1. Field of the Invention
The present invention relates generally to orthopaedic implants and more particularly to orthopaedic implants that incorporate a portion of a radio telemetry system.
2. Related Art
Trauma products, such as intramedullary (IM) nails, pins, rods, screws, plates and staples, have been used for many years in the field of orthopaedics for the repair of broken bones. These devices function well in most instances, and fracture healing occurs more predictably than if no implant is used. In some instances, however, improper installation, implant failure, infection or other conditions, such as patient non-compliance with prescribed post-operative treatment, may contribute to compromised healing of the fracture, as well as increased risk to the health of the patient.
Health care professionals currently use non-invasive methods, such as x-rays, to examine fracture healing progress and assess condition of implanted devices. However, x-rays may be inadequate for accurate diagnoses. They are costly, and repeated x-rays may be detrimental to the patient's and health care workers' health. In some cases, non-unions of fractures may go clinically undetected until implant failure. Moreover, x-rays may not be used to adequately diagnose soft tissue conditions or stress on the implant. In some instances, invasive procedures are required to diagnose implant failure early enough that appropriate remedial measures may be implemented.
The trauma fixation implants currently available on the market are passive devices because their primary function is to support the patient's weight with an appropriate amount of stability whilst the surrounding fractured bone heals. Current methods of assessing the healing process, for example using radiography or patient testimonial do not provide physicians with sufficient information to adequately assess the progress of healing, particularly in the early stages of healing. X-ray images only show callus geometry and cannot access the mechanical properties of the consolidating bone. Therefore, it is impossible to quantify the load sharing between implant and bone during fracture healing from standard radiographs, CT, or MRI scans. Unfortunately, there is no in vivo data available quantifying the skeletal loads encountered during fracture healing as well as during different patient and physiotherapy activities. The clinician could use this information to counsel the patient on life-style changes or to prescribe therapeutic treatments if available. Continuous and accurate information from the implant during rehabilitation would help to optimize postoperative protocols for proper fracture healing and implant protection and add significant value in trauma therapy. Furthermore, improvements in security, geometry, and speed of fracture healing will lead to significant economic and social benefits. Therefore, an opportunity exists to augment the primary function of trauma implants to enhance the information available to clinicians.
Patient wellness before and after an intervention is paramount. Knowledge of the patient's condition can help the caregiver decide what form of treatment may be necessary given that the patient and caregiver are able to interact in an immediate fashion when necessary. Many times the caregiver does not know the status of a would-be or existing patient and, therefore, may only be able to provide information or incite after it was necessary. If given information earlier, the caregiver can act earlier. Further, the earlier information potentially allows a device to autonomously resolve issues or remotely perform the treatment based on a series of inputs.
Surgeons have historically found it difficult to assess the patient's bone healing status during follow up clinic visits. It would be beneficial if there was a device that allowed the health care provider and patient to monitor the healing cascade. Moreover, it would be beneficial if such a device could assist in developing custom care therapies and/or rehabilitation.
Wireless technology in devices such as pagers and hand-held instruments has long been exploited by the healthcare sector. However, skepticism of the risks associated with wireless power and communication systems has prevented widespread adoption, particularly in orthopaedic applications. Now, significant advances in microelectronics and performance have eroded many of these perceived risks to the point that wireless technology is a proven contender for high integrity medical systems. Today's medical devices face an increasingly demanding and competitive market. As performance targets within the sector continue to rise, new ways of increasing efficiency, productivity and usability are sought. Wireless technology allows for two-way communication or telemetry between implantable electronic devices and an external reader device and provides tangible and recognized benefits for medical products and is a key technology that few manufacturers are ignoring.
Currently, Radio Frequency (RF) telemetry and inductive coupling systems are the most commonly used methods for transmitting power and electronic data between the implant and the companion reader Implantable telemetric medical devices typically utilize radio-frequency energy to enable two way communications between the implant and an external reader system. Although data transmission ranges in excess of 30 m have been observed previously, energy coupling ranges are typically reduced to a couple of inches using wireless magnetic induction making these implants unsuitable for commercial application. Power coupling issues can be minimized using a self-contained lithium battery, which are typically used in active implantable devices such as pacemakers, insulin pumps, neurostimulators and cochlea implants. However, a re-implantation procedure must be performed when the battery is exhausted, and a patient obviously would prefer not to undergo such a procedure if possible.
Some telemetric systems include electronics and/or an antenna. In general, these items must be hermetically sealed to a high standard because many electronic components contain toxic compounds, some electronic components need to be protected from moisture, and ferrite components, such as the antenna, may be corroded by bodily fluids, potentially leading to local toxicity issues. Many polymers are sufficiently biocompatible for long-term implantation but are not sufficiently impermeable and cannot be used as encapsulants or sealing agents. In general, metals, glasses, and some ceramics are impermeable over long timescales and may be better suited for use in encapsulating implant components in some instances.
Additionally, surgeons have found it difficult to manage patient information. It would be beneficial if there was available a storage device that stored patient information, such as entire medical history files, fracture specifics, surgery performed, X-ray images, implant information, including manufacturer, size, material, etc. Further, it would be beneficial if such storage device could store comments/notes from a health care provider regarding patient check-ups and treatments given.
According to some aspects of the present invention there may be provided a system for communicating patient information. The system may include a medical implant, the medical implant has a first cavity and a second cavity, the first and second cavity connected by one or more apertures, the first cavity is adapted to receive on-board electronics, the on-board electronics comprising at least one sensor, a microprocessor, and a data transmitter, and the second cavity is adapted to receive an implant antenna; a signal generator adapted to generate a first signal; an amplifier electrically connected to the signal generator; at least one coil electrically connected to the amplifier; a receiver adapted to receive a data packet having data from the implant antenna; and a processor connected to the receiver; wherein the signal generator generates the first signal, the amplifier amplifies the first signal, the at least one coil transmits the amplified signal, the implant antenna receives the first signal and transmits a data packet containing data, the receiver receives the data packet, and the processor either processes the data or sends the data to a data storage device.
According to some embodiments, the processor is selected from the group consisting of a desktop computer, a laptop computer, a personal data assistant, a mobile handheld device, and a dedicated device.
According to some embodiments, the receiver may be an antenna with an adapter for connection to the processor.
According to some embodiments, the on-board electronics may include a plurality of sensor assemblies and a multiplexer.
According to some embodiments, the at least one coil may be a transmission coil.
According to some embodiments, there are two coils, and the coils are housed within a paddle.
According to some embodiments, the system further includes a control unit, and wherein the signal generator and the amplifier are housed within the control unit.
According to some embodiments, the system further includes one or more components selected from the group consisting of a feedback indicator, a load scale, a portable storage device, a second processor.
According to some embodiments, the first signal has a frequency of about 125 kHz.
According to some embodiments, the first cavity and the second cavity are orthogonal to one another.
According to some embodiments, the first cavity and the second cavity are diametrically opposed.
According to some embodiments, at least one of the first cavity and the second cavity further includes a cover.
According to some embodiments, the on-board electronics comprise an LC circuit, a bridge rectifier, a storage capacitor, a wake up circuit, a microprocessor, an enable measurement switch, an amplifier, a Wheatstone bridge assembly, and a modulation switch.
According to some embodiments, the microprocessor may include an analog to digital converter.
According to some embodiments, the modulation switch may modulate a load signal. According to some embodiments, the load signal may be modulated at a frequency between 5 kHz and 6 kHz.
The invention includes a system having a telemetric implant. The telemetric implant is capable of receiving power wirelessly from an external reader at a distance using sophisticated digital electronics, on board software, and radio frequency signal filtering. The implant may be equipped with at least one sensor, interface circuitry, micro-controller, wakeup circuit, high powered transistors, printed circuit board, data transmitter and power receive coil with software algorithm, all of which may be embedded in machined cavities located on the implant. The telemetry system may use a coiled ferrite antenna housed and protected inside the metallic body of the implant using a metal encapsulation technique suitable for long term implantation. The use of digital electronics and a high permeable material located inside a metallic cavity compensates for the effect of severely shielding a power coil from the externally applied magnetic power field. The digital electronics enables multiplexing to read multiple sensors. The electronics module does not require the reader to be positioned within a pre-defined “sweet spot” over the implant in order to achieve a stable reading relating to sensed data minimizing the potential to collect erroneous measurements.
Further areas of applicability of the invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the particular embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The accompanying drawings, which are incorporated in and form a part of the specification, illustrate the embodiments of the present invention and together with the written description serve to explain the principles, characteristics, and features of the invention. In the drawings:
The following description of the depicted embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
A “smart implant” is an implant that is able to sense its environment, apply intelligence to determine whether action is required, and possibly act on the sensed information to change something in a controlled, beneficial manner This would ideally occur in a closed feedback loop reducing the chance of coming to an erroneous conclusion when evaluating the sensed data. One attractive application of smart implant technology is to measure loads on an orthopaedic implant. For example, an intramedullary nail subjected to six spacial degrees of freedom, comprised of 3 forces (Axial Force, Fz, Shear Force Fx & Fy) and 3 moments (Mx-bending, My-bending and Mz-torsional) may be measured indirectly by measuring sensor output of a series of strain gauges mounted to the orthopaedic implant using the matrix method.
The orthopaedic implant 12 may incorporate one or more power management strategies. Power management strategies may include implanted power sources or inductive power sources. Implanted power sources may be something simple, such as a battery, or something more complex, such as energy scavenging devices. Energy scavenging devices may include motion powered piezoelectric or electromagnetic generators and associated charge storage devices. Inductive power sources include inductive coupling systems and Radio Frequency (RF) electromagnetic fields. The orthopaedic implant 12 may incorporate a storage device (not shown). The storage device may be charged by an inductive/RF coupling or by an internal energy scavenging device. Preferably, the storage device has sufficient capacity to store enough energy at least to perform a single shot measurement and to subsequently process and communicate the result.
In some embodiments, the orthopaedic implant 12 may be inductively powered.
In some embodiments, the orthopaedic implant 12 may include an onboard microchip that converts signals from analog to digital and sends the digital signal via a radio wave.
The transmitter 44 transmits data in the form of a packet. At a minimum, the packet includes control information and the actual data.
In some embodiments, the orthopaedic implant 12 includes on-board electronics for power harvesting, sensing data, processing of the sensed data, and data transmission.
The LC circuit 61 receives a carrier signal from the antenna 14 to inductively power the on-board electronics. As an example, the carrier signal may have a frequency of about 125 kHz. The use of inductive power eliminates the requirement for a battery in the telemetric implant 12. In the depicted embodiment, the storage capacitor 63, a battery (not shown) or other energy storage device may be used to power the on-board electronics when not inductively powered. In other embodiments, the on-board electronics operate only when powered inductively from the antenna 14. The circuit 60 does not transmit raw data to the receiver 22 but instead modulates a load signal. This technique uses less power than raw transmission. The signal can be modulated using software embedded in the microprocessor 65. The load signal is related to the amount of resistance measured by the sensor assembly 68. In the depicted embodiment, the load signal is modulated at a frequency between 5 kHz and 6 kHz but those skilled in the art would understand that other frequency bands may be used. The change in load on the telemetric implant 12 is transmitted by the LC circuit 61 and received by the receiver 22.
Consideration may be given to the location and size of the one or more cavities. The cavities should be conveniently placed but not significantly affect the structural integrity of the orthopaedic implant 12. Finite element analysis may be of use in judging appropriate cavity location and dimensions. Factors which may be considered include: (1) geometry of the implant; (2) symmetry of the implant (e.g., left and right implants); (3) whether the cavity provides a convenient location for data transmission and/or reception; (4) whether a sensor will be located in the same cavity as the embedded antenna coil; and (5) location of the largest bending moment applied to the implant. These factors are not all inclusive, and other factors may be of significance. Similar factors may be used to judge the dimensions of the one or more cavities. In the embodiment depicted in
In addition or in the alternative, the on-board electronics and/or the antenna may be sealed by: (1) a compressed/deformed gold gasket to produce a hermetic seal; (2) electroplating over an epoxy capsule to produce a hermetic seal; (3) welding a ceramic lid with a metalized perimeter over the pick-up recess; or (4) coating the ferrite using a vapor-deposited material/ceramic.
As best seen in
The control unit 322 transmits a signal, the orthopaedic implant 12 receives the signal and transmits a data packet 318 containing data, the receiver 322 receives the data packet, and the processor 320 may either process the data or send the data to a storage device (not shown). As an example, the transmitted signal may be in the range from about 100 kHz to about 135 kHz.
The control unit 322 may transmit information by wire or wirelessly. The control unit 322 may use available technologies, such as ZIGBEE, BLUETOOTH, Matrix technology developed by The Technology Partnership Plc. (TTP), or other Radio Frequency (RF) technology. ZigBee is a published specification set of high level communication protocols designed for wireless personal area networks (WPANs). The ZIGBEE trademark is owned by ZigBee Alliance Corp., 2400 Camino Ramon, Suite 375, San Ramon, Calif., U.S.A. 94583. Bluetooth is a technical industry standard that facilitates short range communication between wireless devices. The BLUETOOTH trademark is owned by Bluetooth Sig, Inc., 500 108th Avenue NE, Suite 250, Bellevue Wash., U.S.A. 98004. RF is a wireless communication technology using electromagnetic waves to transmit and receive data using a signal above approximately 0.1 MHz in frequency. Due to size and power consumption constraints, the control unit 322 may utilize the Medical Implantable Communications Service (MICS) in order to meet certain international standards for communication. MICS is an ultra-low power, mobile radio service for transmitting data in support of diagnostic or therapeutic functions associated with implanted medical devices. The MICS permits individuals and medical practitioners to utilize ultra-low power medical implant devices, without causing interference to other users of the electromagnetic radio spectrum.
The feedback indicator 324 may include an audible and/or visual feedback system that informs the user when the implant is engaged and reliable data is being acquired. The feedback indicator 324 may be equipped with one or more signal “OK” light emitting diodes (LEDs) to provide feedback to the user on optimizing the position of the reader relative to the implant 12. In an exemplary case, the signal “OK” LED is illuminated when the signal frequency is between 5.3 kHz and 6.3 kHz and the signal is adequately received.
The paddle 314 includes a plurality of coils. In the embodiment depicted in
In some embodiments, the coil drive frequency may be automatically tuned to compensate for drift in resonant frequency of the reader coil and capacitors. Additionally, carrier cancellation may be achieved using digital signal processing (DSP) techniques to avoid the end-user manually tuning the coil. DSP techniques are also available to improve front-end filtering and reject out bands of interference.
The system 410 utilizes homodyne detection. Homodyne detection is a method of detecting frequency-modulated radiation by non-linear mixing with radiation of a reference frequency, the same principle as for heterodyne detection. Homodyne signifies that the reference radiation (the local oscillator) is derived from the same source as the signal before the modulating process. The signal is split such that one part is the local oscillator and the other is sent to the system to be probed. The scattered energy is then mixed with the local oscillator on the detector. This arrangement has the advantage of being insensitive to fluctuations in the frequency. Usually the scattered energy will be weak, in which case the nearly steady component of the detector output is a good measure of the instantaneous local oscillator intensity and therefore can be used to compensate for any fluctuations in the intensity. Sometimes the local oscillator is frequency-shifted to allow easier signal processing or to improve the resolution of low-frequency features. The distinction is not the source of the local oscillator, but the frequency used.
As noted above, shielding the antenna may be necessary to allow for appropriate biocompatibility, but this often causes significant signal loss. One way to address the signal loss is to minimize the shielding (i.e, reduce the thickness of the cover) to allow for sufficient thickness for adequate biocompatibility while simultaneously minimizing the amount of signal loss. Another way to address this issue is to provide materials that minimize signal loss but allow for adequate biocompatibility. While non-metallics may be of interest, attaching a non-metallic cover to a metallic nail may provide manufacturing challenges. In yet another approach to address this issue, the antenna may be located in a cap attached to a portion of the implant. The cap may be non-mettalic, such as PEEK or ceramic, and an elastomeric seal, or the cap may be metallic with an epoxy sealant. For example, in the case of an intramedullary nail, the antenna may be located in a nail cap removably attached to the end portion of the nail In one other approach to address the issue of signal loss, the antenna may take the form of an umbilical cord which trails from the implant, as is commonly done in pacemakers and other implantable devices.
Although the depicted embodiments concentrate on the function of an instrumented intramedullary nail designed specifically for bone healing, alternative embodiments include incorporation of the sensor and other electronic components within other implantable trauma products, such as a plate, a bone screw, a cannulated screw, a pin, a rod, a staple and a cable. Further, the instrumentation described herein is extendable to joint replacement implants, such a total knee replacements (TKR) and total hip replacements (THR), dental implants, and craniomaxillofacial implants.
A patient receives a wireless instrumented joint reconstruction product. The electromechanical system within the implant may be used to monitor patient recovery using one or more sensors, and make a decision as to whether any intervention is required in the patient's rehabilitation. The telemetric joint replacement continuously measures a complete set of strain values generated in the implant and transmits them from the patient to a laboratory computer system without disturbing the primary function of the implant. Alternatively, a wired system may be utilized in the form of a wearable device external to the patient. Again, the electromechanical system could be designed to monitor various aspects of the patient's recovery.
The wireless technology may be introduced into dental implants to enable early detection of implant overloading. Overloading occurs when prolonged excessive occlusal forces applied to the implant exceeded the ability of the bone-implant interface to withstand and adapt to these forces, leading to fibrous replacement at the implant interface, termed “osseodisintegration,” and ultimately to implant failure. Again, a communication link may be used to selectively access the strain data in the memory from an external source.
The technology associated with the instrumentation procedure also may be adapted to monitor soft tissue repair (e.g. skin muscle, tendons, ligaments, cartilage etc.) and the repair and monitoring of internal organs (kidney's, liver, stomach, lungs, heart, etc.).
The advantage of the invention over the prior art concerns the incorporation of the components within the fixation device in a manner that protects the components, provides an accurate and stable connection between the sensor and its environment, maintains the functionality of the implant itself, and is suitable for large scale manufacture. The device allows for information to be gathered and processed yielding useful clinical data with respect to a patient's bone healing cascade.
The instrumented device removes the guessing from the conventional diagnostic techniques, such as x-ray, CT and MRI imaging, by providing the patient objective quantitative data collected from them through the healing process. Currently, there is no device which quantifies the skeletal loads encountered during fracture healing, as well as during different patient and physiotherapy activities. Furthermore, the load distribution between the implant and the adjacent bone during fracture healing is also unknown. Such data helps to optimize postoperative protocols for improved fracture healing and ultimately determine when the fixation device may be removed without the risk of re-fracture or causing too much pain to the patient.
In some embodiments, the signal generator generates a first signal, an amplifier amplifies the first signal, at least one coil transmits the amplified signal, an implant antenna receives the first signal and transmits a data packet containing data, a receiver receives the data packet, and a processor processes the data, sends the data to a data storage device, or retransmits the data to another processor. As an example, the step of processing the data may include the step of populating a database. As another example, the step of processing the data may include the step of comparing the data to a prior data packet or data stored in a database. In yet another example, the step of processing the data may include the step of statistically analyzing the data. In another example, the step of processing the data may include the steps of making a comparison to other data, making a decision based upon the comparison, and then taking some action based upon the decision. In yet another example, the step of processing the data may include the step of displaying the data, alone or in conjunction with other information, such as patient or statistical data.
In one particular embodiment, the step of processing the data may include the steps of comparing the data packet to statistical data stored in a database, deciding whether the data meets some minimum or maximum threshold, and taking appropriate action to achieve a healed state. In some embodiments, the step of processing the data may include iterating one or more steps until a desired outcome is achieved.
In one particular embodiment, the step of processing the data may include the steps of comparing the data packet to prior data stored in a database, determining a rate of change based upon the comparison. This further may include the step of comparing rates of change
In one particular embodiment, the step of processing the data may include the steps of comparing the data packet to statistical data stored in a database, deciding whether the data meets some minimum or maximum threshold, and outputting a recommended action to achieve a healed state. This may further include the step of automatically scheduling a revision surgery or identifying the next available time in the operating room for a revision surgery.
As various modifications could be made to the exemplary embodiments, as described above with reference to the corresponding illustrations, without departing from the scope of the invention, it is intended that all matter contained in the foregoing description and shown in the accompanying drawings shall be interpreted as illustrative rather than limiting. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims appended hereto and their equivalents.
This application claims the benefit of U.S. Provisional Application No. 61/025,362, filed on Feb. 1, 2008 and U.S. Provisional Application No. 61/044,295, filed on Apr. 11, 2008. The disclosure of each prior application is incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2009/032540 | 1/30/2009 | WO | 00 | 7/30/2010 |
Number | Date | Country | |
---|---|---|---|
61025362 | Feb 2008 | US | |
61044295 | Apr 2008 | US |