System and method for completing a user profile

Information

  • Patent Grant
  • 11361014
  • Patent Number
    11,361,014
  • Date Filed
    Friday, December 29, 2017
    7 years ago
  • Date Issued
    Tuesday, June 14, 2022
    2 years ago
Abstract
A system and method for at least partially completing a user profile. The method includes analyzing the user profile to identify at least one missing informational element in the user profile, wherein identifying the at least one missing element further comprises determining at least one concept based on the user profile and matching the determined at least one concept to a plurality of category concepts, each concept including a collection of signatures and metadata describing the concept, wherein each category concept is associated with at least one required informational element, wherein each missing informational element is one of the at least one required informational element that is not included in the user profile; sending a query for the missing informational element; and updating at least a portion of the user profile based on a response to the query.
Description
TECHNICAL FIELD

The present disclosure relates generally to the analysis of multimedia content associated with a user, and more specifically with determining a missing informational element associated with a user profile based on multimedia content.


BACKGROUND

As the amount of content available over the Internet continues to grow exponentially in size, the task of identifying relevant content has become increasingly cumbersome. Identifying relevant content related to user preferences is of particular interest for online advertisers in order to most effectively offer goods or services that are appropriate for each particular user. A user profile may be created based on user interests; however, the user profile must be sufficiently accurate to provide desirable results.


Existing solutions provide several tools to identify user preferences. Some solutions request active input from users to specify their interests. However, profiles generated for users based on their active input may be inaccurate, as users tend to provide only their current interests, which can change over time. Further, users may only provide partial information due to privacy concerns, resulting in an incomplete user profile. Additionally, requiring active input from users on a regular basis can easily become cumbersome and irritating for users, resulting in decreased interest of users in responding to such requests.


Other existing solutions passively track users' activity through particular web sites, such as social networks. The disadvantage of these solutions is that the information regarding the users that is revealed is typically limited, as users tend to provide only partial information due to privacy concerns. For example, users creating an account on Facebook® will often provide only the mandatory information required for the creation of the account. This information may be insufficient to build an satisfactory user profile.


Additional information about such users may be collected over time, but may take significant amounts of time (i.e., gathered via multiple social media or blog posts over a time period of weeks or months) to be sufficiently useful for accurate identification of user preferences.


Additionally, some existing solutions for determining user preferences attempt to identify and recommend content that is similar to content enjoyed by the user based on information noted by tags related to the enjoyed content including, for example, the subject matter of the content, the entity that created the content, persons appearing in the content, and the like. Such solutions also face challenges due to lack of accurate information regarding what content the user has viewed and determining whether the user has indeed enjoyed such content. As a result, user profiles created using these solutions are often incomplete or inaccurate, and typically are completed through manual correction by users.


It would therefore be advantageous to provide a solution that would overcome the challenges noted above.


SUMMARY

A summary of several example embodiments of the disclosure follows. This summary is provided for the convenience of the reader to provide a basic understanding of such embodiments and does not wholly define the breadth of the disclosure. This summary is not an extensive overview of all contemplated embodiments, and is intended to neither identify key or critical elements of all embodiments nor to delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more embodiments in a simplified form as a prelude to the more detailed description that is presented later. For convenience, the term “some embodiments” may be used herein to refer to a single embodiment or multiple embodiments of the disclosure.


Certain embodiments disclosed herein include a method for at least partially completing a user profile. The method comprises: analyzing the user profile to identify at least one missing informational element in the user profile, wherein identifying the at least one missing element further comprises determining at least one concept based on the user profile and matching the determined at least one concept to a plurality of category concepts, each concept including a collection of signatures and metadata describing the concept, wherein each category concept is associated with at least one required informational element, wherein each missing informational element is one of the at least one required informational element that is not included in the user profile; sending a query for the missing informational element; and updating at least a portion of the user profile based on a response to the query.


Certain embodiments disclosed herein also include a non-transitory computer readable medium having stored thereon instructions for causing a processing circuitry to perform a process, the process comprising: analyzing a user profile to identify at least one missing informational element in the user profile, wherein identifying the at least one missing element further comprises determining at least one concept based on the user profile and matching the determined at least one concept to a plurality of category concepts, each concept including a collection of signatures and metadata describing the concept, wherein each category concept is associated with at least one required informational element, wherein each missing informational element is one of the at least one required informational element that is not included in the user profile; sending a query for the missing informational element; and updating at least a portion of the user profile based on a response to the query.


Certain embodiments disclosed herein also include a system for at least partially completing a user profile. The system comprises: a processing circuitry; and a memory, the memory containing instructions that, when executed by the processing circuitry, configure the system to: analyze the user profile to identify at least one missing informational element in the user profile, wherein identifying the at least one missing element further comprises determining at least one concept based on the user profile and matching the determined at least one concept to a plurality of category concepts, each concept including a collection of signatures and metadata describing the concept, wherein each category concept is associated with at least one required informational element, wherein each missing informational element is one of the at least one required informational element that is not included in the user profile; send a query for the missing informational element; and update at least a portion of the user profile based on a response to the query.





BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter disclosed herein is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the disclosed embodiments will be apparent from the following detailed description taken in conjunction with the accompanying drawings.



FIG. 1 is a network diagram utilized to describe the various disclosed embodiments.



FIG. 2 is an example schematic diagram of a Deep Content Classification system for creating concepts according to an embodiment.



FIG. 3 is a flowchart illustrating a method for creating a user profile according to an embodiment.



FIG. 4 is a flowchart illustrating a method for at least partially completing a user profile according to an embodiment.



FIG. 5 is a block diagram depicting the basic flow of information in the signature generator system.



FIG. 6 is a diagram showing the flow of patches generation, response vector generation, and signature generation in a large-scale speech-to-text system.





DETAILED DESCRIPTION

It is important to note that the embodiments disclosed herein are only examples of the many advantageous uses of the innovative teachings herein. In general, statements made in the specification of the present application do not necessarily limit any of the various claimed embodiments. Moreover, some statements may apply to some inventive features but not to others. In general, unless otherwise indicated, singular elements may be in plural and vice versa with no loss of generality. In the drawings, like numerals refer to like parts through several views.



FIG. 1 shows a network diagram 100 utilized to describe the various disclosed embodiments. A user device 120, a server 130, a signature generator system (SGS) 140, a database 150, a deep content classification (DCC) system 160, and a plurality of web sources 170-1 through 170-n are communicatively connected via a network 110. The network 110 may include the Internet, the world-wide-web (WWW), a local area network (LAN), a wide area network (WAN), a metro area network (MAN), and other networks capable of enabling communication between elements of a system 100.


The user device 120 may be, but is not limited to, a mobile phone, a smartphone, a personal computer (PC), a tablet computer, a wearable computing device, and other kinds of wired and mobile devices capable of capturing, uploading, browsing, viewing, listening, filtering, and managing MMCEs as further discussed herein below. The user device 120 may have installed thereon an application 125. The application 125 may be downloaded from an application repository, such as the Apple® AppStore®, Google Play®, or any repository hosting software applications for download.


The user device 120 includes a storage (not shown) containing one or more MMCEs, such as, but not limited to, an image, a photograph, a graphic, a screenshot, a video stream, a video clip, a video frame, an audio stream, an audio clip, combinations thereof, portions thereof, and the like.


The web sources 170-1 through 170-n (hereinafter referred to collectively as web sources 170, merely for simplicity) are connected to the network 110, where ‘n’ is an integer equal to or greater than 1. The web sources 170 include data sources or files available over, for example, the Internet. To this end, the web sources 170 may include, but are not limited to, websites, web-pages, social network platforms, search engines, public and private databases, and the like. The web sources 170 include one or more multimedia content elements (MMCEs), such as, but not limited to, an image, a photograph, a graphic, a screenshot, a video stream, a video clip, a video frame, an audio stream, an audio clip, combinations thereof, portions thereof, and the like.


A server 130 is connected to the network 110 and is configured to communicate with the user device 120 and the web sources 170. The server 130 may include a processing circuitry (PC) 135 and a memory 137. The processing circuitry 135 may be realized as one or more hardware logic components and circuits. For example, and without limitation, illustrative types of hardware logic components that can be used include field programmable gate arrays (FPGAs), application-specific integrated circuits (ASICs), application-specific standard products (ASSPs), system-on-a-chip systems (SOCs), general-purpose microprocessors, microcontrollers, digital signal processors (DSPs), and the like, or any other hardware logic components that can perform calculations or other manipulations of information.


In an embodiment, the memory 137 is configured to store software. Software shall be construed broadly to mean any type of instructions, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. Instructions may include code (e.g., in source code format, binary code format, executable code format, or any other suitable format of code). The instructions, when executed by the one or more processors, cause the processing circuitry 135 to perform the various processes described herein. Specifically, the instructions, when executed, cause the processing circuitry 135 to identify a missing informational element of a user profile and send a query regarding the missing informational element, as discussed further herein below.


The SGS 140 and the DCC system 160 are utilized by the server 130 to perform the various disclosed embodiments. The SGS 140 and the DCC system 160 may be connected to the server 130 directly (not shown) or through the network 110 (as shown in FIG. 1). In certain configurations, the DCC system 160 and the SGS 140 may be embedded in the server 130. In an embodiment, the server 130 is connected to or includes an array of computational cores configured as discussed in more detail below.


In an embodiment, the server 130 is configured to access an MMCE from the user device 120 or the web sources 170, and to send the MMCE to the SGS 140, the DCC system 160, or both. The access may include receiving or retrieving the MMCE. The decision of which to be used (the SGS 140, the DCC system 160, or both) may be a default configuration, or may depend on the circumstances of the particular MMCE being analyzed, e.g., the file type, the file size of the MMCE, the clarity of the content within the MMCE, and the like. In an embodiment, the SGS 140 receives the MMCE and returns signatures generated thereto. The generated signature(s) may be robust to noise and distortion as discussed regarding FIGS. 5 and 6 below.


According to another embodiment, the analysis of the MMCE may further be based on a concept structure (hereinafter referred to as a “concept”) determined for the MMCE. A concept is a collection of signatures representing elements of the unstructured data and metadata describing the concept. As a non-limiting example, a ‘Superman concept’ is a signature-reduced cluster of signatures describing elements (such as MMCEs) related to, e.g., a Superman cartoon; and a set of metadata providing a textual representation of the Superman concept. Techniques for generating concept structures are also described in the above-referenced U.S. Pat. No. 8,266,185 to Raichelgauz et al., the contents of which are hereby incorporated by reference.


According to this embodiment, a query is sent to the DCC system 160 to match the MMCE to at least one concept. The identification of a concept matching the MMCE includes matching signatures generated for the MMCE (such signature(s) may be generated by the SGS 140 or the DCC system 160) and comparing the generated signatures to reference signatures representing predetermined concepts. The signatures to which the MMCE is compared may be stored in and accessed from the database 150. The matching can be performed across all concepts maintained by the system DCC 160.


It should be appreciated that generating signatures allows for more accurate analysis of MMCEs in comparison to, for example, relying on metadata alone. The signatures generated for the MMCEs allow for recognition and classification of MMCEs such as content-tracking, video filtering, multimedia taxonomy generation, video fingerprinting, speech-to-text, audio classification, element recognition, video/image search and any other application requiring content-based signatures generation and matching for large content volumes such as, web and other large-scale databases. For example, a signature generated by the SGS 140 for a picture showing a car enables accurate recognition of the model of the car from any angle at which the picture was taken.


Based on the MMCEs, generated signatures, concepts, or a combination thereof, the server 130 is configured to identify a user preference. A user preference may be used in the generation of a user profile, where the user profile includes indications of a user interest. As an example, if a user is identified in several images riding a bicycle, the user profile may indicate that the user is interested in the subjects of “bicycle”, “sport”, “outdoor activity”, and the like. The profile may further include informational elements, such as what type of bicycle the user is interested in (e.g., road bicycle or mountain bicycle), what kind of outdoor activity (e.g., extreme or leisure), a user's favorite location(s) connected to the activity (e.g., a particular park), and the like


In an embodiment, the server 130 may be configured to identify missing informational elements in a user profile. Continuing with the above example, the server 130 may be configured to identify if the type of bicycle is unknown, e.g., it is not present within the user profile. If so, the server 130 may send a query to retrieve the missing informational element, e.g., by sending a message. The query may be sent to one of the web sources 170 (e.g., such that query results are returned by a search engine implemented in one of the web sources 170), or may be sent directly to the user device 120 (e.g., as a notification including a prompt for the missing element).


In an embodiment, the server 130 is configured to update the user profile based on a response to the query. The updated user profile may be saved, e.g., in the database 150.


It should be noted that only one user device 120 and one application 125 are discussed with reference to FIG. 1 merely for the sake of simplicity. However, the embodiments disclosed herein are applicable to a plurality of user devices that can communicate with the server 130 via the network 110, where each user device includes at least one application.



FIG. 2 shows an example diagram of a DCC system 160 for creating concepts. The DCC system 160 is configured to receive an MMCE, for example from the server 130, the user device 120, or one of the web sources 170, via a network interface 260.


The MMCE is processed by a patch attention processor (PAP) 210, resulting in a plurality of patches that are of specific interest, or otherwise of higher interest than other patches. A more general pattern extraction, such as an attention processor (AP) (not shown) may also be used in lieu of patches. The AP receives the MMCE that is partitioned into items; an item may be an extracted pattern or a patch, or any other applicable partition depending on the type of the MMCE. The functions of the PAP 210 are described herein below in more detail.


The patches that are of higher interest are then used by a signature generator, e.g., the SGS 140 of FIG. 1, to generate signatures based on the patch. It should be noted that, in some implementations, the DCC system 160 may include the signature generator. A clustering processor (CP) 230 inter-matches the generated signatures once it determines that there are a number of patches that are above a predefined threshold. The threshold may be defined to be large enough to enable proper and meaningful clustering. With a plurality of clusters, a process of clustering reduction takes place so as to extract the most useful data about the cluster and keep it at an optimal size to produce meaningful results. The process of cluster reduction is continuous. When new signatures are provided after the initial phase of the operation of the CP 230, the new signatures may be immediately checked against the reduced clusters to save on the operation of the CP 230. A more detailed description of the operation of the CP 230 is provided herein below.


A concept generator (CG) 240 is configured to create concept structures (hereinafter referred to as concepts) from the reduced clusters provided by the CP 230. Each concept comprises a plurality of metadata associated with the reduced clusters. The result is a compact representation of a concept that can now be easily compared against an MMCE to determine if the received MMCE matches a concept stored, for example, in the database 150 of FIG. 1. This can be done, for example and without limitation, by providing a query to the DCC system 160 for finding a match between a concept and a MMCE.


It should be appreciated that the DCC system 160 can generate a number of concepts significantly smaller than the number of MMCEs. For example, if one billion (109) MMCEs need to be checked for a match against another one billion MMCEs, typically the result is that no less than 109×109=1018 matches have to take place. The DCC system 160 would typically have around 10 million concepts or less, and therefore at most only 2×106×109=2×1015 comparisons need to take place, a mere 0.2% of the number of matches that have had to be made by other solutions. As the number of concepts grows significantly slower than the number of MMCEs, the advantages of the DCC system 160 would be apparent to one with ordinary skill in the art.


The user profile is generated based on the generated signatures, concepts, or both, which enables determination of the user's preferences and interests.



FIG. 3 is a flowchart 300 illustrating a method for creating a user profile according to an embodiment. At S310, MMCEs are received. In an embodiment, the MMCEs are received from a user device or from a web source, which may include, but is not limited to, social networks, web blogs, news feeds, and the like. The social networks may include, for example, Google+®, Facebook®, Twitter®, Instagram®, and so on.


MMCEs may include an image, a graphic, a video stream, a video clip, an audio stream, an audio clip, a video frame, a photograph, combinations thereof and portions thereof. In an embodiment, the MMCEs are captured by a user device.


At S320, at least one signature for each received MMCE is generated. The signatures may be generated by the SGS 140 of FIG. 1, as described hereinabove. In an embodiment, the signatures are generated by a signature generation system or a deep-content classification system, as discussed herein, which may generate a signature for an MMCE via a large number of at least partially statistically independent computational cores. The signatures may be generated for one or more elements depicted within an MMCE. For example, if an MMCE is a photograph of a street corner, where the photograph includes an image of various elements, such as a person, a dog, a street sign, and a tree, a signature may be generated for each of the various elements.


At S330, at least one concept based on the at least one signature is generated for each MMCE. The concepts are generated by a process of inter-matching of the signatures once it is determined that there is a number of elements therein above a predefined threshold. That threshold needs to be large enough to enable proper and meaningful clustering.


Each concept is a collection of signatures representing MMCEs and metadata describing the concept, and acts as an abstract description of the content to which the signature was generated. As a non-limiting example, a ‘Superman concept’ is a signature-reduced cluster of signatures representing elements (such as MMCEs) related to, e.g., a Superman cartoon, and a set of metadata including a textual representation of the Superman concept. As another example, metadata of a concept represented by the signature generated for a picture showing a bouquet of red roses is “flowers.” As yet another example, metadata of a concept represented by the signature generated for a picture showing a bouquet of wilted roses is “wilted flowers”.


In one embodiment, S330 includes querying a concept-based database using the generated signatures, wherein a previously generated concept may be matched to the MMCE without requiring the generation of a new concept.


At S340, at least one user interest is determined based on the generated signatures, the concepts, or both. According to one embodiment, a user interest may be determined based on the frequency of appearance of a person or item, user interactions related to the concept or MMCE, preferences of other users connected to the user, and the like. As a non-limiting example, if a user has indicated that they like multiple pictures of a particular dog on a social network, it may be determined that the dog is included as a user interest. Further, if the user has frequently uploaded pictures of the dog to multiple social networks, it may likewise be determined that the dog is included as a user interest.


In S350, a user profile is created based on the determined user interest. The user profile may be saved, e.g., in a database, for future reference. It should be noted that if a user profile already exists in the database, the user profile may be updated to include the user interest determined in S340. For example, if a user profile related to the user exists but does not contain information related to any dogs, the profile may be updated to include the dog as a user interest.


At S360, it is checked whether there are additional MMCEs to analyze, and if so, execution continues with S320; otherwise, execution terminates.


As a non-limiting example for the process described in FIG. 3, a picture of a user riding a bicycle is uploaded to the user's profile page in Facebook®. The image is then analyzed, and a signature and at least one concept is generated respective thereto. A comment made by the user stating: “I love those field trips” is identified. Based on analysis of the concept of the uploaded picture and the user's comment, the user profile is determined as positive for field trips. The user profile is then stored or updated (if, e.g., the user profile already existed prior to this example) in a database for further use.



FIG. 4 is a flowchart 400 illustrating a method for querying for completing a user profile according to an embodiment. Specifically, the method may be utilized to partially complete a user profile missing one or more informational elements related to user interests.


At S410, a user profile is received. The user profile may be, for example, a user profile created as described herein above with respect to FIG. 3, or may be a user profile previously generated and stored, e.g., on a database. The user profile may include one or more user interests as discussed above with respect to FIG. 3.


At S420, missing informational elements are identified within the user profile. Missing informational elements are elements related to user interests that are indicated in the user profile. In an embodiment, the identification may be made by comparing concepts representing the user interests in the user profile with a predetermined set of concepts representing required informational elements related to that concept.


To this end, in an embodiment, S420 may include matching concepts representing the user interests indicated in the user profile to category concepts representing general categories of user profile information. Example category concepts may include, but are not limited to, pets, hobbies, family members, friends, place of work, home, hangout spots, specific instances thereof (e.g., dogs as pets, biking as a hobby, etc.), and the like. In a further embodiment, S420 may also include generating signatures for textual representations of the user interests and determining, based on the generated signatures, a concept representing each user interest. Determining concepts for the user interests may include matching the generated signatures to signatures of concepts in a concept database as described further herein above. Alternatively, the user profile may include predetermined concepts (e.g., concepts that were previously generated as described herein above) representing each user interest.


Each category concept may be associated with a respective predetermined set of required informational elements. As a non-limiting example, if a user interest within the user profile includes a particular dog as indicated by a concept representing the dog, the user interest concept may be matched to a category concept of representing “pet dog” that is associated with required informational elements including name, breed, age, length of ownership by the user, food preferences, recreational preferences, and the like. If, for example, the dog's age and breed are known, but its name is unknown, the name may be identified as a missing informational element.


Each informational element may be indicated in, for example, a field of a user profile. To this end, in some implementations, the missing informational elements may include informational elements corresponding to incomplete fields of the user profile. For example, when the user profile includes a field “job title” that has an empty value, job title may be determined as a missing informational element. Thus, the missing informational elements may be unknown data items in a user profile representing the user's life, routines, hobbies, and the like.


In another embodiment, the missing informational elements may be determined based on analysis of one or more clusters of MMCEs associated with the user profile. The analysis of the clusters may include, but is not limited to, generating signatures for the MMCEs, determining concepts appearing in the MMCEs, generating a validity score for each identified concept, and determining missing informational elements based on the validity scores. In an example implementation, each missing informational element corresponds to a concept having a validity score below a predetermined threshold.


In a further embodiment, the missing elements are identified by comparing concepts representing the user interests to known concepts associated with other user profiles, e.g., from a database. For example, if a user interest includes a dog, a concept related to the dog may be compared to concepts of user interests related to other user profiles in a database. If the other user profiles include a dog's name, breed, and age, and the current user profile only include the dog's breed and age, the dog's name will be identified as a missing informational element.


At S430, one or more queries is sent regarding the missing informational element. The query may be fed to a search engine, a search bar in a social network website, or sent directly to a user, e.g., to a user device. The query may include text, images, portions thereof, combinations thereof, and the like. For example, a query may include an image of a dog taken from an MMCE together with the phrase “What is this dog's name?” Additionally, the query may be gamified in order to more easily engage the user. As a non-limiting example, a plurality of faces that are determined to potentially be part of the user's family are presented together with the query “Family Album” and a request to mark which person is and is not a family member.


Each sent query may be, for example, associated with the corresponding missing informational element. As a non-limiting example, an informational element of “brands” for the category “mountain biking” may be associated with a query of “What brand of mountain bikes do you prefer?” such that, when the “brand” informational element is missing, that query may be sent.


At S440, the user profile is updated based on a response received in reply to the sent query. For example, the user interest of “dog” within the user profile may be updated to include the received response to “What is this dog's name?” The updated user profile may be saved, e.g., in a database.


At S450, it is checked whether additional missing items may exist within the user profile, and if so, execution continues with S420; otherwise, execution terminates.


As a non-limiting example, when images analyzed to identify user interests include images showing the user standing in the entrance of office buildings, user interests of a user include “office.” Signatures of a concept representing the user interest are matched to signatures representing category concepts, and a category concept representing “job” is determined as matching. The “job” concept is associated with required informational elements of “job title” and “place of employment.” When the user profile indicates a job title of “CEO” but not a place of employment, the place of employment is identified as a missing informational element. A query of “Where do you work?” associated with the “place of employment” concept is sent to the user. Based on a user response of “ABC Contractors, Manhattan branch,” the user profile may be updated with respect to place of employment.



FIGS. 5 and 6 illustrate the generation of signatures for the multimedia content elements by the SGS 120 according to one embodiment. An exemplary high-level description of the process for large scale matching is depicted in FIG. 5. In this example, the matching is for a video content.


Video content segments 2 from a Master database (DB) 6 and a Target DB 1 are processed in parallel by a large number of independent computational Cores 3 that constitute an architecture for generating the Signatures (hereinafter the “Architecture”). Further details on the computational Cores generation are provided below.


The independent Cores 3 generate a database of Robust Signatures and Signatures 4 for Target content-segments 5 and a database of Robust Signatures and Signatures 7 for Master content-segments 8. An exemplary and non-limiting process of signature generation for an audio component is shown in detail in FIG. 6. Finally, Target Robust Signatures and/or Signatures are effectively matched, by a matching algorithm 9, to Master Robust Signatures and/or Signatures database to find all matches between the two databases.


To demonstrate an example of the signature generation process, it is assumed, merely for the sake of simplicity and without limitation on the generality of the disclosed embodiments, that the signatures are based on a single frame, leading to certain simplification of the computational cores generation. The Matching System is extensible for signatures generation capturing the dynamics in-between the frames. In an embodiment, the signature generator 140 is configured with a plurality of computational cores to perform matching between signatures.


The Signatures' generation process is now described with reference to FIG. 6. The first step in the process of signatures generation from a given speech-segment is to breakdown the speech-segment to K patches 14 of random length P and random position within the speech segment 12. The breakdown is performed by the patch generator component 21. The value of the number of patches K, random length P and random position parameters is determined based on optimization, considering the tradeoff between accuracy rate and the number of fast matches required in the flow process of the server 130 and SGS 140. Thereafter, all the K patches are injected in parallel into all computational Cores 3 to generate K response vectors 22, which are fed into a signature generator system 23 to produce a database of Robust Signatures and Signatures 4.


In order to generate Robust Signatures, i.e., Signatures that are robust to additive noise L (where L is an integer equal to or greater than 1) by the Computational Cores 3 a frame ‘i’ is injected into all the Cores 3. Then, Cores 3 generate two binary response vectors: one which is a Signature vector, and one which is a Robust Signature vector.


For generation of signatures robust to additive noise, such as White-Gaussian-Noise, scratch, etc., but not robust to distortions, such as crop, shift and rotation, etc., a core Ci={ni} (1≤i≤L) may consist of a single leaky integrate-to-threshold unit (LTU) node or more nodes. The node ni equations are:







V
i

=



j




w
ij



k
j










n
i

=

θ


(

Vi
-
Thx

)






where, θ is a Heaviside step function; wij is a coupling node unit (CNU) between node i and image component j (for example, grayscale value of a certain pixel j); kj is an image component ‘j’ (for example, grayscale value of a certain pixel j); ThX is a constant Threshold value, where ‘x’ is ‘S’ for Signature and ‘RS’ for Robust Signature; and Vi is a Coupling Node Value.


The Threshold values ThX are set differently for Signature generation and for Robust Signature generation. For example, for a certain distribution of Vi values (for the set of nodes), the thresholds for Signature (ThS) and Robust Signature (ThRS) are set apart, after optimization, according to at least one or more of the following criteria:


1: For:

Vi>ThRS
1−p(V>ThS)−1−(1−ε)l<<1

i.e., given that I nodes (cores) constitute a Robust Signature of a certain image I, the probability that not all of these I nodes will belong to the Signature of same, but noisy image, is sufficiently low (according to a system's specified accuracy).


2:

p(Vi>ThRS)≈l/L


i.e., approximately I out of the total L nodes can be found to generate a Robust Signature according to the above definition.


3: Both Robust Signature and Signature are Generated for a Certain Frame i.


It should be understood that the generation of a signature is unidirectional, and typically yields lossless compression, where the characteristics of the compressed data are maintained but the uncompressed data cannot be reconstructed. Therefore, a signature can be used for the purpose of comparison to another signature without the need of comparison to the original data. The detailed description of the Signature generation can be found in U.S. Pat. Nos. 8,326,775 and 8,312,031, assigned to common assignee, which are hereby incorporated by reference for all the useful information they contain.


A Computational Core generation is a process of definition, selection, and tuning of the parameters of the cores for a certain realization in a specific system and application. The process is based on several design considerations, such as:

    • (a) The Cores should be designed so as to obtain maximal independence, i.e., the projection from a signal space should generate a maximal pair-wise distance between any two cores' projections into a high-dimensional space.
    • (b) The Cores should be optimally designed for the type of signals, i.e., the Cores should be maximally sensitive to the spatio-temporal structure of the injected signal, for example, and in particular, sensitive to local correlations in time and space. Thus, in some cases a core represents a dynamic system, such as in state space, phase space, edge of chaos, etc., which is uniquely used herein to exploit their maximal computational power.
    • (c) The Cores should be optimally designed with regard to invariance to a set of signal distortions, of interest in relevant applications.


A detailed description of the Computational Core generation and the process for configuring such cores is discussed in more detail in the above referenced U.S. Pat. No. 8,655,801, the contents of which are hereby incorporated by reference.


The various embodiments disclosed herein can be implemented as hardware, firmware, software, or any combination thereof. Moreover, the software is preferably implemented as an application program tangibly embodied on a program storage unit or computer readable medium consisting of parts, or of certain devices and/or a combination of devices. The application program may be uploaded to, and executed by, a machine comprising any suitable architecture. Preferably, the machine is implemented on a computer platform having hardware such as one or more central processing units (“CPUs”), a memory, and input/output interfaces. The computer platform may also include an operating system and microinstruction code. The various processes and functions described herein may be either part of the microinstruction code or part of the application program, or any combination thereof, which may be executed by a CPU, whether or not such a computer or processor is explicitly shown. In addition, various other peripheral units may be connected to the computer platform such as an additional data storage unit and a printing unit. Furthermore, a non-transitory computer readable medium is any computer readable medium except for a transitory propagating signal.


As used herein, the phrase “at least one of” followed by a listing of items means that any of the listed items can be utilized individually, or any combination of two or more of the listed items can be utilized. For example, if a system is described as including “at least one of A, B, and C,” the system can include A alone; B alone; C alone; A and B in combination; B and C in combination; A and C in combination; or A, B, and C in combination.


All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the principles of the disclosed embodiment and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the disclosed embodiments, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.

Claims
  • 1. A method for at least partially completing a user profile, comprising: analyzing, by a computerized system, the user profile to identify at least one missing informational element in the user profile, wherein the user profile is indicative of one or more user interests; wherein the one or more user interests are determined by the computerized system; wherein a missing informational element is related to at least one user interest of the one or more user interests; wherein identifying the at least one missing element comprises determining at least one concept based on the user profile and matching the determined at least one concept to a plurality of concepts, each concept of the plurality of concepts including a collection of signatures and metadata describing the concept, wherein each missing informational element is one of the at least one required informational element that is not included in the user profile;analyzing a plurality of multimedia content elements (MMCEs), wherein the analysis further comprises: generating at least one signature for each MMCE;determining at least one concept for each MMCE based on the at least one signature generated for the MMCE;wherein the one or more user interests are identified based on the determined concepts;wherein the identifying, based on the determined concepts, of the at least one user interest is responsive to a frequency of appearance of a person or item in the MMCEs;sending a query for the missing informational element; andupdating at least a portion of the user profile based on a response to the query.
  • 2. The method of claim 1, wherein determining the at least one concept for each MMCE further comprises: querying a concept-based database using the at least one signature generated for the MMCE.
  • 3. The method of claim 1 wherein the plurality of concepts are general categories of user profile information.
  • 4. The method of claim 1 wherein each concept of the plurality of concepts is a category concept that is associated with at least one required informational element.
  • 5. The method of claim 1, wherein identifying the at least one missing informational element includes comparing the user profile to the at least one required informational element for each matching category concept, wherein each missing informational element corresponds to an incomplete field of the user profile.
  • 6. The method according to claim 1 wherein the analyzing of the plurality of MMCEs comprises processing each MMCE by a patch attention processor to find MMCE patches of higher interest that other MMCE patches, and generating a signature of the MMCE based on the MMCE patches of higher interest.
  • 7. The method according to claim 1 wherein the identifying, based on the determined concepts, of the at least one user interest is responsive to interests of other users connected to the user.
  • 8. The method according to claim 1 wherein the analyzing of the user profile to identify at least one missing informational element in the user profile further comprises comparing concepts representing the user interests to known concepts associated with other user profiles in a database.
  • 9. A non-transitory computer readable medium having stored thereon instructions for causing a processing circuitry of a computerized system to perform a process, the process comprising: analyzing a user profile to identify at least one missing informational element in the user profile, wherein the user profile is indicative of one or more user interests; wherein the one or more user interests are determined by the computerized system; wherein a missing informational element is related to at least one user interest of the one or more user interests; wherein identifying the at least one missing element further comprises determining at least one concept based on the user profile and matching the determined at least one concept to a plurality of concepts, each concept of the plurality of concepts including a collection of signatures and metadata describing the concept, wherein each missing informational element is one of the at least one required informational element that is not included in the user profile;analyzing a plurality of multimedia content elements (MMCEs), wherein the analysis further comprises: generating at least one signature for each MMCE;determining at least one concept for each MMCE based on the at least one signature generated for the MMCE;identifying, based on the determined concepts, at least one user interest; andcreating the user profile based on the identified at least one user interest;wherein the identifying, based on the determined concepts, of the at least one user interest is responsive to a frequency of appearance of a person or item in the MMCEs comparing the user profile to user profiles of users;sending a query for the missing informational element; andupdating at least a portion of the user profile based on a response to the query.
  • 10. The non-transitory computer readable medium according to claim 9, wherein the analyzing of the user profile to identify at least one missing informational element in the user profile further comprises comparing concepts representing the user interests to known concepts associated with other user profiles in a database.
  • 11. The non-transitory computer readable medium according to claim 9, wherein the determining of the at least one concept for each MMCE further comprises: querying a concept-based database using the at least one signature generated for the MMCE.
  • 12. The non-transitory computer readable medium according to claim 9 wherein the plurality of concepts are general categories of user profile information.
  • 13. The non-transitory computer readable medium according to claim 9 wherein each concept of the plurality of concepts is a category concept that is associated with at least one required informational element.
  • 14. The non-transitory computer readable medium according to claim 9, wherein the identifying of the at least one missing informational element includes comparing the user profile to the at least one required informational element for each matching category concept, wherein each missing informational element corresponds to an incomplete field of the user profile.
  • 15. A computerized system for at least partially completing a user profile, comprising: a processing circuitry; and a memory, the memory containing instructions that, when executed by the processing circuitry, configure the system to: analyze the user profile to identify at least one missing informational element in the user profile, wherein the user profile is indicative of one or more user interests; wherein the one or more user interests are determined by the computerized system; wherein a missing informational element is related to at least one user interest of the one or more user interests; wherein identifying the at least one missing element further comprises determining at least one concept based on the user profile and matching the determined at least one concept to a plurality of concepts, each concept of the plurality of concepts including a collection of signatures and metadata describing the concept, wherein each missing informational element is one of the at least one required informational element that is not included in the user profile;analyze a plurality of multimedia content elements (MMCEs), wherein the analysis further comprises generating at least one signature for each MMCE; determine at least one concept for each MMCE based on the at least one signature generated for the MMCE; and wherein the one or more user interests are identified based on the determined concepts;wherein the identifying, based on the determined concepts, of the at least one user interest is responsive to a frequency of appearance of a person or item in the MMCEs comparing the user profile to user profiles of users;send a query for the missing informational element; andupdate at least a portion of the user profile based on a response to the query.
  • 16. The system of claim 15, wherein the system is further configured to: query a concept-based database using the at least one signature generated for the MMCE.
  • 17. The system of claim 15, wherein each signature is robust to noise and distortion.
  • 18. The system of claim 15, wherein the plurality of concepts are general categories of user profile information.
  • 19. The system of claim 15, wherein each concept of the plurality of concepts is a category concept that is associated with at least one required informational element.
Priority Claims (2)
Number Date Country Kind
171577 Oct 2005 IL national
173409 Jan 2006 IL national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 62/441,476 filed on Jan. 2, 2017. This application is also a continuation-in-part of U.S. patent application Ser. No. 14/597,324 filed on Jan. 15, 2015, now pending, which claims the benefit of U.S. Provisional Application No. 61/928,468, filed on Jan. 17, 2014. The Ser. No. 14/597,324 application is a continuation-in-part of U.S. patent application Ser. No. 13/766,463 filed on Feb. 13, 2013, now U.S. Pat. No. 9,031,999. The Ser. No. 13/766,463 application is a continuation-in-part of U.S. patent application Ser. No. 13/602,858 filed on Sep. 4, 2012, now U.S. Pat. No. 8,868,619. The Ser. No. 13/602,858 application is a continuation of U.S. patent application Ser. No. 12/603,123 filed on Oct. 21, 2009, now U.S. Pat. No. 8,266,185, which is a continuation-in-part of: (1) U.S. patent application Ser. No. 12/084,150 having a filing date of Apr. 7, 2009, now U.S. Pat. No. 8,655,801, which is the National Stage of International Application No. PCT/IL2006/001235 filed on Oct. 26, 2006, which claims foreign priority from Israeli Application No. 171577 filed on Oct. 26, 2005, and Israeli Application No. 173409 filed on Jan. 29, 2006; (2) U.S. patent application Ser. No. 12/195,863 filed on Aug. 21, 2008, now U.S. Pat. No. 8,326,775, which claims priority under 35 USC 119 from Israeli Application No. 185414, filed on Aug. 21, 2007, and which is also a continuation-in-part of the above-referenced U.S. patent application Ser. No. 12/084,150; (3) U.S. patent application Ser. No. 12/348,888, filed on Jan. 5, 2009, now pending, which is a continuation-in-part of the above-referenced U.S. patent application Ser. No. 12/084,150, and the above-referenced U.S. patent application Ser. No. 12/195,863; and (4) U.S. patent application Ser. No. 12/538,495, filed on Aug. 10, 2009, now U.S. Pat. No. 8,312,031, which is a continuation-in-part of the above-referenced U.S. patent application Ser. No. 12/084,150, the above-referenced U.S. patent application Ser. No. 12/195,863, and the above-referenced U.S. patent application Ser. No. 12/348,888. All of the applications referenced above are herein incorporated by reference.

US Referenced Citations (500)
Number Name Date Kind
4733353 Jaswa Mar 1988 A
4932645 Schorey et al. Jun 1990 A
4972363 Nguyen et al. Nov 1990 A
5307451 Clark Apr 1994 A
5568181 Greenwood et al. Oct 1996 A
5745678 Herzberg et al. Apr 1998 A
5806061 Chaudhuri et al. Sep 1998 A
5852435 Vigneaux et al. Dec 1998 A
5870754 Dimitrova et al. Feb 1999 A
5873080 Coden et al. Feb 1999 A
5887193 Takahashi et al. Mar 1999 A
5940821 Wical Aug 1999 A
5978754 Kumano Nov 1999 A
5987454 Hobbs Nov 1999 A
6038560 Wical Mar 2000 A
6052481 Grajski et al. Apr 2000 A
6076088 Paik et al. Jun 2000 A
6122628 Castelli et al. Sep 2000 A
6137911 Zhilyaev Oct 2000 A
6144767 Bottou et al. Nov 2000 A
6147636 Gershenson Nov 2000 A
6240423 Hirata May 2001 B1
6243375 Speicher Jun 2001 B1
6243713 Nelson et al. Jun 2001 B1
6269307 Shinmura Jul 2001 B1
6275599 Adler et al. Aug 2001 B1
6329986 Cheng Dec 2001 B1
6363373 Steinkraus Mar 2002 B1
6381656 Shankman Apr 2002 B1
6411229 Kobayashi Jun 2002 B2
6422617 Fukumoto et al. Jul 2002 B1
6493692 Kobayashi et al. Dec 2002 B1
6493705 Kobayashi et al. Dec 2002 B1
6507672 Watkins et al. Jan 2003 B1
6523022 Hobbs Feb 2003 B1
6523046 Liu et al. Feb 2003 B2
6524861 Anderson Feb 2003 B1
6526400 Takata et al. Feb 2003 B1
6550018 Abonamah et al. Apr 2003 B1
6560597 Dhillon et al. May 2003 B1
6594699 Sahai et al. Jul 2003 B1
6601060 Tomaru Jul 2003 B1
6611628 Sekiguchi et al. Aug 2003 B1
6611837 Schreiber Aug 2003 B2
6618711 Ananth Sep 2003 B1
6640015 Lafruit Oct 2003 B1
6643620 Contolini et al. Nov 2003 B1
6643643 Lee et al. Nov 2003 B1
6675159 Lin et al. Jan 2004 B1
6704725 Lee Mar 2004 B1
6728706 Aggarwal et al. Apr 2004 B2
6732149 Kephart May 2004 B1
6751363 Natsev et al. Jun 2004 B1
6754435 Kim Jun 2004 B2
6763069 Divakaran et al. Jul 2004 B1
6763519 McColl et al. Jul 2004 B1
6774917 Foote et al. Aug 2004 B1
6795818 Lee Sep 2004 B1
6804356 Krishnamachari Oct 2004 B1
6819797 Smith et al. Nov 2004 B1
6836776 Schreiber Dec 2004 B2
6845374 Oliver et al. Jan 2005 B1
6901207 Watkins May 2005 B1
6938025 Lulich et al. Aug 2005 B1
6963975 Weare Nov 2005 B1
6970881 Mohan et al. Nov 2005 B1
6978264 Chandrasekar et al. Dec 2005 B2
7006689 Kasutani Feb 2006 B2
7013051 Sekiguchi et al. Mar 2006 B2
7043473 Rassool et al. May 2006 B1
7124149 Smith et al. Oct 2006 B2
7158681 Persiantsev Jan 2007 B2
7199798 Echigo et al. Apr 2007 B1
7215828 Luo May 2007 B2
7260564 Lynn et al. Aug 2007 B1
7277928 Lennon Oct 2007 B2
7296012 Ohashi Nov 2007 B2
7302117 Sekiguchi et al. Nov 2007 B2
7313805 Rosin et al. Dec 2007 B1
7346629 Kapur et al. Mar 2008 B2
7392238 Zhou et al. Jun 2008 B1
7406459 Chen et al. Jul 2008 B2
7450740 Shah et al. Nov 2008 B2
7523102 Bjarnestam et al. Apr 2009 B2
7526607 Singh et al. Apr 2009 B1
7536384 Venkataraman et al. May 2009 B2
7542969 Rappaport et al. Jun 2009 B1
7548910 Chu et al. Jun 2009 B1
7555477 Bayley et al. Jun 2009 B2
7555478 Bayley et al. Jun 2009 B2
7562076 Kapur Jul 2009 B2
7574436 Kapur et al. Aug 2009 B2
7574668 Nunez et al. Aug 2009 B2
7577656 Kawai et al. Aug 2009 B2
7657100 Gokturk et al. Feb 2010 B2
7660468 Gokturk et al. Feb 2010 B2
7694318 Eldering et al. Apr 2010 B2
7801893 Gulli Sep 2010 B2
7836054 Kawai et al. Nov 2010 B2
7860895 Scofield Dec 2010 B1
7920894 Wyler Apr 2011 B2
7921107 Chang et al. Apr 2011 B2
7933407 Keidar et al. Apr 2011 B2
7974994 Li et al. Jul 2011 B2
7987194 Walker et al. Jul 2011 B1
7987217 Long et al. Jul 2011 B2
7991715 Schiff et al. Aug 2011 B2
8000655 Wang et al. Aug 2011 B2
8023739 Hohimer et al. Sep 2011 B2
8036893 Reich Oct 2011 B2
8098934 Vincent et al. Jan 2012 B2
8112376 Raichelgauz et al. Feb 2012 B2
8266185 Raichelgauz et al. Sep 2012 B2
8275764 Jeon Sep 2012 B2
8311950 Kunal Nov 2012 B1
8312031 Raichelgauz et al. Nov 2012 B2
8315442 Gokturk et al. Nov 2012 B2
8316005 Moore Nov 2012 B2
8326775 Raichelgauz et al. Dec 2012 B2
8345982 Gokturk et al. Jan 2013 B2
RE44225 Aviv May 2013 E
8527978 Sallam Sep 2013 B1
8548828 Longmire Oct 2013 B1
8634980 Urmson Jan 2014 B1
8655801 Raichelgauz et al. Feb 2014 B2
8677377 Cheyer et al. Mar 2014 B2
8682667 Haughay Mar 2014 B2
8688446 Yanagihara Apr 2014 B2
8706503 Cheyer et al. Apr 2014 B2
8775442 Moore et al. Jul 2014 B2
8781152 Momeyer Jul 2014 B2
8782077 Rowley Jul 2014 B1
8799195 Raichelgauz et al. Aug 2014 B2
8799196 Raichelguaz et al. Aug 2014 B2
8818916 Raichelgauz et al. Aug 2014 B2
8868619 Raichelgauz et al. Oct 2014 B2
8880539 Raichelgauz et al. Nov 2014 B2
8880566 Raichelgauz et al. Nov 2014 B2
8880640 Graham Nov 2014 B2
8886648 Procopio et al. Nov 2014 B1
8898568 Bull et al. Nov 2014 B2
8922414 Raichelgauz et al. Dec 2014 B2
8959037 Raichelgauz et al. Feb 2015 B2
8990125 Raichelgauz et al. Mar 2015 B2
9009086 Raichelgauz et al. Apr 2015 B2
9031999 Raichelgauz et al. May 2015 B2
9087049 Raichelgauz et al. Jul 2015 B2
9104747 Raichelgauz et al. Aug 2015 B2
9165406 Gray et al. Oct 2015 B1
9191626 Raichelgauz et al. Nov 2015 B2
9197244 Raichelgauz et al. Nov 2015 B2
9218606 Raichelgauz et al. Dec 2015 B2
9235557 Raichelgauz et al. Jan 2016 B2
9252961 Bosworth Feb 2016 B2
9256668 Raichelgauz et al. Feb 2016 B2
9298763 Zack Mar 2016 B1
9323754 Ramanathan et al. Apr 2016 B2
9325751 Bosworth Apr 2016 B2
9330189 Raichelgauz et al. May 2016 B2
9438270 Raichelgauz et al. Sep 2016 B2
9440647 Sucan Sep 2016 B1
9542694 Bosworth Jan 2017 B2
9734533 Givot Aug 2017 B1
9911334 Townsend Mar 2018 B2
9996845 Zhang Jun 2018 B2
10133947 Yang Nov 2018 B2
10347122 Takenaka Jul 2019 B2
10491885 Hicks Nov 2019 B1
20010019633 Tenze Sep 2001 A1
20010038876 Anderson Nov 2001 A1
20010056427 Yoon et al. Dec 2001 A1
20020010682 Johnson Jan 2002 A1
20020019881 Bokhari et al. Feb 2002 A1
20020019882 Bokhani Feb 2002 A1
20020037010 Yamauchi Mar 2002 A1
20020038299 Zernik et al. Mar 2002 A1
20020059580 Kalker et al. May 2002 A1
20020072935 Rowse et al. Jun 2002 A1
20020087530 Smith et al. Jul 2002 A1
20020099870 Miller et al. Jul 2002 A1
20020103813 Frigon Aug 2002 A1
20020107827 Benitez-Jimenez et al. Aug 2002 A1
20020123928 Eldering et al. Sep 2002 A1
20020126872 Brunk et al. Sep 2002 A1
20020129140 Peled et al. Sep 2002 A1
20020129296 Kwiat et al. Sep 2002 A1
20020143976 Barker et al. Oct 2002 A1
20020147637 Kraft et al. Oct 2002 A1
20020152087 Gonzalez Oct 2002 A1
20020152267 Lennon Oct 2002 A1
20020157116 Jasinschi Oct 2002 A1
20020159640 Vaithilingam et al. Oct 2002 A1
20020161739 Oh Oct 2002 A1
20020163532 Thomas Nov 2002 A1
20020174095 Lulich et al. Nov 2002 A1
20020178410 Haitsma et al. Nov 2002 A1
20020184505 Mihcak Dec 2002 A1
20030028660 Igawa et al. Feb 2003 A1
20030037010 Schmelzer Feb 2003 A1
20030041047 Chang Feb 2003 A1
20030050815 Seigel et al. Mar 2003 A1
20030078766 Appelt et al. Apr 2003 A1
20030086627 Berriss et al. May 2003 A1
20030089216 Birmingham et al. May 2003 A1
20030101150 Agnihotri May 2003 A1
20030105739 Essafi et al. Jun 2003 A1
20030126147 Essafi et al. Jul 2003 A1
20030182567 Barton et al. Sep 2003 A1
20030191764 Richards Oct 2003 A1
20030191776 Obrador Oct 2003 A1
20030200217 Ackerman Oct 2003 A1
20030217335 Chung Nov 2003 A1
20030229531 Heckerman et al. Dec 2003 A1
20040003394 Ramaswamy Jan 2004 A1
20040025180 Begeja et al. Feb 2004 A1
20040047461 Weisman Mar 2004 A1
20040059736 Willse Mar 2004 A1
20040068510 Hayes et al. Apr 2004 A1
20040091111 Levy May 2004 A1
20040107181 Rodden Jun 2004 A1
20040111465 Chuang et al. Jun 2004 A1
20040117367 Smith et al. Jun 2004 A1
20040119848 Buehler Jun 2004 A1
20040128142 Whitham Jul 2004 A1
20040128511 Sun et al. Jul 2004 A1
20040133927 Sternberg et al. Jul 2004 A1
20040153426 Nugent Aug 2004 A1
20040215663 Liu et al. Oct 2004 A1
20040230572 Omoigui Nov 2004 A1
20040249779 Nauck et al. Dec 2004 A1
20040260688 Gross Dec 2004 A1
20040267774 Lin Dec 2004 A1
20050010553 Liu Jan 2005 A1
20050021394 Miedema et al. Jan 2005 A1
20050114198 Koningstein et al. May 2005 A1
20050131884 Gross et al. Jun 2005 A1
20050144455 Haitsma Jun 2005 A1
20050172130 Roberts Aug 2005 A1
20050177372 Wang et al. Aug 2005 A1
20050193015 Logston Sep 2005 A1
20050238238 Xu et al. Oct 2005 A1
20050245241 Durand et al. Nov 2005 A1
20050262428 Little et al. Nov 2005 A1
20050281439 Lange Dec 2005 A1
20050289163 Gordon et al. Dec 2005 A1
20050289590 Cheok et al. Dec 2005 A1
20060004745 Kuhn et al. Jan 2006 A1
20060013451 Haitsma Jan 2006 A1
20060020860 Tardif et al. Jan 2006 A1
20060020958 Allamanche et al. Jan 2006 A1
20060026203 Tan et al. Feb 2006 A1
20060031216 Semple et al. Feb 2006 A1
20060041596 Stirbu et al. Feb 2006 A1
20060048191 Xiong Mar 2006 A1
20060064037 Shalon et al. Mar 2006 A1
20060100987 Leurs May 2006 A1
20060112035 Cecchi et al. May 2006 A1
20060120626 Perlmutter Jun 2006 A1
20060129822 Snijder et al. Jun 2006 A1
20060143674 Jones et al. Jun 2006 A1
20060153296 Deng Jul 2006 A1
20060159442 Kim et al. Jul 2006 A1
20060173688 Whitham Aug 2006 A1
20060184638 Chua et al. Aug 2006 A1
20060204035 Guo et al. Sep 2006 A1
20060217818 Fujiwara Sep 2006 A1
20060217828 Hicken Sep 2006 A1
20060224529 Kermani Oct 2006 A1
20060236343 Chang Oct 2006 A1
20060242130 Sadri Oct 2006 A1
20060242139 Butterfield et al. Oct 2006 A1
20060242554 Gerace et al. Oct 2006 A1
20060247983 Dalli Nov 2006 A1
20060248558 Barton Nov 2006 A1
20060251292 Gokturk Nov 2006 A1
20060251338 Gokturk Nov 2006 A1
20060251339 Gokturk Nov 2006 A1
20060253423 McLane et al. Nov 2006 A1
20060288002 Epstein Dec 2006 A1
20070009159 Fan Jan 2007 A1
20070011151 Hagar et al. Jan 2007 A1
20070019864 Koyama et al. Jan 2007 A1
20070033163 Epstein et al. Feb 2007 A1
20070038608 Chen Feb 2007 A1
20070038614 Guha Feb 2007 A1
20070042757 Jung et al. Feb 2007 A1
20070061302 Ramer et al. Mar 2007 A1
20070067304 Ives Mar 2007 A1
20070067682 Fang Mar 2007 A1
20070071330 Oostveen et al. Mar 2007 A1
20070074147 Wold Mar 2007 A1
20070083611 Farago et al. Apr 2007 A1
20070091106 Moroney Apr 2007 A1
20070130112 Lin Jun 2007 A1
20070130159 Gulli et al. Jun 2007 A1
20070157224 Pouliot Jul 2007 A1
20070168413 Barletta et al. Jul 2007 A1
20070174320 Chou Jul 2007 A1
20070195987 Rhoads Aug 2007 A1
20070196013 Li Aug 2007 A1
20070220573 Chiussi et al. Sep 2007 A1
20070244902 Seide et al. Oct 2007 A1
20070253594 Lu et al. Nov 2007 A1
20070255785 Hayashi et al. Nov 2007 A1
20070268309 Tanigawa et al. Nov 2007 A1
20070282826 Hoeber et al. Dec 2007 A1
20070294295 Finkelstein et al. Dec 2007 A1
20070298152 Baets Dec 2007 A1
20080046406 Seide et al. Feb 2008 A1
20080049629 Morrill Feb 2008 A1
20080072256 Boicey et al. Mar 2008 A1
20080091527 Silverbrook et al. Apr 2008 A1
20080109433 Rose May 2008 A1
20080152231 Gokturk Jun 2008 A1
20080163288 Ghosal et al. Jul 2008 A1
20080165861 Wen Jul 2008 A1
20080166020 Kosaka Jul 2008 A1
20080172615 Igelman et al. Jul 2008 A1
20080201299 Lehikoinen et al. Aug 2008 A1
20080201326 Cotter Aug 2008 A1
20080204706 Magne et al. Aug 2008 A1
20080228995 Tan et al. Sep 2008 A1
20080237359 Silverbrook et al. Oct 2008 A1
20080253737 Kimura Oct 2008 A1
20080263579 Mears et al. Oct 2008 A1
20080270373 Oostveen et al. Oct 2008 A1
20080270569 McBride Oct 2008 A1
20080294278 Borgeson Nov 2008 A1
20080313140 Pereira et al. Dec 2008 A1
20090013414 Washington et al. Jan 2009 A1
20090022472 Bronstein Jan 2009 A1
20090024641 Quigley et al. Jan 2009 A1
20090034791 Doretto Feb 2009 A1
20090037408 Rodgers Feb 2009 A1
20090043637 Eder Feb 2009 A1
20090043818 Raichfigauz Feb 2009 A1
20090080759 Bhaskar Mar 2009 A1
20090089251 Johnston Apr 2009 A1
20090089587 Brunk et al. Apr 2009 A1
20090119157 Dulepet May 2009 A1
20090125544 Brindley May 2009 A1
20090148045 Lee et al. Jun 2009 A1
20090157575 Schobben et al. Jun 2009 A1
20090172030 Schiff et al. Jul 2009 A1
20090175538 Bronstein et al. Jul 2009 A1
20090216761 Raichfigauz Aug 2009 A1
20090245573 Saptharishi et al. Oct 2009 A1
20090245603 Koruga et al. Oct 2009 A1
20090253583 Yoganathan Oct 2009 A1
20090277322 Cai et al. Nov 2009 A1
20090278934 Ecker Nov 2009 A1
20100042646 Raichelgauz Feb 2010 A1
20100082684 Churchill Apr 2010 A1
20100104184 Bronstein Apr 2010 A1
20100111408 Matsuhira May 2010 A1
20100125569 Nair May 2010 A1
20100162405 Cook Jun 2010 A1
20100173269 Puri et al. Jul 2010 A1
20100268524 Nath et al. Oct 2010 A1
20100306193 Pereira Dec 2010 A1
20100318493 Wessling Dec 2010 A1
20100322522 Wang et al. Dec 2010 A1
20110029620 Bonforte Feb 2011 A1
20110038545 Bober Feb 2011 A1
20110052063 McAuley et al. Mar 2011 A1
20110055585 Lee Mar 2011 A1
20110145068 King et al. Jun 2011 A1
20110202848 Ismalon Aug 2011 A1
20110246566 Kashef Oct 2011 A1
20110251896 Impollonia et al. Oct 2011 A1
20110296315 Lin et al. Dec 2011 A1
20110313856 Cohen et al. Dec 2011 A1
20120082362 Diem et al. Apr 2012 A1
20120131454 Shah May 2012 A1
20120133497 Sasaki May 2012 A1
20120150890 Jeong et al. Jun 2012 A1
20120167133 Carroll Jun 2012 A1
20120179751 Ahn Jul 2012 A1
20120185445 Borden et al. Jul 2012 A1
20120197857 Huang Aug 2012 A1
20120229028 Ackermann Sep 2012 A1
20120239694 Avner et al. Sep 2012 A1
20120299961 Ramkumar et al. Nov 2012 A1
20120330869 Durham Dec 2012 A1
20120331011 Raichelgauz et al. Dec 2012 A1
20130031489 Gubin et al. Jan 2013 A1
20130066856 Ong et al. Mar 2013 A1
20130067035 Amanat et al. Mar 2013 A1
20130067364 Berntson et al. Mar 2013 A1
20130086499 Dyor et al. Apr 2013 A1
20130089248 Remiszewski Apr 2013 A1
20130103814 Carrasco Apr 2013 A1
20130104251 Moore et al. Apr 2013 A1
20130108179 Marchesotti May 2013 A1
20130110949 Maurel May 2013 A1
20130159298 Mason et al. Jun 2013 A1
20130170746 Zhang Jul 2013 A1
20130173635 Sanjeev Jul 2013 A1
20130191323 Raichelgauz Jul 2013 A1
20130211656 An Aug 2013 A1
20130212493 Krishnamurthy Aug 2013 A1
20130226820 Sedota, Jr. Aug 2013 A1
20130226930 Arngren Aug 2013 A1
20130325550 Varghese et al. Dec 2013 A1
20130332951 Gharaat et al. Dec 2013 A1
20130339386 Serrano Dec 2013 A1
20140019264 Wachman et al. Jan 2014 A1
20140025692 Pappas Jan 2014 A1
20140040232 Raichelgauz Feb 2014 A1
20140059443 Tabe Feb 2014 A1
20140095425 Sipple Apr 2014 A1
20140111647 Atsmon Apr 2014 A1
20140125703 Roveta May 2014 A1
20140147829 Jerauld May 2014 A1
20140149443 Raichelgauz May 2014 A1
20140152698 Kim et al. Jun 2014 A1
20140176604 Venkitaraman et al. Jun 2014 A1
20140188786 Raichelgauz Jul 2014 A1
20140189536 Lange Jul 2014 A1
20140193077 Shiiyama et al. Jul 2014 A1
20140201330 Lozano Lopez Jul 2014 A1
20140250032 Huang et al. Sep 2014 A1
20140270350 Rodriguez-Serrano Sep 2014 A1
20140282655 Roberts Sep 2014 A1
20140300722 Garcia Oct 2014 A1
20140310825 Raichelgauz et al. Oct 2014 A1
20140330830 Raichelgauz et al. Nov 2014 A1
20140341471 Ono Nov 2014 A1
20140379477 Sheinfeld Dec 2014 A1
20150009129 Song Jan 2015 A1
20150033150 Lee Jan 2015 A1
20150081725 Ogawa Mar 2015 A1
20150117784 Lin Apr 2015 A1
20150134318 Cuthbert May 2015 A1
20150134688 Jing May 2015 A1
20150154189 Raichelgauz Jun 2015 A1
20150237472 Alsina Aug 2015 A1
20150242689 Mau Aug 2015 A1
20150286742 Zhang et al. Oct 2015 A1
20150289022 Gross Oct 2015 A1
20150317836 Beaurepaire Nov 2015 A1
20150348102 Alsina Dec 2015 A1
20150363644 Wnuk Dec 2015 A1
20160026707 Ong et al. Jan 2016 A1
20160171785 Banatwala Jun 2016 A1
20160210525 Yang Jul 2016 A1
20160221592 Puttagunta Aug 2016 A1
20160307048 Krishnamoorthy Oct 2016 A1
20160342683 Kwon Nov 2016 A1
20160342863 Kwon Nov 2016 A1
20160357188 Ansari Dec 2016 A1
20170032257 Sharifi Feb 2017 A1
20170041254 Agara Venkatesha Rao Feb 2017 A1
20170066452 Scofield Mar 2017 A1
20170072851 Shenoy Mar 2017 A1
20170109602 Kim Apr 2017 A1
20170150047 Jung May 2017 A1
20170255620 Raichelgauz Sep 2017 A1
20170259819 Takeda Sep 2017 A1
20170262437 Raichelgauz Sep 2017 A1
20170277691 Agarwal Sep 2017 A1
20170323568 Inoue Nov 2017 A1
20180081368 Watanabe Mar 2018 A1
20180101177 Cohen Apr 2018 A1
20180157916 Doumbouya Jun 2018 A1
20180158323 Takenaka Jun 2018 A1
20180204111 Zadeh Jul 2018 A1
20180286239 Kaloyeros Oct 2018 A1
20180300654 Prasad Oct 2018 A1
20190005726 Nakano Jan 2019 A1
20190039627 Yamamoto Feb 2019 A1
20190043274 Hayakawa Feb 2019 A1
20190045244 Balakrishnan Feb 2019 A1
20190056718 Satou Feb 2019 A1
20190061784 Koehler Feb 2019 A1
20190065951 Luo Feb 2019 A1
20190188501 Ryu Jun 2019 A1
20190220011 Della Penna Jul 2019 A1
20190236954 Komura Aug 2019 A1
20190317513 Zhang Oct 2019 A1
20190320512 Zhang Oct 2019 A1
20190364492 Azizi Nov 2019 A1
20190384303 Muller Dec 2019 A1
20190384312 Herbach Dec 2019 A1
20190385460 Magzimof Dec 2019 A1
20190389459 Berntorp Dec 2019 A1
20190392710 Kapoor Dec 2019 A1
20200004248 Healey Jan 2020 A1
20200004251 Zhu Jan 2020 A1
20200004265 Zhu Jan 2020 A1
20200005631 Visintainer Jan 2020 A1
20200018606 Wolcott Jan 2020 A1
20200018618 Ozog Jan 2020 A1
20200020212 Song Jan 2020 A1
20200050973 Stenneth Feb 2020 A1
20200073977 Montemerlo Mar 2020 A1
20200090484 Chen Mar 2020 A1
20200097756 Hashimoto Mar 2020 A1
20200133307 Kelkar Apr 2020 A1
20200043326 Tao Jun 2020 A1
Foreign Referenced Citations (8)
Number Date Country
0231764 Apr 2002 WO
2003005242 Jan 2003 WO
2003067467 Aug 2003 WO
2004019527 Mar 2004 WO
2005027457 Mar 2005 WO
20070049282 May 2007 WO
2014137337 Sep 2014 WO
2016040376 Mar 2016 WO
Non-Patent Literature Citations (102)
Entry
Queluz, “Content-Based Integrity Protection of Digital Images”, SPIE Conf. on Security and Watermarking of Multimedia Contents, San Jose, Jan. 1999, pp. 85-93, downloaded from http://proceedings.spiedigitallibrary.org/ on Aug. 2, 2017.
Raichelgauz, I. et al.: “Co-evolutionary Learning in Liquid Architectures”, Lecture Notes in Computer Science, [Online] vol. 3512, Jun. 21, 2005 (Jun. 21, 2005), pp. 241-248, XP019010280 Springer Berlin / Heidelberg ISSN: 1611-3349 ISBN: 978-3-540-26208-1.
Ribert et al. “An Incremental Hierarchical Clustering”, Visicon Interface 1999, pp. 586-591.
Santos, et al., “SCORM-MPEG: an Ontology of Interoperable Metadata for Multimedia and e-Learning”, 2015 23rd International Conference on Software, Telecommunications and Computer Networks (SoftCOM) Year: 2015, pp. 224-228, DOI: 10.1109/SOFTCOM.2015.7314122 IEEE Conference Publications.
Scheper et al., “Nonlinear dynamics in neural computation”, ESANN'2006 proceedings—European Symposium on Artificial Neural Networks, Bruges (Belgium), Apr. 26-28, 2006, d-side publi, ISBN 2-930307-06-4.
Schneider, et al., “A Robust Content Based Digital Signature for Image Authentication”, Proc. ICIP 1996, Laussane, Switzerland, Oct. 1996, pp. 227-230.
Semizarov et al. “Specificity of Short Interfering RNA Determined through Gene Expression Signatures”, PNAS, 2003, pp. 6347-6352.
Shih-Fu Chang, et al., “VideoQ: A Fully Automated Video Retrieval System Using Motion Sketches”, 1998, IEEE, , New York, pp. 1-2.
The International Search Report and the Written Opinion for PCT/US2016/050471, ISA/RU, Moscow, RU, dated May 4, 2017.
The International Search Report and the Written Opinion for PCT/US2016/054634 dated Mar. 16, 2017, ISA/RU, Moscow, RU.
The International Search Report and the Written Opinion for PCT/US2017/015831, ISA/RU, Moscow, Russia, dated Apr. 20, 2017.
Theodoropoulos et al., “Simulating Asynchronous Architectures on Transputer Networks”, Proceedings of the Fourth Euromicro Workshop on Parallel and Distributed Processing, 1996. PDP '96.
Vailaya, et al., “Content-Based Hierarchical Classification of Vacation Images,” I.E.E.E.: Multimedia Computing and Systems, vol. 1, 1999, East Lansing, MI, pp. 518-523.
Wallet, et al., “Personalized Content Retrieval in Context Using Ontological Knowledge,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, No. 3, Mar. 2007, pp. 336-346.
Verstraeten et al., “Isolated word recognition with the Liquid State Machine: a case study”; Department of Electronics and Information Systems, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium, Available online Jul. 14, 2005.
Verstraeten et al.: “Isolated word recognition with the Liquid State Machine: a case study”, Information Processing Letters, Amsterdam, NL, vol. 95, No. 6, Sep. 30, 2005 (Sep. 30, 2005), pp. 521-528, XP005028093 ISSN: 0020-0190.
Wang et al. “A Signature for Content-based Image Retrieval Using a Geometrical Transform”, ACM 1998, pp. 229-234.
Ware et al., “Locating and Identifying Components in a Robot's Workspace using a Hybrid Computer Architecture”; Proceedings of the 1995 IEEE International Symposium on Intelligent Control, Aug. 27-29, 1995, pp. 139-144.
Wei-Te Li et al., “Exploring Visual and Motion Saliency for Automatic Video Object Extraction”, IEEE, vol. 22, No. 7, Jul. 2013, pp. 1-11.
Whitby-Strevens, “The Transputer”, 1985 IEEE, Bristol, UK.
Wilk, et al., “The Potential of Social-Aware Multimedia Prefetching on Mobile Devices”, 2015 International Conference and Workshops on Networked Systems (NetSys) Year: 2015, pp. 1-5, DOI: 10.1109/NetSys.2015.7089081 IEEE Conference Publications.
Xian-Sheng Hua et al.: “Robust Video Signature Based on Ordinal Measure” In: 2004 International Conference on Image Processing, ICIP '04; Microsoft Research Asia, Beijing, China; published Oct. 24-27, 2004, pp. 685-688.
Yanagawa, et al., “Columbia University's Baseline Detectors for 374 LSCOM Semantic Visual Concepts.” Columbia University ADVENT technical report, 2007, pp. 222-2006-8.
Yanai, “Generic Image Classification Using Visual Knowledge on the Web,” MM'03, Nov. 2-8, 2003, Tokyo, Japan, pp. 167-176.
Zang, et al., “A New Multimedia Message Customizing Framework for Mobile Devices”, Multimedia and Expo, 2007 IEEE International Conference on Year: 2007, pp. 1043-1046, DOI: 10.1109/ICME.2007.4284832 IEEE Conference Publications.
Zeevi, Y. et al.: “Natural Signal Classification by Neural Cliques and Phase-Locked Attractors”, IEEE World Congress on Computational Intelligence, IJCNN2006, Vancouver, Canada, Jul. 2006 (Jul. 2006), XP002466252.
Zhou et al., “Ensembling neural networks: Many could be better than all”; National Laboratory for Novel Software Technology, Nanjing Unviersirty, Hankou Road 22, Nanjing 210093, PR China; Received Nov. 16, 2001, Available online Mar. 12, 2002.
Zhou et al., “Medical Diagnosis With C4.5 Rule Preceded by Artificial Neural Network Ensemble”; IEEE Transactions an Information Technology in Biomedicine, vol. 7, Issue: 1, pp. 37-42, Date of Publication: Mar. 2003.
Zhu et al., Technology-Assisted Dietary Assessment. Computational Imaging VI, edited by Charles A. Bouman, Eric L. Miller, Ilya Pollak, Proc, of SPIE-IS&T Electronic Imaging, SPIE vol. 6814, 681411, Copyright 2008 SPIE-IS&T. pp. 1-10.
Zou, et al., “A Content-Based Image Authentication System with Lossless Data Hiding”, ICME 2003, pp. 213-216.
Ma Et El. (“Semantics modeling based image retrieval system using neural networks” 2005 (Year: 2005).
Boari et al, “Adaptive Routing for Dynamic Applications in Massively Parallel Architectures”, 1995 IEEE, Spring 1995.
Brecheisen, et al., “Hierarchical Genre Classification for Large Music Collections”, ICME 2006, pp. 1385-1388.
Burgsteiner et al.: “Movement Prediction From Real-World Images Using a Liquid State Machine”, Innovations in Applied Artificial Intelligence Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence, LNCS, Springer-Verlag, BE, vol. 3533, Jun. 2005, pp. 121-130.
Cernansky et al., “Feed-forward Echo State Networks”; Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, Jul. 31-Aug. 4, 2005.
Chuan-Yu Cho, et al., “Efficient Motion-Vector-Based Video Search Using Query by Clip”, 2004, IEEE, Taiwan, pp. 1-4.
Clement, et al. “Speaker Diarization of Heterogeneous Web Video Files: A Preliminary Study”, Acoustics, Speech and Signal Processing (ICASSP), 2011, IEEE International Conference on Year: 2011, pp. 4432-4435, DOI: 10.1109/ICASSP.2011.5947337 IEEE Conference Publications, France.
Cococcioni, et al., “Automatic Diagnosis of Defects of Rolling Element Bearings Based on Computational Intelligence Techniques”, University of Pisa, Pisa, Italy, 2009.
Emami, et al., “Role of Spatiotemporal Oriented Energy Features for Robust Visual Tracking in Video Surveillance, University of Queensland”, St. Lucia, Australia, 2012.
Fathy et al., “A Parallel Design and Implementation for Backpropagation Neural Network Using NIMD Architecture”, 8th Mediterranean Electrotechnical Corsfe rersce, 19'96. MELECON '96, Date of Conference: May 13-16, 1996, vol. 3, pp. 1472-1475.
Foote, Jonathan et al., “Content-Based Retrieval of Music and Audio”; 1997, Institute of Systems Science, National University of Singapore, Singapore (Abstract).
Freisleben et al., “Recognition of Fractal Images Using a Neural Network”, Lecture Notes in Computer Science, 1993, vol. 6861, 1993, pp. 631-637.
Garcia, “Solving the Weighted Region Least Cost Path Problem Using Transputers”, Naval Postgraduate School, Monterey, California, Dec. 1989.
Gomes et al., “Audio Watermaking and Fingerprinting: For Which Applications?” University of Rene Descartes, Paris, France, 2003.
Gong, et al., “A Knowledge-based Mediator for Dynamic Integration of Heterogeneous Multimedia Information Sources”, Video and Speech Processing, 2004, Proceedings of 2004 International Symposium on Year: 2004, pp. 467-470, DOI: 10.1109/ISIMP.2004.1434102 IEEE Conference Publications, Hong Kong.
Guo et al, “AdOn: An Intelligent Overlay Video Advertising System”, SIGIR, Boston, Massachusetts, Jul. 19-23, 2009.
Howlett et al., “A Multi-Computer Neural Network Architecture in a Virtual Sensor System Application”, International Journal of Knowledge-based Intelligent Engineering Systems, 4 (2). pp. 86-93, 133N 1327-2314; first submitted Nov. 30, 1999; revised version submitted Mar. 10, 2000.
Hua, et al., “Robust Video Signature Based on Ordinal Measure”, Image Processing, 2004. 2004 International Conference on Image Processing (ICIP), vol. 1, IEEE, pp. 685-688, 2004.
Ihab Al Kabary, et al., “SportSense: Using Motion Queries to Find Scenes in Sports Videos”, Oct. 2013, ACM, Switzerland, pp. 1-3.
International Search Authority: “Written Opinion of the International Searching Authority” (PCT Rule 43bis.1) Including International Search Report for International Patent Application No. PCT/US2008/073852; dated Jan. 28, 2009.
International Search Authority: International Preliminary Report on Patentability (Chapter I of the Patent Cooperation Treaty) including “Written Opinion of the International Searching Authority” (PCT Rule 43bis. 1) for the corresponding International Patent Application No. PCT/IL2006/001235; Date of Issuance: Jul. 28, 2009.
International Search Report for the corresponding International Patent Application PCT/IL2006/001235; dated Nov. 2, 2008.
IPO Examination Report under Section 18(3) for corresponding UK application No. GB1001219.3, dated Sep. 12, 2011.
Iwamoto, K.; Kasutani, E.; Yamada, A.: “Image Signature Robust to Caption Superimposition for Video Sequence Identification”; 2006 IEEE International Conference on Image Processing; pp. 3185-3188, Oct. 8-11, 2006; doi: 10.1109/ICIP.2006.313046.
Iwamoto, K.; Kasutani, E.; Yamada, A.; , “Image Signature Robust to Caption Superimposition for Video Sequence Identification,” Image Processing, 2006 IEEE International Conference on, vol., No., pp. 3185-3188, Oct. 8-11, 2006 doi: 10.1109/ICIP.2006.313046URL:http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4107247&isnumber=4106440.
Jaeger, H.: “The “echo state” approach to analysing and training recurrent neural networks”, GMD Report, No. 148, 2001, pp. 1-43, XP002466251 German National Research Center for Information Technology.
Jianping Fan et al., “Concept-Oriented Indexing of Video Databases: Towards Semantic Sensitive Retrieval and Browsing”, IEEE, vol. 13, No. 7, Jul. 2004, pp. 1-19.
Johnson, John L., “Pulse-Coupled Neural Nets: Translation, Rotation, Scale, Distortion, and Intensity Signal nvariance for Images.” Applied Optics, vol. 33, No. 26, 1994, pp. 6239-6253.
Lau, et al., “Semantic Web Service Adaptation Model for a Pervasive Learning Scenario”, 2008 IEEE Conference on Innovative Technologies in Intelligent Systems and Industrial Applications Year: 2008, pp. 98-103, DOI: 10.1109/CITISIA.2008.4607342 IEEE Conference Publications.
Li, et al., “Matching Commercial Clips from TV Streams Using a Unique, Robust and Compact Signature,” Proceedings of the Digital Imaging Computing: Techniques and Applications, Feb. 2005, vol. 0-7695-2467, Australia.
Lin, C.; Chang, S.;, “Generating Robust Digital Signature for Image/Video Authentication,”Multimedia and Security Workshop at ACM Multimedia '98. Bristol, U.K. Sep. 1998, pp. 49-54.
Lin, et al., “Robust Digital Signature for Multimedia Authentication: A Summary”, IEEE Circuits and Systems Magazine, 4th Quarter 2003, pp. 23-26.
Lin, et al., “Summarization of Large Scale Social Network Activity”, Acoustics, Speech and Signal Processing, 2009, ICASSP 2009, IEEE International Conference on Year 2009, pp. 3481-3484, DOI: 10.1109/ICASSP.2009.4960375, IEEE Conference Publications, Arizona.
Liu, et al., “Instant Mobile Video Search With Layered Audio-Video Indexing and Progressive Transmission”, Multimedia, IEEE Transactions on Year: 2014, vol. 16, Issue: 8, pp. 2242-2255, DOI: 10.1109/TMM.2014.2359332 IEEE Journals & Magazines.
Lyon, Richard F.; “Computational Models of Neural Auditory Processing”; IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '84, Date of Conference: Mar. 1984, vol. 9, pp. 41-44.
Maass, W. et al.: “Computational Models for Generic Cortical Microcircuits”, Institute for Theoretical Computer Science, Technische Universitaet Graz, Graz, Austria, published Jun. 10, 2003.
Mahdhaoui, et al, “Emotional Speech Characterization Based on Multi-Features Fusion for Face-to-Face Interaction”, Universite Pierre et Marie Curie, Paris, France, 2009.
Marti, et al, “Real Time Speaker Localization and Detection System for Camera Steering in Multiparticipant Videoconferencing Environments”, Universidad Politecnica de Valencia, Spain, 2011.
May et al., “The Transputer”, Springer-Verlag, Berlin Heidelberg, 1989, teaches multiprocessing system.
McNamara, et al., “Diversity Decay in Opportunistic Content Sharing Systems”, 2011 IEEE International Symposium an a World of Wireless, Mobile and Multimedia Networks Year: 2011, pp. 1-3, DOI: 10.1109/WoWMoM.2011.5986211 IEEE Conference Publications.
Mei, et al., “Contextual In-Image Advertising”, Microsoft Research Asia, pp. 439-448, 2008.
Mei, et al., “VideoSense—Towards Effective Online Video Advertising”, Microsoft Research Asia, pp. 1075-1084, 2007.
Mladenovic, et al., “Electronic Tour Guide for Android Mobile Platform with Multimedia Travel Book”, Telecommunications Forum (TELFOR), 2012 20th Year: 2012, pp. 1460-1463, DOI: 10.1109/TELFOR.2012.6419494 IEEE Conference Publications.
Morad, T.Y. et al.: “Performance, Power Efficiency and Scalability of Asymmetric Cluster Chip Multiprocessors”, Computer Architecture Letters, vol. 4, Jul. 4, 2005 (Jul. 4, 2005), pp. 1-4, XP002466254.
Nagy et al, “A Transputer, Based, Flexible, Real-Time Control System for Robotic Manipulators”, UKACC International Conference on Control '96, Sep. 2-5, 1996, Conference 1996, Conference Publication No. 427, IEE 1996.
Nam, et al., “Audio Visual Content-Based Violent Scene Characterization”, Department of Electrical and Computer Engineering, Minneapolis, MN, 1998, pp. 353-357.
Natsclager, T. et al.: “The “liquid computer”: A novel strategy for real-time computing on time series”, Special Issue on Foundations of Information Processing of Telematik, vol. 8, No. 1, 2002, pp. 39-43, XP002466253.
Nouza, et al., “Large-scale Processing, Indexing and Search System for Czech Audio-Visual Heritage Archives”, Multimedia Signal Processing (MMSP), 2012, pp. 337-342, IEEE 14th Intl. Workshop, DOI: 10.1109/MMSP.2012.6343465, Czech Republic.
Odinaev, et al., “Cliques in Neural Ensembles as Perception Carriers”, Technion—Israel Institute of Technology, 2006 International Joint Conference on Neural Networks, Canada, 2006, pp. 285-292.
Ortiz-Boyer et al., “CIXL2: A Crossover Operator for Evolutionary Algorithms Based on Population Features”, Journal of Artificial Intelligence Research 24 (2005) 1-48 Submitted Nov. 2004; published Jul. 2005.
Park, et al., “Compact Video Signatures for Near-Duplicate Detection on Mobile Devices”, Consumer Electronics (ISCE 2014), The 18th IEEE International Symposium on Year: 2014, pp. 1-2, DOI: 10.1109/ISCE.2014.6884293 IEEE Conference Publications.
Jasinschi et al., A Probabilistic Layered Framework for Integrating Multimedia Content and Context Information, 2002, IEEE, p. 2057-2060. (Year: 2002).
Jones et al., “Contextual Dynamics of Group-Based Sharing Decisions”, 2011, University of Bath, p. 1777-1786. (Year: 2011).
Iwamoto, “Image Signature Robust to Caption Superimpostion for Video Sequence Identification”, IEEE, pp. 3185-3188 (Year: 2006).
Cooperative Multi-Scale Convolutional Neural, Networks for Person Detection, Markus Eisenbach, Daniel Seichter, Tim Wengefeld, and Horst-Michael Gross Ilmenau University of Technology, Neuroinformatics and Cognitive Robotics Lab (Year; 2016).
Chen, Yixin, James Ze Wang, and Robert Krovetz. “CLUE: cluster-based retrieval of images by unsupervised learning.” IEEE transactions on Image Processing 14.8 (2005); 1187-1201. (Year: 2005).
Wusk et al (Non-Invasive detection of Respiration and Heart Rate with a Vehicle Seat Sensor; www.mdpi.com/journal/sensors; Published: May 8, 2018). (Year: 2018).
Chen, Tiffany Yu-Han, et al. “Glimpse: Continuous, real-time object recognition on mobile devices.” Proceedings of the 13th ACM Confrecene on Embedded Networked Sensor Systems. 2015. (Year: 2015).
Lai, Wei-Sheng, et al. “Deep laplacian pyramid networks for fast and accurate super-resolution.” Proceedings of the IEEE conference on computer vision and pattern recognition. 2017 (Year: 2017).
Ren, Shaoqing, et al. “Faster r-cnn: Towards real-time object detection with region proposal networks.” IEEE transactions on pattern analysis and machine intelligence 39.6 (2016): 1137-1149 (Year: 2016).
Felzenszwalb, Pedro F., et al. “Object detection with discriminatively trained part-based models.” IEEE transactions on pattern analysis and machine intelligence 32.9 (2009): 1627-1645. (Year: 2009).
Lin, Tsung-Yi, et al. “Feature pyramid networks for object detection.” Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. (Year: 2017).
Jasinschi, Radu S., et al. “A probabilistic layered framework for integrating multimedia content and context information.” 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing. vol. 2. IEEE, 2002. (Year: 2002).
Gull et al., “A Clustering Technique To Rise Up The Marketing Tactics By Looking Out The Key Users Taking Facebook as a Case study”, 2014, IEEE International Advance Computing Conference (IACC), 579-585 (Year: 2014).
Zhang et al., “Dynamic Estimation of Family Relations from Photos”, 2011, Advances in Multimedia Modeling. MMM 2011, pp. 65-76 (Year: 2011).
Chen, “CLUE: Cluster-Based Retrieval of Images by Unsupervised Learning”, IEEE, vol. 14 pp. 1187-1201 (Year: 2005).
Troung, “CASIS: A System for Concept-Aware Social Image Search”, 2012 (Year: 2012).
Cody, W.F. et al. (1995, March). “Querying multimedia data from multiple repositories by content: the Garlic project”. In Working Conference on Visual Database Systems (pp. 17-35). Springer, Boston, MA. (Year: 1995).
Schneider, J.M. (2015, October). “New approaches to interactive multimedia content retrieval from different sources”. Diss. Universidad Carlos Ill de Madrid. 274 pages. (Year: 2015).
Yong, N .S. (2008). “Combining multi modal external resources for event-based news video retrieval and question answering”. PhD Diss, National University Singapore. 140 pages. (Year: 2008.
Kennedy, L. et al. (2008). “Query-adaptive fusion for multimodal search”. Proceedings of the IEEE, 96(4), 567-588. (Year: 2008).
Sang Hyun Joo, “Real time traversability analysis to enhance rough terrain navigation for an 6×6 autonomous vehicle”, 2013 (Year: 2013).
Related Publications (1)
Number Date Country
20180246885 A1 Aug 2018 US
Continuations (1)
Number Date Country
Parent 12603123 Oct 2009 US
Child 13602858 US
Continuation in Parts (12)
Number Date Country
Parent 14597324 Jan 2015 US
Child 15858331 US
Parent 13766463 Feb 2013 US
Child 14597324 US
Parent 13602858 Sep 2012 US
Child 13766463 US
Parent 12538495 Aug 2009 US
Child 12603123 US
Parent 12348888 Jan 2009 US
Child 12538495 US
Parent 12195863 Aug 2008 US
Child 12348888 US
Parent 12084150 US
Child 12195863 US
Parent 12195863 Aug 2008 US
Child 12538495 US
Parent 12084150 US
Child 12195863 US
Parent 12195863 Aug 2008 US
Child 12603123 US
Parent 12084150 US
Child 12195863 US
Parent 12084150 US
Child 12195863 US