal of the gaming control board 40 for repairs, upgrades, and the like. In this embodiment, the rear interchangeable panel 130 may be replaced with another rear interchangeable panel having a different configuration of connector slots in order to accommodate a gaming control board having a different arrangement of interface connectors. In another embodiment, the rear interchangeable panel 130 is not removable. In still another embodiment, one or more panels of the housing 78 may include a pattern of air holes 142 to facilitate the circulation of air across the gaming control board 40.
The operating lever 154 shown in
The housing 78 includes at least one locating guide 162 disposed on the panel facing the mounting plate 150. In the illustrated embodiment, the locating guide 162 is an aperture formed in desired locations on the panel of the housing 78 facing the mounting plate 150. The mounting plate 150 includes at least one pre-attachment registration mechanism 164. In the illustrated embodiment, the pre-attachment registration mechanism 164 is a shear-formed mounting hook formed along the surface of the mounting plate 150. The locating guide 162 and pre-attachment registration mechanism 164 permit registration of the gaming control board assembly 148 and the game interface board 60 so that both are in the proper alignment before they are urged together.
In other embodiments, the locating guide 162 may be a shear-formed mounting hook and the pre-attachment registration mechanism 164 may be an aperture, or the locating guide 162 or pre-attachment registration mechanism 164 may be a rail, groove, channel, or the like formed so as to align the gaming control board assembly 148 and the game interface board 60 in the pre-attachment position. A positioning guide 166 attached to the mounting plate 150 is bent slightly outwards from the plane of the mounting plate 150 to help guide the gaming control board assembly 148 into the pre-attachment position. A user positions the gaming control board assembly 148 against the positioning guide 166 and “slides” the gaming control board assembly 148 along the positioning guide 166 until the locating guides 162 and pre-attachment registration mechanism 164 are aligned with each other. Other positioning tabs may be formed to further assist the user in registering the gaming control board assembly 148 with the game interface board 60.
The door 124 of the housing 78 includes a security tab 168 (also shown in
The operation of the operating lever 154 between an undocked position and a docked position will be discussed next with reference to
When the operating lever 154 is urged from the undocked position towards the docked position in the direction of arrow B, the first engaging member 170 and the second engaging member 174 engage the front panel 114 of the housing 78 and urge the housing 78 towards the game interface board 60. Additionally, the connecting member 160 is urged in the direction of arrow C and rotation of the first latching member 156 and the second latching member 158 about their respective pivot points 178, 180 is achieved. Preferably, the direction of arrow B is the same as the direction required to interconnect the gaming control board assembly 148 and the game interface board 60.
In
When the operating lever 154 is urged in the direction of arrow D, the first disengaging member 172 and the second disengaging member 176 engage the front panel 114 of the housing 78 and urge the housing 78 away from the game interface board 60. The connecting member 160 is urged in the direction of arrow E and rotation of the first latching member 156 and the second latching member 158 about their respective pivot points 178, 180 is achieved. The spring 182 provides feedback to the operator of the operating lever 154 once the frictional forces between the complementary connectors are overcome. In this respect, the operating lever 154 will “spring” upwards in the direction of arrow D as the connectors on the control board 40 and game interface board 60 are separated, thereby informing the operator that the gaming control board assembly 148 and the game interface board 60 are disengaged. The spring 182 also operates to inform the operator whether the operating lever 154 is in the docked position. For example, if the operator only partly urges the operating lever 154 towards the docked position and then releases the operating lever 154, the spring 182 will cause the operating lever 154 to be returned to the undocked position. The spring 182 may also provide tactile feedback to the operator that the operating lever 154 is in the properly docked position.
The door 124 can be locked such that the gaming control board assembly 148 cannot be removed until the door 124 is unlocked and the operating lever 154 is in the undocked position.
To secure the door 124 to the housing 78, the first and second door hinges 198 are inserted into the first and second door hook apertures 116, respectively, and the door 124 is rotated to cover the housing 78. When the operating lever 154 is in the locked position (shown in
First, the inner retention hook 194 engages a retention hook flange 206 shown in
Second, the outer retention hooks 196 engage outer retention hook apertures (not shown) formed on a side panel of the housing 78. These outer retention hooks 196 also secure the door 124 to the housing 78.
Third, the switch actuator flange 200 is urged in the direction of arrow A and actuates a toggle switch 208 which extends through the switch aperture 122 shown in
Fourth, the mounting plate 150 includes a docking plate 212 shown in
Fifth, as the door lock 190 is turned to the locked position, the door lock cam 202 also operates to secure the door 124 to the housing 78 as the portion of the door lock cam 202 facing the control board 40 swings under the door lock engaging guide 204.
When the door lock 190 is turned to the locked position, the door lock 190 is locked by turning the jam lock 192 to a locked position. The jam lock 192 includes a jam lock cam 216, which prevents the door lock cam 202 from being turned when both the door lock 190 and jam lock 192 are in the locked positions, and the jam lock cam 216 engages a jam lock engaging guide 218 which stops the rotation of the jam lock cam 216 once the jam lock 192 is in the locked position. Once the door 124 is locked via the door lock 190, the operating lever 154 cannot be engaged to separate the gaming control board assembly 148 from the game interface board 60.
Thus, when the door lock 190 and the jam lock 192 are in the locked position and the operating lever 154 is in the docked position, access to the gaming control board 40 is prevented. Note that while the foregoing discussion included a number of specific structures for securing the door 124 to the housing 78, it is expressly understood that fewer, additional, and/or other structures may be employed without departing from the scope of the present invention. For example, in other embodiments, only one door lock may be employed to lock the door in position; the inner retention hook 194 or outer retention hooks 196a,b may be eliminated; additional inner retention and outer retention hooks may be provided; the door 124 may slideably engage the housing 78 rather than hingedly engage the housing 78 as illustrated; the first and second docking hooks 214a,b may be eliminated; and so forth.
At step 304, the operator moves the operating lever 154 to a docked position. At step 306, the operator connects the door 124 to the housing 78 by inserting the first and second door hinges 198a,b into the first and second door hook apertures 116a,b, respectively. Step 306 may be performed before or after any of steps 300, 302, or 304. In an embodiment where the housing 78 does not include the door 124, step 306 is omitted.
In a preferred embodiment, the door 124 is locked to the housing 78 at step 308. In an embodiment where the door 124 does not lock, step 308 is omitted.
In the case of a retrofit, a new gaming control board is installed into the housing 78 at step 406. Again, it is understood that the new gaming control board can be installed into the housing within the gaming machine or outside the gaming machine. The gaming control board 40, for example, may be damaged or obsolete and require replacement. Alternatively, the gaming control board 40 may be replaced by a different gaming control board and a different rear interchangeable panel installed as explained above.
In the case of an upgrade, a logic component on the gaming control board 40 is replaced at step 408 to form an upgraded gaming control board. The replacement may be in the form of an upgrade to the logic component, such as reprogramming new instructions and/or data on the logic component, a different logic component, or a working logic component in the case where the logic component is damaged. At step 410, the upgraded gaming control board is installed into the housing 78. Again, the upgrade may occur either while the gaming control board 40 is inside or outside the gaming machine. In another embodiment, the door 124 of the housing 78 is removed or partially opened to expose the gaming control board 40, and the logic component on the gaming control board 40 is replaced without engaging the operating lever 154.
The gaming control board assembly 148 is registered with the mounting plate (step 412) and the operating lever 154 is moved to the docked position (step 414). At step 416, the door is optionally locked to the housing to create a secure environment for the retrofitted or upgraded gaming control board.
In a specific embodiment, the gaming control board 40 can be replaced without removing it from the housing 78 and without operating the lever 154. In this embodiment, the electrical connections between first connector 52 and first game interface board connector 56 and between the second connector 54 and second game interface board connector 58 are broken such that an open circuit is created between the gaming control board 40 and the game interface board 60. The electrical connections can be broken by, for example, cutting electrical traces leading from the first game interface board connector 56 and the second game interface board connector 58 on the game interface board 60, or by cutting exposed wire leads from the first game interface board connector 56 and the second game interface board connector 58 to create open circuits. Once all of the electrical connections between the gaming control board 40 and the game interface board 60 are broken, a replacement gaming control board (not shown) can be coupled to the game interface board 60 by re-establishing electrical connections between the first game interface board connector 56 and the second game interface board connector 58 and the appropriate electrical wires on the replacement gaming control board.
While the present invention has been described with reference to one or more particular embodiments, those skilled in the art will recognize that many changes may be made thereto without departing from the spirit and scope of the present invention. Each of these embodiments and obvious variations thereof is contemplated as falling within the spirit and scope of the claimed invention, which is set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4511950 | Bunner et al. | Apr 1985 | A |
4882555 | Wong | Nov 1989 | A |
4954949 | Rubin | Sep 1990 | A |
5721458 | Kearney et al. | Feb 1998 | A |
5788509 | Byers et al. | Aug 1998 | A |
5860648 | Petermeier et al. | Jan 1999 | A |
6017033 | Keller | Jan 2000 | A |
6128201 | Brown et al. | Oct 2000 | A |
6266253 | Kurrer et al. | Jul 2001 | B1 |
6269007 | Pongracz et al. | Jul 2001 | B1 |
6272005 | Jensen et al. | Aug 2001 | B1 |
6285563 | Nelson et al. | Sep 2001 | B1 |
6301104 | Hu | Oct 2001 | B1 |
6364769 | Weiss et al. | Apr 2002 | B1 |
6377471 | Chong et al. | Apr 2002 | B1 |
6394898 | Nagao et al. | May 2002 | B1 |
6465987 | Haas et al. | Oct 2002 | B1 |
6556450 | Rasmussen et al. | Apr 2003 | B1 |
6575833 | Stockdale | Jun 2003 | B1 |
6592457 | Frohm et al. | Jul 2003 | B1 |
6626687 | Homer et al. | Sep 2003 | B2 |
6699128 | Beadell et al. | Mar 2004 | B1 |
7047338 | Nguyen et al. | May 2006 | B1 |
20010053712 | Yoseloff et al. | Dec 2001 | A1 |
20030014757 | Craven et al. | Jan 2003 | A1 |
20030064815 | Burnside et al. | Apr 2003 | A1 |
20030069074 | Jackson | Apr 2003 | A1 |
20030130913 | Ehrman et al. | Jul 2003 | A1 |
20060123174 | Nguyen et al. | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
2 175 427 | Nov 1986 | GB |
2 326 505 | Dec 1998 | GB |
10094658 | Sep 1996 | JP |
2003225438 | Aug 2003 | JP |
2003225439 | Aug 2003 | JP |
2003225440 | Aug 2003 | JP |
2003250989 | Sep 2003 | JP |
2003251043 | Sep 2003 | JP |
WO 9727576 | Jul 1997 | WO |
9960498 | Nov 1999 | WO |
WO 9960498 | Nov 1999 | WO |
9965579 | Dec 1999 | WO |
WO 9965579 | Dec 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20030190962 A1 | Oct 2003 | US |