System and method for compressor motor protection

Information

  • Patent Grant
  • 9590413
  • Patent Number
    9,590,413
  • Date Filed
    Monday, February 9, 2015
    9 years ago
  • Date Issued
    Tuesday, March 7, 2017
    7 years ago
Abstract
A refrigerant compressor includes an electric motor. A current sensor measures current flow to the electric motor. A switching device is configured to close and open to allow and prevent current flow to the electric motor, respectively. A maximum continuous current (MCC) device includes a stored digital value corresponding to a maximum continuous current for the electric motor. A motor protection module: communicates with the MCC device, the current sensor, and the switching device; determines a first MCC for the electric motor as a function of the stored digital value received from the MCC device; selectively sets a predetermined MCC to the first MCC; and controls the switching device based on a comparison of the current flow to the electric motor and the predetermined MCC.
Description
FIELD

The present application relates to electric motor control systems and methods and more particularly to maximum continuous current (MCC) systems and methods.


BACKGROUND

The background description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.


A power source such as an electrical utility may supply alternating current (AC) power to a refrigerant compressor. The refrigerant compressor includes an electric motor that drives the refrigerant compressor. A system including the refrigerant compressor may also include one or more devices that prevent current flow to the electric motor from exceeding a predetermined value.


For example, a line break protector may be implemented such that current flows through the line break protector before flowing to the electric motor. The line break protector may include an electric heater that generates heat as current flows through the line break protector. The line break protector trips and disables current flow to the electric motor when the current flowing through the line break protector is greater than the predetermined value.


For another example, a positive temperature coefficient (PTC) device and/or a negative temperature coefficient (NTC) device may be implemented in thermal contact with a motor winding to achieve a temperature relative to the temperature of the motor. Resistances of the PTC and/or NTC devices may then be used to determine motor temperature, both directly and indirectly. One or more remedial actions, such as shutting off the motor, can be taken if the motor temperature measured or determined using the PTC and/or NTC devices is greater than a predetermined temperature.


SUMMARY

In a feature, a system is described. A refrigerant compressor includes an electric motor. A current sensor measures current flow to the electric motor. A switching device is configured to close and open to allow and prevent current flow to the electric motor, respectively. A maximum continuous current (MCC) device includes a stored digital value corresponding to a maximum continuous current for the electric motor. A motor protection module: communicates with the MCC device, the current sensor, and the switching device; determines a first MCC for the electric motor as a function of the stored digital value received from the MCC device; selectively sets a predetermined MCC to the first MCC; and controls the switching device based on a comparison of the current flow to the electric motor and the predetermined MCC.


In further features, the motor protection module opens the switching device when the current flow to the electric motor is greater than the predetermined MCC.


In further features, the motor protection module receives the stored digital value wirelessly from the MCC device using near field communication.


In further features, the motor protection module receives the stored digital value wirelessly from the MCC device using radio frequency identification (RFID).


In further features, the motor protection module receives the stored digital value wirelessly from the MCC device using a Bluetooth communication protocol.


In further features, the motor protection module determines the first MCC for the electric motor using a lookup table that relates digital values to respective first MCCs.


In further features, the MCC device is integrated with the motor protection module.


In further features, the system further includes a second MCC device. The motor protection module: determines a second MCC for the electric motor as a function of an output of the second MCC device; and selectively sets the predetermined MCC to the second MCC.


In further features, the motor protection module sets the predetermined MCC equal to a lesser one of the first and second MCCs.


In further features, the second MCC device is integrated with the refrigerant compressor and remote from the motor protection module.


In a feature, a method is described. The method includes: measuring, using a current sensor, current flow to an electric motor of a refrigerant compressor; selectively opening and closing a switching device to allow and prevent current flow to the electric motor, respectively; communicating with the current sensor, the switching device, and a maximum continuous current (MCC) device, the MCC device including a stored digital value corresponding to a maximum continuous current for the electric motor; receiving the stored digital value from the MCC device; determining a first MCC for the electric motor as a function of the stored digital value received from the MCC device; selectively setting a predetermined MCC to the first MCC; and controlling the switching device based on a comparison of the current flow to the electric motor and the predetermined MCC.


In further features, the method further includes opening the switching device when the current flow to the electric motor is greater than the predetermined MCC.


In further features, receiving the stored digital value from the MCC device includes receiving the stored digital value wirelessly from the MCC device using near field communication.


In further features, receiving the stored digital value from the MCC device includes receiving the stored digital value wirelessly from the MCC device using radio frequency identification (RFID).


In further features, receiving the stored digital value from the MCC device includes receiving the stored digital value wirelessly from the MCC device using a Bluetooth communication protocol.


In further features, determining the first MCC includes determining the first MCC for the electric motor using a lookup table that relates digital values to respective first MCCs.


In further features, the method further includes: determining a second MCC for the electric motor as a function of an output of 1 second MCC device; and selectively setting the predetermined MCC to the second MCC.


In further features, the method further includes setting the predetermined MCC equal to a lesser one of the first and second MCCs.


In further features, the second MCC device is integrated with the refrigerant compressor.


Further areas of applicability of the present disclosure will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure will become more fully understood from the detailed description and the accompanying drawings, wherein:



FIG. 1 is a schematic illustration of a heat pump system;



FIG. 2 is a functional block diagram of an example motor control system;



FIGS. 3A-3C are functional block diagrams of example current control systems; and



FIG. 4 is a flowchart depicting an example method of controlling current flow to an electric motor.





DETAILED DESCRIPTION

The following description is merely illustrative in nature and is in no way intended to limit the disclosure, its application, or uses. For purposes of clarity, the same reference numbers will be used in the drawings to identify similar elements. As used herein, the phrase at least one of A, B, and C should be construed to mean a logical (A or B or C), using a non-exclusive logical or. It should be understood that steps within a method may be executed in different order without altering the principles of the present disclosure.


As used herein, the term module may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC); an electronic circuit; a combinational logic circuit; a field programmable gate array (FPGA); a processor (shared, dedicated, or group) that executes code; other suitable hardware components that provide the described functionality; or a combination of some or all of the above, such as in a system-on-chip (SOC). The term module may include memory (shared, dedicated, or group) that stores code executed by the processor.


The term code, as used above, may include software, firmware, and/or microcode, and may refer to programs, routines, functions, classes, and/or objects. The term shared, as used above, means that some or all code from multiple modules may be executed using a single (shared) processor. In addition, some or all code from multiple modules may be stored by a single (shared) memory. The term group, as used above, means that some or all code from a single module may be executed using a group of processors or a group of execution engines. For example, multiple cores and/or multiple threads of a processor may be considered to be execution engines. In various implementations, execution engines may be grouped across a processor, across multiple processors, and across processors in multiple locations, such as multiple servers in a parallel processing arrangement. In addition, some or all code from a single module may be stored using a group of memories.


The apparatuses and methods described herein may be implemented by one or more computer programs executed by one or more processors. The computer programs include processor-executable instructions that are stored on a non-transitory tangible computer readable medium. The computer programs may also include stored data. Non-limiting examples of the non-transitory tangible computer readable medium are nonvolatile memory, magnetic storage, and optical storage.


An original equipment manufacturer (OEM), such as a compressor manufacturer, determines a maximum continuous current (MCC) for a motor of a refrigerant compressor based on a variety of factors. For example only, the MCC for the motor may be set based on output capability of the motor (e.g., horsepower), one or more characteristics of the refrigerant compressor, the type of refrigerant, and an operating envelope. The operating envelope may include an evaporator temperature range and a condenser temperature range within which the refrigerant compressor will be allowed to operate.


The OEM may provide the refrigerator compressor with an MCC device. For example only, the MCC device may be integrated within a control module that controls the motor and the refrigerant compressor, integrated with the motor, or provided in another suitable manner. The MCC device generates an output, such as a resistance or a stored digital value. The output of the MCC device corresponds to the MCC determined by the OEM.


The control module may selectively disable current flow to the motor based on the output of the MCC device. For example, the control module may disable current flow to the motor when the output of the MCC device is outside of a predetermined range of values. The predetermined range of values may be set such that the output of the MCC device will be above or below the range when the MCC device has been open circuited or short circuited.


The control module may also determine a predetermined MCC for the motor based on the output of the MCC device. The motor draws current during operation of the refrigerant compressor. One or more current sensors measure current flow to the motor. The control module may selectively disable current flow to the motor when the current flowing to the motor is greater than the predetermined MCC.


One or more additional MCC devices may also be provided in various implementations. For example only, a system designer can provide an additional MCC device that indicates a value for the predetermined MCC that cannot be exceeded by the MCC device provided by the OEM. The system designer may provide an additional MCC device, for example, when one or more parameters of the operating envelope can be made narrower than the operating envelope used by the OEM in setting the MCC for the motor. The system designer may provide the additional MCC device(s) on a structure of the refrigeration or A/C system, away from a body of the compressor. The additional MCC device(s) may be connected with the control module via a physical connection or a wireless (e.g., near field communication) connection.


The control module determines an output (e.g., a resistance) of the additional MCC device and determines a second MCC for the motor based on the output of the additional MCC device. The control module may selectively set the predetermined MCC to the MCC determined based on the output of the MCC device or the second MCC determined based on the resistance of the additional MCC device. For example only, the control module may set the predetermined MCC equal to the lesser one of the MCCs. In this manner, if the second MCC is less than the MCC set by the OEM, the control module will disable current flow to the motor when the current flowing to the motor is greater than the second MCC. If the second MCC is greater than the MCC specified by the OEM, however, the MCC specified by the OEM will be used.


Referring now to FIG. 1, an example diagram of a heat pump system 10 is presented. Heat pump system 10 may include an indoor unit 12 and an outdoor unit 14. A heat pump system is used for illustration purposes only, and it should be understood that the present application is applicable to other systems including a motor-driven compressor, such as HVAC systems and refrigeration systems.


Indoor unit 12 may include an indoor coil or heat exchanger 16 and a variable speed indoor fan 18. Indoor fan 18 is driven by motor 20. Indoor coil 16 and indoor fan 18 may be enclosed in a housing 22 so indoor fan 18 may force air across indoor coil 16.


Outdoor unit 14 may include an outdoor coil or heat exchanger 24 and a variable speed outdoor fan 26. Outdoor fan 26 is driven by a motor 28. Outdoor coil 24 and outdoor fan 26 may be enclosed in a housing 30 so outdoor fan 26 may draw air across outdoor coil 24. Outdoor unit 14 may further include a compressor 32 connected to indoor coil 16 and outdoor coil 24. Compressor 32 may have a motor that is driven by a variable speed inverter drive as illustrated (see also FIG. 2) or a fixed speed motor.


Compressor 32, indoor coil 16, and outdoor coil 24 may be connected to generally form a loop where compressor 32, indoor coil 16, and outdoor coil 24 are arranged in series with one another and an expansion device 33 is located between indoor coil 16 and outdoor coil 24. Heat pump system 10 may include a reversing valve 34 disposed between compressor 32 and indoor and outdoor coils 16 and 24. Reversing valve 34 may enable the direction of flow between compressor 32, indoor coil 16, and outdoor coil 24 to be switched (reversed) between first and second directions.


In the first direction, heat pump system 10 operates in a cooling mode providing a flow in a direction indicated by the arrow labeled “cooling”. In the cooling mode, compressor 32 provides a fluid (e.g., a refrigerant) to outdoor coil 24. The fluid then travels to indoor coil 16 and then back to compressor 32. In the cooling mode, indoor coil 16 functions as an evaporator coil and outdoor coil 24 functions as a condenser coil.


In the second direction, heat pump system 10 operates in a heating mode providing a flow in a direction indicated by the arrow labeled “heating”. In the heating mode, flow is reversed relative to the first direction. Compressor 32 provides fluid to indoor coil 16. The fluid then travels to outdoor coil 24 and then back to compressor 32. In the heating mode, indoor coil 16 functions as a condenser coil and outdoor coil 24 functions as an evaporator coil.


Referring now to FIG. 2, a block diagram of an example motor control system is presented. Utility 102 may provide alternating current (AC) power to customer 114. The AC power may be three-phase AC power as illustrated or single-phase AC power. Customer 114 may include heat pump system 10, compressor 32, a power factor correction (PFC) system 104, a control module 106, a motor 108, a rectifier 110, a switching device 112, an inverter drive 116, and sensors 121, 122, 123, and 124.


Customer 114 may have a load that includes compressor 32 and heat pump system 10. Although one or more components depicted separately from heat pump system 10 in FIG. 2, such as compressor 32, one or more components may be integral to heat pump system 10. Motor 108 of heat pump system 10 may be integral to compressor 32 of heat pump system 10. Motor 108 may be driven directly by utility 102 via the switching device 112, but for example purposes only, is driven by variable speed inverter drive 116 of compressor 32.


Sensor 121 may measure current flow through one of the three-legs of the AC power. For example only, sensor 121 may include a current transducer (CT). Current consumption may be expressed as amperage. Sensor 121 may also measure voltage and power (e.g., in volt-amps) delivered by utility 102. Sensor 121 may also provide a watt meter reading of the real power consumed by customer 114. Sensor 121 may be located at multiple positions relative to customer 114 or utility 102. Sensor 121 may be located, for example only, downstream of switching device 112 and upstream of PFC system 104 and rectifier 110.


Sensor 122 may measure current flow through another one of the three-legs of the AC power. For example only, sensor 122 may include a CT. Current consumption may be expressed as amperage. Sensor 122 may also measure voltage and power (e.g., in volt-amps) drawn by inverter drive 116. Sensor 122 may also provide a watt meter reading of the real power consumed by customer 114. Sensor 122 may be located at multiple positions relative to customer 114 or utility 102. In various implementations, sensor 121 and sensor 122 may be implemented together within a dual sensor module 125.


PFC system 104 may be connected to receive current output by switching device 112. PFC system 104 may be any suitable device that improves a power factor of a load. For example only, PFC system 104 may include a passive PFC, such as a bank of capacitors used to balance an inductive load or an inductor to balance a capacitive load. For another example only, PFC system 104 may include a conventional active PFC system that actively provides a high power factor, such as a power factor approaching 1.0. Control module 106 may control switching of PFC system 104 if PFC system 104 is an active PFC system. Rectifier 110 may also be connected to receive current output by switching device 112.


Current may be provided to inverter driver 116 by PFC system 104 and/or rectifier 110. Inverter drive 116 drives motor 108. Inverter drive 116 may drive motor 108 at a variable speed to regulate operation of compressor 32 of heat pump system 10. Control module 106 may regulate switching of inverter drive 116 to vary the speed of motor 108.


Sensor 123 may be implemented with motor 108 and may measure a temperature of motor 108. For example only, sensor 123 may include a negative temperature coefficient (NTC) sensor, a positive temperature coefficient (PTC) sensor, a thermistor, or another suitable type of temperature sensor. Sensor 123 may measure, for example only, a magnetic wire temperature of motor 108. Sensor 123 may also measure one or more other parameters from motor 108, such as current, voltage, compressor operating speed, and/or commanded operating speed, etc. Each of sensors 121, 122, and 123 may be a single sensor or multiple sensors that provide measurements to control module 106. Sensor 124 may be a single sensor or multiple sensors that measure parameters of heat pump system 10. For example only, sensor 124 may measure discharge temperature and/or pressure, suction temperature and/or pressure, condenser temperature and/or pressure, evaporator temperature and/or pressure, compressor speed, refrigerant temperature and/or pressure, etc.


Switching device 112 may be any device or combination of devices that enable (allow) and disable (prevent) current flow to motor 108. Switching device 112 may be an electrical switch, a contactor, a relay, or another suitable type of switching device. Switching device 112 may be implemented, for example, between sensor 121 and utility 102 in various implementations. However, switching device 112 may be located in another suitable location upstream of motor 108.


Control module 106 may include a motor protection module 130. Motor protection module 130 may control switching device 112 based on one or more parameters, for example, to protect motor 108. Motor protection module 130 may control switching device 112 based on a temperature of motor 108 measured using sensor 123. For example only, motor protection module 130 may control switching device 112 to enable current flow to motor 108 when the temperature is less than a predetermined temperature. Conversely, motor protection module 130 may control switching device 112 to disable current flow to motor 108 when the temperature is greater than the predetermined temperature.


Motor protection module 130 may additionally or alternatively control switching device 112 based on a measured current consumption of motor 108. For example only, motor protection module 130 may control switching device 112 to enable current flow to motor 108 when the current is less than a predetermined maximum continuous current (MCC). Conversely, motor protection module 130 may control switching device 112 to disable current flow to motor 108 when the current is greater than the predetermined MCC. Motor protection module 130 may disable current flow to motor 108 within a predetermined period when the current is greater than the predetermined MCC.


A first MCC device (e.g., see FIGS. 3A-B) may include a resistance. The first MCC device may be integrated with control module 106 or integrated with compressor 32. Motor protection module 130 determines a first MCC based on the resistance of the first MCC device or a digital value output by the first MCC device. The resistance of the first MCC device or the digital value output by the first MCC device may be set, for example, by an original equipment manufacturer (e.g., a compressor manufacturer) to indicate an MCC for an operating envelope and characteristics of motor 108, compressor 32, and the type of fluid used. The operating envelope may include a range of evaporator temperatures and a range of condenser temperatures within which the motor protection module 130 can operate compressor 32.


Motor protection module 130 may also control switching device 112 to disable current flow to motor 108 when the output of the first MCC device indicates that the first MCC device has been short circuited or open circuited. For example, motor protection module 130 may disable current flow to motor 108 when the resistance of the first MCC device is approximately zero (short circuit) or infinity (open circuit). Disabling current flow to motor 108 when the first MCC device is open circuited or short circuited may protect motor 108 in the event that an attempt to bypass the first MCC device is made.


A second MCC device 132 may also be implemented in various implementations. Second MCC device 132 is remote from control module 106. Second MCC device 132 may be, for example, integrated with compressor 32 or mounted to a structure of a system, such as housing 30. Second MCC device 132 may also include a resistance. Second MCC device 132 may be implemented and the resistance of second MCC device 132 may be selected, for example, down the distribution chain from the original equipment manufacturer, such as by a system designer.


The resistance of second MCC device 132 may be selected to provide a second MCC. Motor protection module 130 determines the second MCC based on the resistance of second MCC device 132. Motor protection module 130 selectively sets the predetermined MCC for use in enabling and disabling current flow to motor 108 to the first MCC or the second MCC.


For example only, when the first MCC is greater than the second MCC, the motor protection module 130 may set the predetermined MCC equal to the second MCC. In this manner, current drawn by motor 108 can be limited to the second MCC specified using second MCC device 132. The system designer can choose contactor size, size of electrical wiring, fuses, and one or more electrical components based on the second MCC. Under circumstances that allow for the second MCC to be used as the predetermined MCC, cost savings may be enjoyed as smaller electrical wiring, contactors, etc. may be implemented.


When the second MCC is greater than the first MCC, however, the motor protection module 130 may set the predetermined MCC equal to the first MCC. Using the first MCC as the predetermined MCC when the second MCC is greater than the first MCC may prevent the first MCC device from being bypassed or disconnected.


In the event that one or more of control module 106, second MCC device 132, and compressor 32 are replaced (e.g., for service reasons), the motor protection module 130 can establish the predetermined MCC. For example, when the control module 106 is replaced, the new control module can determine the first and second MCCs and determine the predetermined MCC based on the first and second MCCs. When the second MCC device 132 is replaced, the control module 106 can determine the new value of the second MCC and determine the predetermined MCC based on the first MCC and the (new) second MCC.



FIGS. 3A-3C include functional block diagrams of example current control systems. Referring now to FIG. 3A, a block diagram of an example current control system is presented. Motor protection module 130 may include a first MCC device 202. First MCC device 202 may output a first voltage 206 that corresponds to a resistance of a resistor 204 of first MCC device 202. For example only, the resistor 204 may include a programmable potentiometer, such as a digitally programmable potentiometer (DPP), or another suitable type of programmable resistance device. A microcontroller, microprocessor, or other suitable device 210 may selectively set (program) the resistance of first MCC device 202, for example, based on inputs from a service tool (not shown), a network connection, and/or one or more other suitable inputs.


Microcontroller 210 selectively determines the resistance of first MCC device 202 based on first voltage 206. For example only, microcontroller 210 may determine the resistance of first MCC device 202 using one of a function and a mapping (e.g., look up table) that relates voltage to resistance and first voltage 206 as input. The function or mapping may be stored, for example, in memory 214. For example only, memory 214 may include electrically erasable programmable read only memory (EEPROM) and/or one or more other suitable tangible storage mediums.


Microcontroller 210 determines the first MCC based on the resistance of first MCC device 202. For example only, microcontroller 210 may determine the first MCC using one of a function and a mapping (e.g., look up table) that relates resistance to MCC and the resistance of first MCC device 202 as input.


Microcontroller 210 selectively enables and disables current flow to motor 108 via switching device 112 using an output 212 to a protection module 215. For example only, microcontroller 210 may set output 212 to one of a first state and a second state at a given time, and protection module may one of enable and disable current flow to motor 108 via switching device 112 based on the state of output 212. Microcontroller 210 may enable and disable current flow to motor 108 or enable and disable current flow to motor 108 in another suitable manner. For example only, microcontroller 210 may disable switching of inverter drive 116 to prevent current flow to motor 108.


Microcontroller 210 selectively disables current flow to motor 108 based on the resistance of first MCC device 202. For example only, microcontroller 210 disables current flow to motor 108 when the resistance of first MCC device 202 is outside of a predetermined resistance range. Microcontroller 210 may enable current flow to motor 108 when the resistance of first MCC device 202 is within the predetermined resistance range.


A lower boundary of the predetermined resistance range may be set sufficiently close to zero such that the resistance of first MCC device 202 being less than the lower boundary indicates that first MCC device 202 is short circuited. An upper boundary of the predetermined resistance range may be set sufficiently greater than a maximum resistance such that the resistance of first MCC device 202 being greater than the upper boundary indicates that first MCC device 202 is open circuited or that microcontroller 210 and first MCC device 202 are disconnected.


Microcontroller 210 may determine whether to determine the second MCC based on a second voltage 218. A first terminal of a current limiting resistor 222 may be connected to a voltage potential 226. A second terminal of current limiting resistor 222 may be connected to microcontroller 210 and to a first terminal of a jumper device 230. A second terminal of jumper device 230 may be connected to a ground source 234.


Whether a jumper 238 is connected between the first and second terminals of jumper device 230 controls second voltage 218. For example only, when jumper 238 is connected, jumper 238 creates a short circuit between the first terminal and the second terminal of jumper device 230 and causes second voltage 218 to be approximately equal to a first predetermined voltage. When jumper 238 is not connected, second voltage 218 is approximately equal to a second predetermined voltage.


The OEM may provide the motor protection module 130 with jumper 238 connected between the first and second terminals of jumper device 230. Microcontroller 210 may determine the second MCC based on the resistance of second MCC device 132 when second voltage 218 is approximately equal to the first predetermined voltage. In various implementations, the opposite may be true. Motor protection module 130 may be provided without jumper 238 being connected between the first and second terminals of jumper device 230, and microcontroller 210 may determine the second MCC based on the resistance of second MCC device 132 when second voltage 218 is approximately equal to the second predetermined voltage.


A first signal conditioner module 242 may be connected to second MCC device 132. First signal conditioner module 242 receives a signal (e.g., a voltage) output by second MCC device 132 that corresponds to the resistance of a resistor 246 within second MCC device 132. First signal conditioner module 242 may also output a reference voltage (not shown) to second MCC device 132. First signal conditioner module 242 outputs a third voltage 250 that corresponds to the resistance of resistor 246 of second MCC device 132. First signal conditioner module 242 may condition the signal in one or more ways to generate third voltage 250, such as by filtering, buffering, digitizing, and/or performing one or more other suitable signal conditioning functions.


Microcontroller 210 selectively determines the resistance of second MCC device 132 based on third voltage 250. For example only, microcontroller 210 may determine the resistance of second MCC device 132 using one of the function and the mapping (e.g., look up table) that relates voltage to resistance and third voltage 250 as input. Microcontroller 210 determines the second MCC based on the resistance of second MCC device 132. For example only, microcontroller 210 may determine the second MCC using one of the function and the mapping (e.g., look up table) that relates resistance to MCC and the resistance of second MCC device 132 as input.


Microcontroller 210 selectively sets the predetermined MCC equal to one of the first MCC and the second MCC. For example only, when the second MCC is not determined (e.g., when jumper 238 is connected), microcontroller 210 may set the predetermined MCC equal to the first MCC. When the second MCC is determined, microcontroller 210 may set the predetermined MCC equal to the lesser one of the first and second MCCs. In this manner, when the resistance of second MCC device 132 is set such that the second MCC is greater than the first MCC, the predetermined MCC will be set to the first MCC to prevent the first MCC from being exceeded. Additionally, when the resistance of second MCC device 132 is set such that the second MCC is less than the first MCC, the predetermined MCC will be set to the second MCC such that current consumption of motor 108 can be limited to less than the first MCC. Limiting current consumption of motor 108 to less than the first MCC may enable smaller electrical wiring and smaller electrical contactors to be used. Use of smaller electrical wiring and electrical contactors may provide a cost savings.


While the present application is discussed in terms of one second MCC device, one or more additional second MCC device may be used in various implementations. Microcontroller 210 may determine resistance(s) within the one or more additional second MCC devices, determine MCC(s) based on the resistance(s), and set the predetermined MCC equal to the smallest one of the MCCs.


In various implementations, microcontroller 210 may set the predetermined MCC equal to one of the first and second MCCs based on an output 254 of a comparator module 258. For example only, comparator module 258 may include a Schmitt trigger or another suitable type of comparator. Comparator module 258 may receive first voltage 206 (corresponding to the resistance of first MCC device 202) and third voltage 250 (corresponding to the resistance of second MCC device 132). Comparator module 258 compares first voltage 206 with third voltage 250 and generates output 254 based on the comparison.


For example only, comparator module 258 may set output 254 to a first state when the relationship between first and third voltages 206 and 250 is such that the first MCC is less than the second MCC. Once comparator module 258 has set output 254 to the first state, comparator module 258 may transition output 254 to a second state when the relationship between first and third voltages 206 and 250 is such that the second MCC is less than the first MCC by at least a predetermined amount. When output 254 is in the first state, microcontroller 210 may set the predetermined MCC equal to the first MCC. Microcontroller 210 may set the predetermined MCC equal to the second MCC when output 254 is in the second state.


A second signal conditioner module 262 may be connected to sensor 121. Second signal conditioner module 262 receives a signal (e.g., a voltage) output by sensor 121 that corresponds to current flowing through switching device 112. Second signal conditioner module 262 outputs a fourth voltage 266 that corresponds to the current flowing through switching device 112. Second signal conditioner module 262 may condition the signal in one or more ways to generate fourth voltage 266, such as by filtering, buffering, digitizing, and/or performing one or more other suitable signal conditioning functions. Microcontroller 210 may determine a first current using one of a function and a mapping that relates voltage to current using fourth voltage 266 as input.


A third signal conditioner module 270 may be connected to sensor 122. Third signal conditioner module 270 receives a signal (e.g., a voltage) output by sensor 122 that corresponds to current flowing to inverter drive 116. Third signal conditioner module 270 outputs a fifth voltage 274 that corresponds to the current flowing to inverter drive 116. Third signal conditioner module 270 may condition the signal in one or more ways to generate fifth voltage 274, such as by filtering, buffering, digitizing, and/or performing one or more other suitable signal conditioning functions. Microcontroller 210 may determine a second current using one of the function and the mapping that relates voltage to current using fifth voltage 274 as input.


Microcontroller 210 selectively enables and disables current flow to motor 108 based on current flow to motor 108 and the predetermined MCC. The first current, the second current, a current determined based on the first and second currents, or another suitable measured current may be used as the current flow to motor 108. Microcontroller 210 disables current flow to motor 108 when the current flow to motor 108 is greater than the predetermined MCC. Conversely, microcontroller 210 enables current flow to motor 108 when the current flow to motor 108 is less than the predetermined MCC.


When the current flow to motor 108 is greater than the predetermined MCC, microcontroller 210 may wait to disable the current flow to motor 108 for a predetermined period after the current flow to motor 108 becomes greater than the predetermined MCC. If the current flow to the motor 108 becomes less than the predetermined MCC during the predetermined period, microcontroller 210 may override the decision to disable current flow to motor 108 and maintain current flow to motor 108.


Microcontroller 210 may disable current flow to motor 108 during the predetermined period, however, when one or more predetermined conditions are satisfied. For example only, microcontroller 210 may disable current flow to motor 108 during the predetermined period when a rate of change of the current flow to motor 108 (di/dt) is greater than a predetermined rate of change. Additionally or alternatively, microcontroller 210 may disable current flow to motor 108 during the predetermined period when an acceleration of the current flow to motor 108 (d2i/dt2) is greater than a predetermined acceleration. Additionally or alternatively, microcontroller 210 may disable current flow to motor 108 during the predetermined period when the current flow to the motor 108 becomes greater than a predetermined current that is a predetermined percentage greater than the predetermined MCC. For example only, the predetermined percentage may be 5 percent, 10 percent, 15 percent, or another suitable percentage. Additionally or alternatively, microcontroller 210 may disable current flow to motor 108 during the predetermined period when an electric charge value is greater than a predetermined electric charge value. Microcontroller 210 may determine the electric charge value, for example, based on an integral (mathematical) of the current flow to motor 108 during the period. For example, the mathematical integral may be ∫(i−MCCpre)*dt, where MCCpre is the predetermined MCC value and I is the measured current value, in order to put the reference at the predetermined MCC value. When the measured current exceeds the predetermined MCC value, the electric charge value (e.g., in Coulombs) increases due to the positive difference between the measured current value and the predetermined MCC value. A negative difference between the measured current value and the predetermined MCC value will cause the electric charge value to decrease. The integral may continue summing until it exceeds the predetermined electric charge value, wherein the switching device 112 would be opened by microcontroller 210. Additionally, the integral will continue summing until the electric charge value returns to zero due to the amount and duration of the current dropping below the predetermined MCC value.


A fourth signal conditioner module 278 may be connected to sensor 123. Fourth signal conditioner module 278 receives a signal (e.g., a voltage) output by sensor 123 that corresponds to a temperature of motor 108. Fourth signal conditioner module 278 outputs a sixth voltage 282 that corresponds to the temperature of motor 108. Fourth signal conditioner module 278 may condition the signal in one or more ways to generate sixth voltage 282, such as by filtering, buffering, digitizing, and/or performing one or more other suitable signal conditioning functions.


Microcontroller 210 may determine the temperature of motor 108 using one of a function and a mapping that relates voltage to temperature using sixth voltage 282 as input. Microcontroller 210 disables current flow to motor 108 when the temperature of motor 108 is greater than the predetermined temperature. Conversely, microcontroller 210 enables current flow to motor 108 when the temperature of motor 108 is less than the predetermined temperature.


Microcontroller 210 may also selectively enable and disable current flow to motor 108 based on one or more other parameters. For example only, microcontroller 210 may disable current flow to motor 108 when a shell temperature is greater than a predetermined temperature, when a compressor discharge temperature is greater than a predetermined temperature, and/or when one or more suitable disabling conditions occur. Microcontroller 210 may enable current flow to the motor 108 when the disabling conditions are not occurring.


While the present application is discussed in terms of devices with resistances that convey information regarding MCC, the resistances of onboard and remote devices may also be used to set predetermined values used in enabling and disabling current flow to motor 108. For example only, the resistances of onboard and remote devices may also be used to set the predetermined temperature.


When microcontroller 210 determines that current flow to motor 108 should be disabled via opening switching device 112, microcontroller may determine a response time. The response time may be or correspond to a period between a time when the decision to disable current flow to motor 108 is made and a time when microcontroller 210 commands opening of switching device 112. Microcontroller 210 may determine the response time, for example, based on a difference between the current to motor 108 and the predetermined MCC, a rate of change of the difference, and/or one or more other suitable parameters. For example only, the response time may decrease as the difference increases and/or as the rate of change of the difference increases and vice versa.


Referring now to FIG. 3B, another functional block diagram of another example current control system is presented. Microcontroller 210 may receive a reference voltage 302 from a reference voltage source (VREF) 304. A resistor 306 is connected between reference voltage source 304 and node 308. Resistor 246 of second MCC device 132 is connected between node 308 and a ground source 310, such as ground source 234. As such, the voltage at node 308 corresponds to the resistance of resistor 236 of second MCC device 132.


Microcontroller 210 may also receive the voltage at node 308. Microcontroller determines the resistance of resistor 246 of second MCC device 132 based on the relationship between reference voltage 302 and the voltage at node 308. Microcontroller 210 determines the second MCC based on the resistance of resistor 246. Microcontroller 210 sets the predetermined MCC based on the first and second MCCs and selectively disables current flow to motor 108 based on the predetermined MCC as discussed above.


Second MCC device 132 may output a value indicative of the second MCC to motor protection module 130 via a wired connection (e.g., as discussed above in conjunction with the examples of FIGS. 3A and 3B). Alternatively, second MCC device 132 may communicate the second MCC or a value indicative of the second MCC to motor protection module 130 wirelessly.


Referring now to FIG. 3C, a functional block diagram of another example current control system is presented. For example only, second MCC device 132 may communicate the second MCC or a value indicative of the second MCC to motor protection module 130 using near field communications, such as radio frequency identification (RFID), a Bluetooth communication protocol, or another suitable type of wireless communications.


Motor protection module 130 may include a communications module 320 and an antenna 324. Antenna 324 receives wireless output from second MCC device 132 and relays the output from second MCC device 132 to communications module 320. Communications module 320 may output one or more signals that prompt or cause second MCC device 132 to generate the output in various types of wireless communication. Communications module 320 provides output that is indicative of the second MCC to microcontroller 210. Microcontroller 210 can determine the second MCC based on the output. Microcontroller 210 sets the predetermined MCC based on the first and second MCCs and selectively disables current flow to motor 108 based on the predetermined MCC as discussed above.


Referring now to FIG. 4, a flowchart depicting an example method of controlling current flow to motor 108 is presented. At 404, control determines the resistance of first MCC device 202. Control may determine whether the resistance of first MCC device 202 is within the predetermined resistance range at 408. If false, control may disable current flow to motor 108 at 412, and control may end. If true, control may proceed with 416. When the resistance of first MCC device 202 is outside of the predetermined resistance range, first MCC device 202 may be short or open circuited.


At 416, control determines the first MCC based on the resistance of first MCC device 202. Control determines the first MCC as a function of the resistance of first MCC device 202. For example only, control may determine the first MCC using one of a function and a mapping that relates resistance to MCC. Control determines whether the second MCC should be determined at 420. If false, control may set the predetermined MCC equal to the first MCC at 424 and continue with 440. 440 is discussed further below. If true, control may continue with 428.


Control determines the second MCC at 432. Control determines the second MCC based on the output of second MCC device 132. Control determines the second MCC as a function of the resistance of second MCC device 132. For example only, control may determine the second MCC using one of a function and a mapping that relates resistance to MCC. Control may determine the first and second MCCs using the same or different functions and/or mappings. Control may set the predetermined MCC equal to the lesser one of the first and second MCCs at 436.


Control selectively disables current flow to motor 108 based on the predetermined MCC and current flowing to motor 108 at 440. More specifically, control disables current flow to motor 108 when the current to motor 108 is greater than the predetermined MCC. When the current to motor 108 is greater than the predetermined MCC, control may determine the response time. The response time may be or correspond to a period between the time when the current to motor 108 is greater than the predetermined MCC and a time when control commands opening of switching device 112. Control may determine the response time, for example, based on the difference between the current to motor 108 and the predetermined MCC, a rate of change of the difference, and/or one or more other suitable parameters. For example only, the response time may decrease as the difference increases and/or as the rate of change of the difference increases and vice versa. The current flow to motor 108 may be provided using one or more current sensors, such as sensor 121 and/or sensor 122. Control may disable current flow to motor 108 by opening switching device 112.


The broad teachings of the disclosure can be implemented in a variety of forms. Therefore, while this disclosure includes particular examples, the true scope of the disclosure should not be so limited since other modifications will become apparent to the skilled practitioner upon a study of the drawings, the specification, and the following claims.

Claims
  • 1. A system comprising: a refrigerant compressor including an electric motor;a current sensor that measures current flow to the electric motor;a switching device configured to close and open to allow and prevent current flow to the electric motor, respectively;a first maximum continuous current (MCC) device that includes a stored digital value corresponding to a maximum continuous current for the electric motora second MCC device;a motor protection module that: communicates with the first MCC device, the second MCC device, the current sensor, and the switching device;determines a first MCC for the electric motor based on the stored digital value received from the first MCC device;determines a second MCC for the electric motor based on an output of the second MCC device;sets a predetermined MCC to one of the first MCC and the second MCC; andcontrols the switching device based on a comparison of the current flow to the electric motor and the predetermined MCC.
  • 2. The system of claim 1 wherein the motor protection module opens the switching device when the current flow to the electric motor is greater than the predetermined MCC.
  • 3. The system of claim 1 wherein the motor protection module receives the stored digital value wirelessly from the first MCC device using near field communication.
  • 4. The system of claim 1 wherein the motor protection module receives the stored digital value wirelessly from the first MCC device using radio frequency identification (RFID).
  • 5. The system of claim 1 wherein the motor protection module receives the stored digital value wirelessly from the first MCC device using a Bluetooth communication protocol.
  • 6. The system of claim 1 wherein the motor protection module determines the first MCC for the electric motor using a lookup table that relates digital values to respective first MCCs.
  • 7. The system of claim 1 wherein the first MCC device is integrated with the motor protection module.
  • 8. The system of claim 1 wherein the motor protection module sets the predetermined MCC equal to a lesser one of the first and second MCCs.
  • 9. The system of claim 1 wherein the second MCC device is integrated with the refrigerant compressor and remote from the motor protection module.
  • 10. A method comprising: measuring, using a current sensor, current flow to an electric motor of a refrigerant compressor;selectively opening and closing a switching device to allow and prevent current flow to the electric motor, respectively;communicating with the current sensor, the switching device, and a first maximum continuous current (MCC) device, and a second MCC device, the first MCC device including a stored digital value corresponding to a maximum continuous current for the electric motor;receiving the stored digital value from the first MCC device;determining a first MCC for the electric motor based on the stored digital value received from the first MCC device;determining a second MCC for the electric motor based on an output of the second MCC device;setting a predetermined MCC to one of the first MCC and the second MCC; andcontrolling the switching device based on a comparison of the current flow to the electric motor and the predetermined MCC.
  • 11. The method of claim 10 further comprising opening the switching device when the current flow to the electric motor is greater than the predetermined MCC.
  • 12. The method of claim 10 wherein receiving the stored digital value from the first MCC device includes receiving the stored digital value wirelessly from the first MCC device using near field communication.
  • 13. The method of claim 10 wherein receiving the stored digital value from the first MCC device includes receiving the stored digital value wirelessly from the first MCC device using radio frequency identification (RFID).
  • 14. The method of claim 10 wherein receiving the stored digital value from the first MCC device includes receiving the stored digital value wirelessly from the first MCC device using a Bluetooth communication protocol.
  • 15. The method of claim 10 wherein determining the first MCC includes determining the first MCC for the electric motor using a lookup table that relates digital values to respective first MCCs.
  • 16. The method of claim 10 further comprising setting the predetermined MCC equal to a lesser one of the first and second MCCs.
  • 17. The method of claim 10 wherein the second MCC device is integrated with the refrigerant compressor.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 13/737,566, filed on Jan. 9, 2013, which claims the benefit of U.S. Provisional Application No. 61/585,382, filed on Jan. 11, 2012. The entire disclosures of the above applications are incorporated herein by reference in their entirety.

US Referenced Citations (1555)
Number Name Date Kind
2054542 Hoelle Sep 1936 A
2296822 Wolfert Sep 1942 A
2631050 Haeberlein Mar 1953 A
2804839 Hallinan Sep 1957 A
2961606 Mead Nov 1960 A
2962702 Derr et al. Nov 1960 A
2978879 Heidorn Apr 1961 A
3027865 Kautz et al. Apr 1962 A
3047696 Heidorn Jul 1962 A
3082951 Kayan Mar 1963 A
3107843 Finn Oct 1963 A
3170304 Hale Feb 1965 A
3232519 Long Feb 1966 A
3278111 Parker Oct 1966 A
3327197 Marquis Jun 1967 A
3400374 Schumann Sep 1968 A
3513662 Golber May 1970 A
3581281 Martin et al. May 1971 A
3585451 Day, III Jun 1971 A
3653783 Sauder Apr 1972 A
3660718 Pinckaers May 1972 A
3665399 Zehr et al. May 1972 A
3697953 Schoenwitz Oct 1972 A
3707851 McAshan, Jr. Jan 1973 A
3729949 Talbot May 1973 A
3735377 Kaufman May 1973 A
3742302 Neill Jun 1973 A
3742303 Dageford Jun 1973 A
3767328 Ladusaw Oct 1973 A
3777240 Neill Dec 1973 A
3783681 Hirt et al. Jan 1974 A
3820074 Toman Jun 1974 A
3882305 Johnstone May 1975 A
3924972 Szymaszek Dec 1975 A
3927712 Nakayama Dec 1975 A
3935519 Pfarrer et al. Jan 1976 A
3950962 Odashima Apr 1976 A
3960011 Renz et al. Jun 1976 A
3978382 Pfarrer et al. Aug 1976 A
3998068 Chirnside Dec 1976 A
4006460 Hewitt et al. Feb 1977 A
4014182 Granryd Mar 1977 A
4018584 Mullen Apr 1977 A
4019172 Srodes Apr 1977 A
4024725 Uchida et al. May 1977 A
4027289 Toman May 1977 A
4034570 Anderson et al. Jul 1977 A
4038061 Anderson et al. Jul 1977 A
4045973 Anderson et al. Sep 1977 A
4046532 Nelson Sep 1977 A
RE29450 Goldsby et al. Oct 1977 E
4060716 Pekrul et al. Nov 1977 A
4066869 Apaloo et al. Jan 1978 A
4090248 Swanson et al. May 1978 A
4102150 Kountz Jul 1978 A
4102394 Botts Jul 1978 A
4104888 Reedy et al. Aug 1978 A
4105063 Bergt Aug 1978 A
4112703 Kountz Sep 1978 A
4132086 Kountz Jan 1979 A
4136730 Kinsey Jan 1979 A
4137057 Piet et al. Jan 1979 A
4137725 Martin Feb 1979 A
4142375 Abe et al. Mar 1979 A
4143707 Lewis et al. Mar 1979 A
4146085 Wills Mar 1979 A
RE29966 Nussbaum Apr 1979 E
4151725 Kountz et al. May 1979 A
4153003 Willis May 1979 A
4156350 Elliott et al. May 1979 A
4161106 Savage et al. Jul 1979 A
4165619 Girard Aug 1979 A
4171622 Yamaguchi et al. Oct 1979 A
4173871 Brooks Nov 1979 A
4178988 Cann et al. Dec 1979 A
RE30242 del Toro et al. Apr 1980 E
4197717 Schumacher Apr 1980 A
4205381 Games et al. May 1980 A
4209994 Mueller et al. Jul 1980 A
4211089 Mueller et al. Jul 1980 A
4217761 Cornaire et al. Aug 1980 A
4220010 Mueller et al. Sep 1980 A
4227862 Andrew et al. Oct 1980 A
4232530 Mueller Nov 1980 A
4233818 Lastinger Nov 1980 A
4236379 Mueller Dec 1980 A
4244182 Behr Jan 1981 A
4246763 Mueller et al. Jan 1981 A
4248051 Darcy et al. Feb 1981 A
4251988 Allard et al. Feb 1981 A
4257795 Shaw Mar 1981 A
4259847 Pearse, Jr. Apr 1981 A
4267702 Houk May 1981 A
4270174 Karlin et al. May 1981 A
4271898 Freeman Jun 1981 A
4281358 Plouffe et al. Jul 1981 A
4284849 Anderson et al. Aug 1981 A
4286438 Clarke Sep 1981 A
4290480 Sulkowski Sep 1981 A
4296727 Bryan Oct 1981 A
4301660 Mueller et al. Nov 1981 A
4306293 Marathe Dec 1981 A
4307775 Saunders et al. Dec 1981 A
4308725 Chiyoda Jan 1982 A
4311188 Kojima et al. Jan 1982 A
4319461 Shaw Mar 1982 A
4321529 Simmonds et al. Mar 1982 A
4325223 Cantley Apr 1982 A
4328678 Kono et al. May 1982 A
4328680 Stamp, Jr. et al. May 1982 A
4333316 Stamp, Jr. et al. Jun 1982 A
4333317 Sawyer Jun 1982 A
4336001 Andrew et al. Jun 1982 A
4338790 Saunders et al. Jul 1982 A
4338791 Stamp, Jr. et al. Jul 1982 A
4345162 Hammer et al. Aug 1982 A
4346755 Alley et al. Aug 1982 A
4350021 Lundstrom Sep 1982 A
4350023 Kuwabara et al. Sep 1982 A
4351163 Johannsen Sep 1982 A
4356703 Vogel Nov 1982 A
4361273 Levine et al. Nov 1982 A
4365983 Abraham et al. Dec 1982 A
4370098 McClain et al. Jan 1983 A
4372119 Gillbrand et al. Feb 1983 A
4381549 Stamp, Jr. et al. Apr 1983 A
4382367 Roberts May 1983 A
4384462 Overman et al. May 1983 A
4387368 Day, III et al. Jun 1983 A
4387578 Paddock Jun 1983 A
4390058 Otake et al. Jun 1983 A
4390321 Langlois et al. Jun 1983 A
4390922 Pelliccia Jun 1983 A
4395886 Mayer Aug 1983 A
4395887 Sweetman Aug 1983 A
4399548 Castleberry Aug 1983 A
4402054 Osborne et al. Aug 1983 A
4406133 Saunders et al. Sep 1983 A
4407138 Mueller Oct 1983 A
4408660 Sutoh et al. Oct 1983 A
4412788 Shaw et al. Nov 1983 A
4415896 Allgood Nov 1983 A
4418388 Allgor et al. Nov 1983 A
4420947 Yoshino Dec 1983 A
4425010 Bryant et al. Jan 1984 A
4429578 Darrel et al. Feb 1984 A
4432232 Brantley et al. Feb 1984 A
4434390 Elms Feb 1984 A
4441329 Dawley Apr 1984 A
4448038 Barbier May 1984 A
4449375 Briccetti May 1984 A
4451929 Yoshida May 1984 A
4460123 Beverly Jul 1984 A
4463571 Wiggs Aug 1984 A
4463574 Spethmann et al. Aug 1984 A
4463576 Burnett et al. Aug 1984 A
4465229 Kompelien Aug 1984 A
4467230 Rovinsky Aug 1984 A
4467385 Bandoli et al. Aug 1984 A
4467613 Behr et al. Aug 1984 A
4470092 Lombardi Sep 1984 A
4470266 Briccetti et al. Sep 1984 A
4474024 Eplett et al. Oct 1984 A
4474542 Kato et al. Oct 1984 A
4479389 Anderson, III et al. Oct 1984 A
4489551 Watanabe et al. Dec 1984 A
4490986 Paddock Jan 1985 A
4494383 Nagatomo et al. Jan 1985 A
4495779 Tanaka et al. Jan 1985 A
4496296 Arai et al. Jan 1985 A
4497031 Froehling et al. Jan 1985 A
4498310 Imanishi et al. Feb 1985 A
4499739 Matsuoka et al. Feb 1985 A
4502084 Hannett Feb 1985 A
4502833 Hibino et al. Mar 1985 A
4502842 Currier et al. Mar 1985 A
4502843 Martin Mar 1985 A
4505125 Baglione Mar 1985 A
4506518 Yoshikawa et al. Mar 1985 A
4507934 Tanaka et al. Apr 1985 A
4510547 Rudich, Jr. Apr 1985 A
4510576 MacArthur et al. Apr 1985 A
4512161 Logan et al. Apr 1985 A
4516407 Watabe May 1985 A
4517468 Kemper et al. May 1985 A
4520674 Canada et al. Jun 1985 A
4523435 Lord Jun 1985 A
4523436 Schedel et al. Jun 1985 A
4527247 Kaiser et al. Jul 1985 A
4527399 Lord Jul 1985 A
4535607 Mount Aug 1985 A
4538420 Nelson Sep 1985 A
4538422 Mount et al. Sep 1985 A
4539820 Zinsmeyer Sep 1985 A
4540040 Fukumoto et al. Sep 1985 A
4545210 Lord Oct 1985 A
4545214 Kinoshita Oct 1985 A
4548549 Murphy et al. Oct 1985 A
4549403 Lord et al. Oct 1985 A
4549404 Lord Oct 1985 A
4550770 Nussdorfer et al. Nov 1985 A
4553400 Branz Nov 1985 A
4555057 Foster Nov 1985 A
4555910 Sturges Dec 1985 A
4557317 Harmon, Jr. Dec 1985 A
4558181 Blanchard et al. Dec 1985 A
4561260 Nishi et al. Dec 1985 A
4563624 Yu Jan 1986 A
4563877 Harnish Jan 1986 A
4563878 Baglione Jan 1986 A
4567733 Mecozzi Feb 1986 A
4568909 Whynacht Feb 1986 A
4574871 Parkinson et al. Mar 1986 A
4575318 Blain Mar 1986 A
4577977 Pejsa Mar 1986 A
4580947 Shibata et al. Apr 1986 A
4583373 Shaw Apr 1986 A
4589060 Zinsmeyer May 1986 A
4593367 Slack et al. Jun 1986 A
4598764 Beckey Jul 1986 A
4602484 Bendikson Jul 1986 A
4604036 Sutou et al. Aug 1986 A
4611470 Enstrom Sep 1986 A
4612775 Branz et al. Sep 1986 A
4614089 Dorsey Sep 1986 A
4617804 Fukushima et al. Oct 1986 A
4620286 Smith et al. Oct 1986 A
4620424 Tanaka et al. Nov 1986 A
4621502 Ibrahim et al. Nov 1986 A
4627245 Levine Dec 1986 A
4627483 Harshbarger, III et al. Dec 1986 A
4627484 Harshbarger, Jr. et al. Dec 1986 A
4630572 Evans Dec 1986 A
4630670 Wellman et al. Dec 1986 A
4642034 Terauchi Feb 1987 A
4642782 Kemper et al. Feb 1987 A
4644479 Kemper et al. Feb 1987 A
4646532 Nose Mar 1987 A
4648044 Hardy et al. Mar 1987 A
4649515 Thompson et al. Mar 1987 A
4649710 Inoue et al. Mar 1987 A
4653280 Hansen et al. Mar 1987 A
4653285 Pohl Mar 1987 A
4655688 Bohn et al. Apr 1987 A
4660386 Hansen et al. Apr 1987 A
4662184 Pohl et al. May 1987 A
4674292 Ohya et al. Jun 1987 A
4677830 Sumikawa et al. Jul 1987 A
4680940 Vaughn Jul 1987 A
4682473 Rogers, III Jul 1987 A
4684060 Adams et al. Aug 1987 A
4685615 Hart Aug 1987 A
4686835 Alsenz Aug 1987 A
4689967 Han et al. Sep 1987 A
4697431 Alsenz Oct 1987 A
4698978 Jones Oct 1987 A
4698981 Kaneko et al. Oct 1987 A
4701824 Beggs et al. Oct 1987 A
4703325 Chamberlin et al. Oct 1987 A
4706152 DeFilippis et al. Nov 1987 A
4706469 Oguni et al. Nov 1987 A
4712648 Mattes et al. Dec 1987 A
4713717 Pejouhy et al. Dec 1987 A
4715190 Han et al. Dec 1987 A
4715792 Nishizawa et al. Dec 1987 A
4716582 Blanchard et al. Dec 1987 A
4716957 Thompson et al. Jan 1988 A
4720980 Howland Jan 1988 A
4722018 Pohl Jan 1988 A
4722019 Pohl Jan 1988 A
4724678 Pohl Feb 1988 A
4735054 Beckey Apr 1988 A
4735060 Alsenz Apr 1988 A
4744223 Umezu May 1988 A
4745765 Pettitt May 1988 A
4745766 Bahr May 1988 A
4745767 Ohya et al. May 1988 A
4750332 Jenski et al. Jun 1988 A
4750672 Beckey et al. Jun 1988 A
4751501 Gut Jun 1988 A
4751825 Voorhis et al. Jun 1988 A
4754410 Leech et al. Jun 1988 A
4755957 White et al. Jul 1988 A
4765150 Persem Aug 1988 A
4768346 Mathur Sep 1988 A
4768348 Noguchi Sep 1988 A
4783752 Kaplan et al. Nov 1988 A
4787213 Gras et al. Nov 1988 A
4790142 Beckey Dec 1988 A
4796142 Libert Jan 1989 A
4796466 Farmer Jan 1989 A
4798055 Murray et al. Jan 1989 A
4805118 Rishel Feb 1989 A
4807445 Matsuoka et al. Feb 1989 A
4829779 Munson et al. May 1989 A
4831560 Zaleski May 1989 A
4831832 Alsenz May 1989 A
4831833 Duenes et al. May 1989 A
4835706 Asahi May 1989 A
4835980 Oyanagi et al. Jun 1989 A
4838037 Wood Jun 1989 A
4841734 Torrence Jun 1989 A
4843575 Crane Jun 1989 A
4845956 Berntsen et al. Jul 1989 A
4848099 Beckey et al. Jul 1989 A
4848100 Barthel et al. Jul 1989 A
4850198 Helt et al. Jul 1989 A
4850204 Bos et al. Jul 1989 A
4852363 Kampf et al. Aug 1989 A
4853693 Eaton-Williams Aug 1989 A
4856286 Sulfstede et al. Aug 1989 A
4858676 Bolfik et al. Aug 1989 A
4866635 Kahn et al. Sep 1989 A
4866944 Yamazaki Sep 1989 A
4869073 Kawai et al. Sep 1989 A
4873836 Thompson Oct 1989 A
4875589 Lacey et al. Oct 1989 A
4878355 Beckey et al. Nov 1989 A
4881184 Abegg, III et al. Nov 1989 A
4882747 Williams Nov 1989 A
4882908 White Nov 1989 A
4884412 Sellers et al. Dec 1989 A
4885707 Nichol et al. Dec 1989 A
4885914 Pearman Dec 1989 A
4887436 Enomoto et al. Dec 1989 A
4887857 VanOmmeren Dec 1989 A
4889280 Grald et al. Dec 1989 A
4893480 Matsui et al. Jan 1990 A
4899551 Weintraub Feb 1990 A
4903500 Hanson Feb 1990 A
4903759 Lapeyrouse Feb 1990 A
4904993 Sato Feb 1990 A
4909041 Jones Mar 1990 A
4909076 Busch et al. Mar 1990 A
4910966 Levine et al. Mar 1990 A
4913625 Gerlowski Apr 1990 A
4916633 Tychonievich et al. Apr 1990 A
4916909 Mathur et al. Apr 1990 A
4916912 Levine et al. Apr 1990 A
4918690 Markkula, Jr. et al. Apr 1990 A
4918932 Gustafson et al. Apr 1990 A
4924404 Reinke, Jr. May 1990 A
4924418 Bachman et al. May 1990 A
4928750 Nurczyk May 1990 A
4932588 Fedter et al. Jun 1990 A
4939909 Tsuchiyama et al. Jul 1990 A
4943003 Shimizu et al. Jul 1990 A
4944160 Malone et al. Jul 1990 A
4945491 Rishel Jul 1990 A
4948040 Kobayashi et al. Aug 1990 A
4949550 Hanson Aug 1990 A
4953784 Yasufuku et al. Sep 1990 A
4959970 Meckler Oct 1990 A
4964060 Hartsog Oct 1990 A
4964125 Kim Oct 1990 A
4966006 Thuesen et al. Oct 1990 A
4967567 Proctor et al. Nov 1990 A
4970496 Kirkpatrick Nov 1990 A
4974427 Diab Dec 1990 A
4974665 Zillner, Jr. Dec 1990 A
4975024 Heckel Dec 1990 A
4977751 Hanson Dec 1990 A
4985857 Bajpai et al. Jan 1991 A
4987748 Meckler Jan 1991 A
4990057 Rollins Feb 1991 A
4990893 Kiluk Feb 1991 A
4991770 Bird et al. Feb 1991 A
5000009 Clanin Mar 1991 A
5005365 Lynch Apr 1991 A
5009074 Goubeaux et al. Apr 1991 A
5009075 Okoren Apr 1991 A
5009076 Winslow Apr 1991 A
5018357 Livingstone et al. May 1991 A
5018665 Sulmone May 1991 A
RE33620 Persem Jun 1991 E
5022234 Goubeaux et al. Jun 1991 A
5039009 Baldwin et al. Aug 1991 A
5042264 Dudley Aug 1991 A
5051720 Kittirutsunetorn Sep 1991 A
5056036 Van Bork Oct 1991 A
5056329 Wilkinson Oct 1991 A
5058388 Shaw et al. Oct 1991 A
5062278 Sugiyama Nov 1991 A
5065593 Dudley et al. Nov 1991 A
5067099 McCown et al. Nov 1991 A
RE33775 Behr et al. Dec 1991 E
5070468 Niinomi et al. Dec 1991 A
5071065 Aalto et al. Dec 1991 A
5073091 Burgess et al. Dec 1991 A
5073862 Carlson Dec 1991 A
5076067 Prenger et al. Dec 1991 A
5076494 Ripka Dec 1991 A
5077983 Dudley Jan 1992 A
5083438 McMullin Jan 1992 A
5086385 Launey et al. Feb 1992 A
5088297 Maruyama et al. Feb 1992 A
5094086 Shyu Mar 1992 A
5095712 Narreau Mar 1992 A
5095715 Dudley Mar 1992 A
5099654 Baruschke et al. Mar 1992 A
5103391 Barrett Apr 1992 A
5107500 Wakamoto et al. Apr 1992 A
5109222 Welty Apr 1992 A
5109676 Waters et al. May 1992 A
5109700 Hicho May 1992 A
5109916 Thompson May 1992 A
5115406 Zatezalo et al. May 1992 A
5115643 Hayata et al. May 1992 A
5115644 Alsenz May 1992 A
5115967 Wedekind May 1992 A
5118260 Fraser, Jr. Jun 1992 A
5119466 Suzuki Jun 1992 A
5119637 Bard et al. Jun 1992 A
5121610 Atkinson et al. Jun 1992 A
5123017 Simpkins et al. Jun 1992 A
5123252 Hanson Jun 1992 A
5123253 Hanson et al. Jun 1992 A
5123255 Ohizumi Jun 1992 A
5125067 Erdman Jun 1992 A
5127232 Paige et al. Jul 1992 A
5131237 Valbjorn Jul 1992 A
5136855 Lenarduzzi Aug 1992 A
5140394 Cobb, III Aug 1992 A
5141407 Ramsey et al. Aug 1992 A
5142877 Shimizu Sep 1992 A
5150584 Tomasov et al. Sep 1992 A
5156539 Anderson et al. Oct 1992 A
5167494 Inagaki et al. Dec 1992 A
5170935 Federspiel et al. Dec 1992 A
5170936 Kubo et al. Dec 1992 A
5181389 Hanson et al. Jan 1993 A
5186014 Runk Feb 1993 A
5197666 Wedekind Mar 1993 A
5199855 Nakajima et al. Apr 1993 A
5200872 D'Entremont et al. Apr 1993 A
5200987 Gray Apr 1993 A
5201862 Pettitt Apr 1993 A
5203178 Shyu Apr 1993 A
5203179 Powell Apr 1993 A
5209076 Kauffman et al. May 1993 A
5209400 Winslow et al. May 1993 A
5219041 Greve Jun 1993 A
5224354 Ito et al. Jul 1993 A
5224835 Oltman Jul 1993 A
5226472 Benevelli et al. Jul 1993 A
5228300 Shim Jul 1993 A
5228304 Ryan Jul 1993 A
5228307 Koce Jul 1993 A
5230223 Hullar et al. Jul 1993 A
5231844 Park Aug 1993 A
5233841 Jyrek Aug 1993 A
5235526 Saffell Aug 1993 A
5237830 Grant Aug 1993 A
5241664 Ohba et al. Aug 1993 A
5241833 Ohkoshi Sep 1993 A
5243827 Hagita et al. Sep 1993 A
5243829 Bessler Sep 1993 A
5245833 Mei et al. Sep 1993 A
5248244 Ho et al. Sep 1993 A
5251453 Stanke et al. Oct 1993 A
5251454 Yoon Oct 1993 A
5255977 Eimer et al. Oct 1993 A
5257506 DeWolf et al. Nov 1993 A
5262704 Farr Nov 1993 A
5265434 Alsenz Nov 1993 A
5269458 Sol Dec 1993 A
5271556 Helt et al. Dec 1993 A
5274571 Hesse et al. Dec 1993 A
5276630 Baldwin et al. Jan 1994 A
5279458 DeWolf et al. Jan 1994 A
5282728 Swain Feb 1994 A
5284026 Powell Feb 1994 A
5289362 Liebl et al. Feb 1994 A
5290154 Kotlarek et al. Mar 1994 A
5291752 Alvarez et al. Mar 1994 A
5299504 Abele Apr 1994 A
5303112 Zulaski et al. Apr 1994 A
5303560 Hanson et al. Apr 1994 A
5311451 Barrett May 1994 A
5311562 Palusamy et al. May 1994 A
5316448 Ziegler et al. May 1994 A
5320506 Fogt Jun 1994 A
5333460 Lewis et al. Aug 1994 A
5335507 Powell Aug 1994 A
5336058 Yokoyama Aug 1994 A
5337576 Dorfman Aug 1994 A
5347476 McBean, Sr. Sep 1994 A
5351037 Martell et al. Sep 1994 A
5362206 Westerman et al. Nov 1994 A
5362211 Iizuka et al. Nov 1994 A
5368446 Rode Nov 1994 A
5369958 Kasai et al. Dec 1994 A
5381669 Bahel et al. Jan 1995 A
5381692 Winslow et al. Jan 1995 A
5388176 Dykstra et al. Feb 1995 A
5395042 Riley et al. Mar 1995 A
5410230 Bessler et al. Apr 1995 A
5414792 Shorey May 1995 A
5415008 Bessler May 1995 A
5416781 Ruiz May 1995 A
5423190 Friedland Jun 1995 A
5423192 Young et al. Jun 1995 A
5426952 Bessler Jun 1995 A
5431026 Jaster Jul 1995 A
5432500 Scripps Jul 1995 A
5435145 Jaster Jul 1995 A
5440890 Bahel et al. Aug 1995 A
5440891 Hindmon, Jr. et al. Aug 1995 A
5440895 Bahel et al. Aug 1995 A
5446677 Jensen et al. Aug 1995 A
5450359 Sharma et al. Sep 1995 A
5452291 Eisenhandler et al. Sep 1995 A
5454229 Hanson et al. Oct 1995 A
5457965 Blair et al. Oct 1995 A
5460006 Torimitsu Oct 1995 A
5467011 Hunt Nov 1995 A
5467264 Rauch et al. Nov 1995 A
5469045 Dove et al. Nov 1995 A
5475986 Bahel et al. Dec 1995 A
5478212 Sakai et al. Dec 1995 A
5481481 Frey et al. Jan 1996 A
5481884 Scoccia Jan 1996 A
5483141 Uesugi Jan 1996 A
5491978 Young et al. Feb 1996 A
5495722 Manson et al. Mar 1996 A
5499512 Jurewicz et al. Mar 1996 A
5509786 Mizutani et al. Apr 1996 A
5511387 Tinsler Apr 1996 A
5512883 Lane, Jr. Apr 1996 A
5515267 Alsenz May 1996 A
5515692 Sterber et al. May 1996 A
5519301 Yoshida et al. May 1996 A
5519337 Casada May 1996 A
5528908 Bahel et al. Jun 1996 A
5533347 Ott et al. Jul 1996 A
5535136 Standifer Jul 1996 A
5535597 An Jul 1996 A
5546015 Okabe Aug 1996 A
5546073 Duff et al. Aug 1996 A
5546756 Ali Aug 1996 A
5546757 Whipple, III Aug 1996 A
5548966 Tinsler Aug 1996 A
5555195 Jensen et al. Sep 1996 A
5562426 Watanabe et al. Oct 1996 A
5563490 Kawaguchi et al. Oct 1996 A
5564280 Schilling et al. Oct 1996 A
5566084 Cmar Oct 1996 A
5570085 Bertsch Oct 1996 A
5570258 Manning Oct 1996 A
5572643 Judson Nov 1996 A
5577905 Momber et al. Nov 1996 A
5579648 Hanson et al. Dec 1996 A
5581229 Hunt Dec 1996 A
5586445 Bessler Dec 1996 A
5586446 Torimitsu Dec 1996 A
5590830 Kettler et al. Jan 1997 A
5592058 Archer et al. Jan 1997 A
5592824 Sogabe et al. Jan 1997 A
5596507 Jones et al. Jan 1997 A
5600960 Schwedler et al. Feb 1997 A
5602749 Vosburgh Feb 1997 A
5602757 Haseley et al. Feb 1997 A
5602761 Spoerre et al. Feb 1997 A
5610339 Haseley et al. Mar 1997 A
5611674 Bass et al. Mar 1997 A
5613841 Bass et al. Mar 1997 A
5616829 Balaschak et al. Apr 1997 A
5623834 Bahel et al. Apr 1997 A
5628201 Bahel et al. May 1997 A
5630325 Bahel et al. May 1997 A
5635896 Tinsley et al. Jun 1997 A
5641270 Sgourakes et al. Jun 1997 A
5643482 Sandelman et al. Jul 1997 A
5650936 Loucks et al. Jul 1997 A
5651263 Nonaka et al. Jul 1997 A
5655379 Jaster et al. Aug 1997 A
5655380 Calton Aug 1997 A
5656765 Gray Aug 1997 A
5666815 Aloise Sep 1997 A
5682949 Ratcliffe et al. Nov 1997 A
5684463 Diercks et al. Nov 1997 A
5689963 Bahel et al. Nov 1997 A
5691692 Herbstritt Nov 1997 A
5694010 Oomura et al. Dec 1997 A
5696501 Ouellette et al. Dec 1997 A
5699670 Jurewicz et al. Dec 1997 A
5706007 Fragnito et al. Jan 1998 A
5707210 Ramsey et al. Jan 1998 A
5711785 Maxwell Jan 1998 A
5713724 Centers et al. Feb 1998 A
5714931 Petite et al. Feb 1998 A
5715704 Cholkeri et al. Feb 1998 A
5718822 Richter Feb 1998 A
5724571 Woods Mar 1998 A
5729474 Hildebrand et al. Mar 1998 A
5737931 Ueno et al. Apr 1998 A
5741120 Bass et al. Apr 1998 A
5743109 Schulak Apr 1998 A
5745114 King et al. Apr 1998 A
5749238 Schmidt May 1998 A
5751916 Kon et al. May 1998 A
5752385 Nelson May 1998 A
5754450 Solomon et al. May 1998 A
5754732 Vlahu May 1998 A
5757664 Rogers et al. May 1998 A
5757892 Blanchard et al. May 1998 A
5761083 Brown, Jr. et al. Jun 1998 A
5764509 Gross et al. Jun 1998 A
5772214 Stark Jun 1998 A
5772403 Allison et al. Jun 1998 A
5782101 Dennis Jul 1998 A
5784232 Farr Jul 1998 A
5790898 Kishima et al. Aug 1998 A
5795381 Holder Aug 1998 A
5798941 McLeister Aug 1998 A
5802860 Barrows Sep 1998 A
5805856 Hanson Sep 1998 A
5807336 Russo et al. Sep 1998 A
5808441 Nehring Sep 1998 A
5810908 Gray et al. Sep 1998 A
5812061 Simons Sep 1998 A
5825597 Young Oct 1998 A
5827963 Selegatto et al. Oct 1998 A
5839094 French Nov 1998 A
5839291 Chang et al. Nov 1998 A
5841654 Verissimo et al. Nov 1998 A
5860286 Tulpule Jan 1999 A
5861807 Leyden et al. Jan 1999 A
5867998 Guertin Feb 1999 A
5869960 Brand Feb 1999 A
5873257 Peterson Feb 1999 A
5875430 Koether Feb 1999 A
5875638 Tinsler Mar 1999 A
5884494 Okoren et al. Mar 1999 A
5887786 Sandelman Mar 1999 A
5900801 Heagle et al. May 1999 A
5904049 Jaster et al. May 1999 A
5918200 Tsutsui et al. Jun 1999 A
5924295 Park Jul 1999 A
5924486 Ehlers et al. Jul 1999 A
5926103 Petite Jul 1999 A
5926531 Petite Jul 1999 A
5930773 Crooks et al. Jul 1999 A
5934087 Watanabe et al. Aug 1999 A
5939974 Heagle et al. Aug 1999 A
5946922 Viard et al. Sep 1999 A
5947693 Yang Sep 1999 A
5947701 Hugenroth Sep 1999 A
5949677 Ho Sep 1999 A
5953490 Wiklund et al. Sep 1999 A
5956658 McMahon Sep 1999 A
5971712 Kann Oct 1999 A
5975854 Culp, III et al. Nov 1999 A
5984645 Cummings Nov 1999 A
5986571 Flick Nov 1999 A
5987903 Bathla Nov 1999 A
5988986 Brinken et al. Nov 1999 A
5995347 Rudd et al. Nov 1999 A
5995351 Katsumata et al. Nov 1999 A
6006142 Seem et al. Dec 1999 A
6006171 Vines et al. Dec 1999 A
6011368 Kalpathi et al. Jan 2000 A
6013108 Karolys et al. Jan 2000 A
6017192 Clack et al. Jan 2000 A
6020702 Farr Feb 2000 A
6023420 McCormick et al. Feb 2000 A
6026651 Sandelman Feb 2000 A
6028522 Petite Feb 2000 A
6035661 Sunaga et al. Mar 2000 A
6038871 Gutierrez et al. Mar 2000 A
6041605 Heinrichs Mar 2000 A
6041609 Hornsleth et al. Mar 2000 A
6041856 Thrasher et al. Mar 2000 A
6042344 Lifson Mar 2000 A
6044062 Brownrigg et al. Mar 2000 A
6047557 Pham et al. Apr 2000 A
6050098 Meyer et al. Apr 2000 A
6050780 Hasegawa et al. Apr 2000 A
6052731 Holdsworth et al. Apr 2000 A
6057771 Lakra May 2000 A
6065946 Lathrop May 2000 A
6068447 Foege May 2000 A
6070110 Shah et al. May 2000 A
6075530 Lucas et al. Jun 2000 A
6077051 Centers et al. Jun 2000 A
6081750 Hoffberg et al. Jun 2000 A
6082495 Steinbarger et al. Jul 2000 A
6082971 Gunn et al. Jul 2000 A
6085530 Barito Jul 2000 A
6088659 Kelley et al. Jul 2000 A
6088688 Crooks et al. Jul 2000 A
6092370 Tremoulet, Jr. et al. Jul 2000 A
6092378 Das et al. Jul 2000 A
6092992 Imblum et al. Jul 2000 A
6095674 Verissimo et al. Aug 2000 A
6098893 Berglund et al. Aug 2000 A
6102665 Centers et al. Aug 2000 A
6110260 Kubokawa Aug 2000 A
6119949 Lindstrom Sep 2000 A
6122603 Budike, Jr. Sep 2000 A
6125642 Seener et al. Oct 2000 A
6128583 Dowling Oct 2000 A
6128953 Mizukoshi Oct 2000 A
6129527 Donahoe et al. Oct 2000 A
6138461 Park et al. Oct 2000 A
6142741 Nishihata et al. Nov 2000 A
6144888 Lucas et al. Nov 2000 A
6145328 Choi Nov 2000 A
6147601 Sandelman et al. Nov 2000 A
6152375 Robison Nov 2000 A
6152376 Sandelman et al. Nov 2000 A
6153942 Roseman et al. Nov 2000 A
6153993 Oomura et al. Nov 2000 A
6154488 Hunt Nov 2000 A
6157310 Milne et al. Dec 2000 A
6158230 Katsuki Dec 2000 A
6160477 Sandelman et al. Dec 2000 A
6169979 Johnson Jan 2001 B1
6172476 Tolbert, Jr. et al. Jan 2001 B1
6174136 Kilayko et al. Jan 2001 B1
6176686 Wallis et al. Jan 2001 B1
6177884 Hunt et al. Jan 2001 B1
6178362 Woolard et al. Jan 2001 B1
6179214 Key et al. Jan 2001 B1
6190442 Redner Feb 2001 B1
6191545 Kawabata et al. Feb 2001 B1
6192282 Smith et al. Feb 2001 B1
6199018 Quist et al. Mar 2001 B1
6211782 Sandelman et al. Apr 2001 B1
6213731 Doepker et al. Apr 2001 B1
6215405 Handley et al. Apr 2001 B1
6216956 Ehlers et al. Apr 2001 B1
6218953 Petite Apr 2001 B1
6223543 Sandelman May 2001 B1
6223544 Seem May 2001 B1
6228155 Tai May 2001 B1
6230501 Bailey, Sr. et al. May 2001 B1
6233327 Petite May 2001 B1
6234019 Caldeira May 2001 B1
6240733 Brandon et al. Jun 2001 B1
6240736 Fujita et al. Jun 2001 B1
6244061 Takagi et al. Jun 2001 B1
6249516 Brownrigg et al. Jun 2001 B1
6260004 Hays et al. Jul 2001 B1
6266968 Redlich Jul 2001 B1
6268664 Rolls et al. Jul 2001 B1
6272868 Grabon et al. Aug 2001 B1
6276901 Farr et al. Aug 2001 B1
6279332 Yeo et al. Aug 2001 B1
6290043 Ginder et al. Sep 2001 B1
6293114 Kamemoto Sep 2001 B1
6293767 Bass Sep 2001 B1
6302654 Millet et al. Oct 2001 B1
6304934 Pimenta et al. Oct 2001 B1
6320275 Okamoto Nov 2001 B1
6324854 Jayanth Dec 2001 B1
6327541 Pitchford et al. Dec 2001 B1
6332327 Street et al. Dec 2001 B1
6334093 More Dec 2001 B1
6349883 Simmons et al. Feb 2002 B1
6359410 Randolph Mar 2002 B1
6360551 Renders Mar 2002 B1
6366889 Zaloom Apr 2002 B1
6375439 Missio Apr 2002 B1
6378315 Gelber et al. Apr 2002 B1
6381971 Honda May 2002 B2
6385510 Hoog et al. May 2002 B1
6389823 Loprete et al. May 2002 B1
6390779 Cunkelman May 2002 B1
6391102 Bodden et al. May 2002 B1
6393848 Roh et al. May 2002 B2
6397606 Roh et al. Jun 2002 B1
6397612 Kernkamp et al. Jun 2002 B1
6406265 Hahn et al. Jun 2002 B1
6406266 Hugenroth et al. Jun 2002 B1
6408228 Seem et al. Jun 2002 B1
6408258 Richer Jun 2002 B1
6412293 Pham et al. Jul 2002 B1
6414594 Guerlain Jul 2002 B1
6430268 Petite Aug 2002 B1
6433791 Selli et al. Aug 2002 B2
6437691 Sandelman et al. Aug 2002 B1
6437692 Petite et al. Aug 2002 B1
6438981 Whiteside Aug 2002 B1
6442953 Trigiani et al. Sep 2002 B1
6449972 Pham et al. Sep 2002 B2
6450771 Centers et al. Sep 2002 B1
6451210 Sivavec et al. Sep 2002 B1
6453687 Sharood et al. Sep 2002 B2
6454177 Sasao et al. Sep 2002 B1
6454538 Witham et al. Sep 2002 B1
6456928 Johnson Sep 2002 B1
6457319 Ota et al. Oct 2002 B1
6457948 Pham Oct 2002 B1
6460731 Estelle et al. Oct 2002 B2
6462654 Sandelman et al. Oct 2002 B1
6463747 Temple Oct 2002 B1
6466971 Humpleman et al. Oct 2002 B1
6467280 Pham et al. Oct 2002 B2
6471486 Centers et al. Oct 2002 B1
6474084 Gauthier et al. Nov 2002 B2
6484520 Kawaguchi et al. Nov 2002 B2
6487457 Hull et al. Nov 2002 B1
6490506 March Dec 2002 B1
6492923 Inoue et al. Dec 2002 B1
6497554 Yang et al. Dec 2002 B2
6501240 Ueda et al. Dec 2002 B2
6501629 Marriott Dec 2002 B1
6502409 Gatling et al. Jan 2003 B1
6505087 Lucas et al. Jan 2003 B1
6505475 Zugibe et al. Jan 2003 B1
6510350 Steen, III et al. Jan 2003 B1
6522974 Sitton Feb 2003 B2
6523130 Hickman et al. Feb 2003 B1
6526766 Hiraoka et al. Mar 2003 B1
6529590 Centers Mar 2003 B1
6529839 Uggerud et al. Mar 2003 B1
6533552 Centers et al. Mar 2003 B2
6535123 Sandelman et al. Mar 2003 B2
6535270 Murayama Mar 2003 B1
6535859 Yablonowski et al. Mar 2003 B1
6537034 Park et al. Mar 2003 B2
6542062 Herrick Apr 2003 B1
6549135 Singh et al. Apr 2003 B2
6551069 Narney, II et al. Apr 2003 B2
6553774 Ishio et al. Apr 2003 B1
6558126 Hahn et al. May 2003 B1
6560976 Jayanth May 2003 B2
6571280 Hubacher May 2003 B1
6571566 Temple et al. Jun 2003 B1
6571586 Ritson et al. Jun 2003 B1
6574561 Alexander et al. Jun 2003 B2
6577959 Chajec et al. Jun 2003 B1
6577962 Afshari Jun 2003 B1
6578373 Barbier Jun 2003 B1
6583720 Quigley Jun 2003 B1
6591620 Kikuchi et al. Jul 2003 B2
6595475 Svabek et al. Jul 2003 B2
6595757 Shen Jul 2003 B2
6598056 Hull et al. Jul 2003 B1
6601397 Pham et al. Aug 2003 B2
6604093 Etzion et al. Aug 2003 B1
6609070 Lueck Aug 2003 B1
6609078 Starling et al. Aug 2003 B2
6615594 Jayanth et al. Sep 2003 B2
6616415 Renken et al. Sep 2003 B1
6618578 Petite Sep 2003 B1
6618709 Sneeringer Sep 2003 B1
6621443 Selli et al. Sep 2003 B1
6622925 Carner et al. Sep 2003 B2
6622926 Sartain et al. Sep 2003 B1
6628764 Petite Sep 2003 B1
6629420 Renders Oct 2003 B2
6630749 Takagi Oct 2003 B1
6631298 Pagnano et al. Oct 2003 B1
6636893 Fong Oct 2003 B1
6643567 Kolk et al. Nov 2003 B2
6644848 Clayton et al. Nov 2003 B1
6647735 Street et al. Nov 2003 B2
6658373 Rossi et al. Dec 2003 B2
6662584 Whiteside Dec 2003 B1
6662653 Scaliante et al. Dec 2003 B1
6671586 Davis et al. Dec 2003 B2
6675591 Singh et al. Jan 2004 B2
6679072 Pham et al. Jan 2004 B2
6684349 Gullo et al. Jan 2004 B2
6685438 Yoo et al. Feb 2004 B2
6698218 Goth et al. Mar 2004 B2
6701725 Rossi et al. Mar 2004 B2
6708083 Orthlieb et al. Mar 2004 B2
6708508 Demuth et al. Mar 2004 B2
6709244 Pham Mar 2004 B2
6711470 Hartenstein et al. Mar 2004 B1
6711911 Grabon et al. Mar 2004 B1
6717513 Sandelman et al. Apr 2004 B1
6721770 Morton et al. Apr 2004 B1
6725182 Pagnano et al. Apr 2004 B2
6732538 Trigiani et al. May 2004 B2
6745107 Miller Jun 2004 B1
6747557 Petite et al. Jun 2004 B1
6757665 Unsworth et al. Jun 2004 B1
6758050 Jayanth et al. Jul 2004 B2
6758051 Jayanth et al. Jul 2004 B2
6760207 Wyatt et al. Jul 2004 B2
6772096 Murakami et al. Aug 2004 B2
6772598 Rinehart Aug 2004 B1
6775995 Bahel et al. Aug 2004 B1
6784807 Petite et al. Aug 2004 B2
6785592 Smith et al. Aug 2004 B1
6786473 Alles Sep 2004 B1
6799951 Lifson et al. Oct 2004 B2
6804993 Selli Oct 2004 B2
6811380 Kim Nov 2004 B2
6813897 Bash Nov 2004 B1
6816811 Seem Nov 2004 B2
6823680 Jayanth Nov 2004 B2
6829542 Reynolds et al. Dec 2004 B1
6832120 Frank et al. Dec 2004 B1
6832898 Yoshida et al. Dec 2004 B2
6836737 Petite et al. Dec 2004 B2
6837922 Gorin Jan 2005 B2
6839790 Barros De Almeida et al. Jan 2005 B2
6854345 Alves et al. Feb 2005 B2
6862498 Davis et al. Mar 2005 B2
6868678 Mei et al. Mar 2005 B2
6868686 Ueda et al. Mar 2005 B2
6869272 Odachi et al. Mar 2005 B2
6870486 Souza et al. Mar 2005 B2
6885949 Selli Apr 2005 B2
6889173 Singh May 2005 B2
6891838 Petite et al. May 2005 B1
6892546 Singh et al. May 2005 B2
6897772 Scheffler et al. May 2005 B1
6900738 Crichlow May 2005 B2
6901066 Helgeson May 2005 B1
6904385 Budike, Jr. Jun 2005 B1
6914533 Petite Jul 2005 B2
6914893 Petite Jul 2005 B2
6922155 Evans et al. Jul 2005 B1
6931445 Davis Aug 2005 B2
6934862 Sharood et al. Aug 2005 B2
6952658 Greulich et al. Oct 2005 B2
6956344 Robertson et al. Oct 2005 B2
6964558 Hahn et al. Nov 2005 B2
6966759 Hahn et al. Nov 2005 B2
6968295 Carr Nov 2005 B1
6973410 Seigel Dec 2005 B2
6973793 Douglas et al. Dec 2005 B2
6973794 Street et al. Dec 2005 B2
6976366 Starling et al. Dec 2005 B2
6978225 Retlich et al. Dec 2005 B2
6981384 Dobmeier et al. Jan 2006 B2
6983321 Trinon et al. Jan 2006 B2
6983889 Alles Jan 2006 B2
6986469 Gauthier et al. Jan 2006 B2
6987450 Marino et al. Jan 2006 B2
6990821 Singh et al. Jan 2006 B2
6992452 Sachs et al. Jan 2006 B1
6996441 Tobias Feb 2006 B1
6997390 Alles Feb 2006 B2
6998807 Phillips Feb 2006 B2
6998963 Flen et al. Feb 2006 B2
6999996 Sunderland Feb 2006 B2
7000422 Street et al. Feb 2006 B2
7003378 Poth Feb 2006 B2
7009510 Douglass et al. Mar 2006 B1
7010925 Sienel et al. Mar 2006 B2
7019667 Petite et al. Mar 2006 B2
7024665 Ferraz et al. Apr 2006 B2
7024870 Singh et al. Apr 2006 B2
7030752 Tyroler Apr 2006 B2
7031880 Seem et al. Apr 2006 B1
7035693 Cassiolato et al. Apr 2006 B2
7039532 Hunter May 2006 B2
7042180 Terry et al. May 2006 B2
7042350 Patrick et al. May 2006 B2
7043339 Maeda et al. May 2006 B2
7043459 Peevey May 2006 B2
7047753 Street et al. May 2006 B2
7053766 Fisler et al. May 2006 B2
7053767 Petite et al. May 2006 B2
7054271 Brownrigg et al. May 2006 B2
7062580 Donaires Jun 2006 B2
7062830 Alles Jun 2006 B2
7063537 Selli et al. Jun 2006 B2
7072797 Gorinevsky Jul 2006 B2
7075327 Dimino et al. Jul 2006 B2
7079810 Petite et al. Jul 2006 B2
7079967 Rossi et al. Jul 2006 B2
7082380 Wiebe et al. Jul 2006 B2
7089125 Sonderegger Aug 2006 B2
7091847 Capowski et al. Aug 2006 B2
7092767 Pagnano et al. Aug 2006 B2
7092794 Hill et al. Aug 2006 B1
7096153 Guralnik et al. Aug 2006 B2
7102490 Flen et al. Sep 2006 B2
7103511 Petite Sep 2006 B2
7110843 Pagnano et al. Sep 2006 B2
7110898 Montijo et al. Sep 2006 B2
7113376 Nomura et al. Sep 2006 B2
7114343 Kates Oct 2006 B2
7123020 Hill et al. Oct 2006 B2
7123458 Mohr et al. Oct 2006 B2
7124728 Carey et al. Oct 2006 B2
7126465 Faltesek Oct 2006 B2
7130170 Wakefield et al. Oct 2006 B2
7130832 Bannai et al. Oct 2006 B2
7134295 Maekawa Nov 2006 B2
7137550 Petite Nov 2006 B1
7142125 Larson et al. Nov 2006 B2
7145438 Flen et al. Dec 2006 B2
7145462 Dewing et al. Dec 2006 B2
7159408 Sadegh et al. Jan 2007 B2
7162884 Alles Jan 2007 B2
7163158 Rossi et al. Jan 2007 B2
7171372 Daniel et al. Jan 2007 B2
7174728 Jayanth Feb 2007 B2
7180412 Bonicatto et al. Feb 2007 B2
7184861 Petite Feb 2007 B2
7188482 Sadegh et al. Mar 2007 B2
7188779 Alles Mar 2007 B2
7201006 Kates Apr 2007 B2
7207496 Alles Apr 2007 B2
7209840 Petite et al. Apr 2007 B2
7212887 Shah et al May 2007 B2
7222493 Jayanth et al. May 2007 B2
7224740 Hunt May 2007 B2
7225193 Mets et al. May 2007 B2
7227450 Garvy et al. Jun 2007 B2
7228691 Street et al. Jun 2007 B2
7230528 Kates Jun 2007 B2
7234313 Bell et al. Jun 2007 B2
7236765 Bonicatto et al. Jun 2007 B2
7244294 Kates Jul 2007 B2
7246014 Forth et al. Jul 2007 B2
7255285 Troost et al. Aug 2007 B2
7257501 Zhan et al. Aug 2007 B2
7260505 Felke et al. Aug 2007 B2
7261762 Kang et al. Aug 2007 B2
7263073 Petite et al. Aug 2007 B2
7263446 Morin et al. Aug 2007 B2
7266812 Pagnano Sep 2007 B2
7270278 Street et al. Sep 2007 B2
7274995 Zhan et al. Sep 2007 B2
7275377 Kates Oct 2007 B2
7286945 Zhan et al. Oct 2007 B2
7290398 Wallace et al. Nov 2007 B2
7290989 Jayanth Nov 2007 B2
7295128 Petite Nov 2007 B2
7295896 Norbeck Nov 2007 B2
7317952 Bhandiwad et al. Jan 2008 B2
7328192 Stengard et al. Feb 2008 B1
7330886 Childers et al. Feb 2008 B2
7331187 Kates Feb 2008 B2
7336168 Kates Feb 2008 B2
7337191 Haeberle et al. Feb 2008 B2
7343750 Lifson et al. Mar 2008 B2
7343751 Kates Mar 2008 B2
7346463 Petite et al. Mar 2008 B2
7346472 Moskowitz et al. Mar 2008 B1
7349824 Seigel Mar 2008 B2
7350112 Fox et al. Mar 2008 B2
7351274 Helt et al. Apr 2008 B2
7352545 Wyatt et al. Apr 2008 B2
7363200 Lu Apr 2008 B2
7376712 Granatelli et al. May 2008 B1
7377118 Esslinger May 2008 B2
7383030 Brown et al. Jun 2008 B2
7383158 Krocker et al. Jun 2008 B2
7392661 Alles Jul 2008 B2
7397907 Petite Jul 2008 B2
7400240 Shrode et al. Jul 2008 B2
7412842 Pham Aug 2008 B2
7414525 Costea et al. Aug 2008 B2
7421351 Navratil Sep 2008 B2
7421374 Zhan et al. Sep 2008 B2
7421850 Street et al. Sep 2008 B2
7424343 Kates Sep 2008 B2
7424345 Norbeck Sep 2008 B2
7424527 Petite Sep 2008 B2
7432824 Flen et al. Oct 2008 B2
7433854 Joseph et al. Oct 2008 B2
7434742 Mueller et al. Oct 2008 B2
7437150 Morelli et al. Oct 2008 B1
7440560 Barry Oct 2008 B1
7440767 Ballay et al. Oct 2008 B2
7443313 Davis et al. Oct 2008 B2
7444251 Nikovski et al. Oct 2008 B2
7445665 Hsieh et al. Nov 2008 B2
7447603 Bruno Nov 2008 B2
7447609 Guralnik et al. Nov 2008 B2
7451606 Harrod Nov 2008 B2
7454439 Gansner et al. Nov 2008 B1
7458223 Pham Dec 2008 B2
7468661 Petite et al. Dec 2008 B2
7469546 Kates Dec 2008 B2
7474992 Ariyur Jan 2009 B2
7480501 Petite Jan 2009 B2
7483810 Jackson et al. Jan 2009 B2
7484376 Pham Feb 2009 B2
7490477 Singh et al. Feb 2009 B2
7491034 Jayanth Feb 2009 B2
7503182 Bahel et al. Mar 2009 B2
7510126 Rossi et al. Mar 2009 B2
7523619 Kojima et al. Apr 2009 B2
7528711 Kates May 2009 B2
7533070 Guralnik et al. May 2009 B2
7537172 Rossi et al. May 2009 B2
7552030 Guralnik et al. Jun 2009 B2
7552596 Galante et al. Jun 2009 B2
7555364 Poth et al. Jun 2009 B2
7574333 Lu Aug 2009 B2
7580812 Ariyur et al. Aug 2009 B2
7594407 Singh et al. Sep 2009 B2
7596959 Singh et al. Oct 2009 B2
7606683 Bahel et al. Oct 2009 B2
7631508 Braun et al. Dec 2009 B2
7636901 Munson et al. Dec 2009 B2
7644591 Singh et al. Jan 2010 B2
7648077 Rossi et al. Jan 2010 B2
7650425 Davis et al. Jan 2010 B2
7660700 Moskowitz et al. Feb 2010 B2
7660774 Mukherjee et al. Feb 2010 B2
7664613 Hansen Feb 2010 B2
7665315 Singh et al. Feb 2010 B2
7686872 Kang Mar 2010 B2
7693809 Gray Apr 2010 B2
7697492 Petite Apr 2010 B2
7703694 Mueller et al. Apr 2010 B2
7704052 Iimura et al. Apr 2010 B2
7706320 Davis et al. Apr 2010 B2
7724131 Chen May 2010 B2
7726583 Maekawa Jun 2010 B2
7734451 MacArthur et al. Jun 2010 B2
7738999 Petite Jun 2010 B2
7739378 Petite Jun 2010 B2
7742393 Bonicatto et al. Jun 2010 B2
7752853 Singh et al. Jul 2010 B2
7752854 Singh et al. Jul 2010 B2
7756086 Petite et al. Jul 2010 B2
7791468 Bonicatto et al. Sep 2010 B2
7844366 Singh Nov 2010 B2
7845179 Singh et al. Dec 2010 B2
7848827 Chen Dec 2010 B2
7848900 Steinberg et al. Dec 2010 B2
7877218 Bonicatto et al. Jan 2011 B2
7885959 Horowitz et al. Feb 2011 B2
7885961 Horowitz et al. Feb 2011 B2
7905098 Pham Mar 2011 B2
7908116 Steinberg et al. Mar 2011 B2
7908117 Steinberg et al. Mar 2011 B2
7922914 Verdegan et al. Apr 2011 B1
7937623 Ramacher et al. May 2011 B2
7941294 Shahi et al. May 2011 B2
7949494 Moskowitz et al. May 2011 B2
7949615 Ehlers et al. May 2011 B2
7963454 Sullivan et al. Jun 2011 B2
7966152 Stluka et al. Jun 2011 B2
7967218 Alles Jun 2011 B2
7978059 Petite et al. Jul 2011 B2
7987679 Tanaka et al. Aug 2011 B2
7996045 Bauer et al. Aug 2011 B1
7999668 Cawthorne et al. Aug 2011 B2
8000314 Brownrigg et al. Aug 2011 B2
8002199 Habegger Aug 2011 B2
8005640 Chiefetz et al. Aug 2011 B2
8010237 Cheung et al. Aug 2011 B2
8013732 Petite et al. Sep 2011 B2
8018182 Roehm Sep 2011 B2
8019567 Steinberg et al. Sep 2011 B2
8029608 Breslin Oct 2011 B1
8031455 Paik Oct 2011 B2
8031650 Petite et al. Oct 2011 B2
8034170 Kates Oct 2011 B2
8036844 Ling et al. Oct 2011 B2
8040231 Kuruvila et al. Oct 2011 B2
8041539 Guralnik et al. Oct 2011 B2
8046107 Zugibe et al. Oct 2011 B2
8061417 Gray Nov 2011 B2
8064412 Petite Nov 2011 B2
8065886 Singh et al. Nov 2011 B2
8068997 Ling et al. Nov 2011 B2
8090477 Steinberg Jan 2012 B1
8090559 Parthasarathy et al. Jan 2012 B2
8090824 Tran et al. Jan 2012 B2
8095337 Kolbet et al. Jan 2012 B2
8108200 Anne et al. Jan 2012 B2
8125230 Bharadwaj et al. Feb 2012 B2
8131497 Steinberg et al. Mar 2012 B2
8131506 Steinberg et al. Mar 2012 B2
8134330 Alles Mar 2012 B2
8150720 Singh et al. Apr 2012 B2
8156208 Bornhoevd et al. Apr 2012 B2
8170968 Colclough et al. May 2012 B2
8171136 Petite May 2012 B2
8175846 Khalak et al. May 2012 B2
8180492 Steinberg May 2012 B2
8182579 Woo et al. May 2012 B2
8214175 Moskowitz et al. Jul 2012 B2
8228648 Jayanth et al. Jul 2012 B2
8239922 Sullivan et al. Aug 2012 B2
8258763 Nakamura et al. Sep 2012 B2
8279565 Hall et al. Oct 2012 B2
8280536 Fadell et al. Oct 2012 B1
8328524 Iimura et al. Dec 2012 B2
8380556 Singh et al. Feb 2013 B2
8393169 Pham Mar 2013 B2
8625244 Paik Jan 2014 B2
9168315 Scaringe et al. Oct 2015 B1
20010005320 Ueda et al. Jun 2001 A1
20010054293 Gustafson et al. Dec 2001 A1
20020013679 Petite Jan 2002 A1
20020016639 Smith et al. Feb 2002 A1
20020017057 Weder Feb 2002 A1
20020018724 Millet et al. Feb 2002 A1
20020020175 Street et al. Feb 2002 A1
20020029575 Okamoto Mar 2002 A1
20020031101 Petite et al. Mar 2002 A1
20020035495 Spira et al. Mar 2002 A1
20020040280 Morgan Apr 2002 A1
20020064463 Park et al. May 2002 A1
20020067999 Suitou et al. Jun 2002 A1
20020082747 Kramer Jun 2002 A1
20020082924 Koether Jun 2002 A1
20020095269 Natalini et al. Jul 2002 A1
20020103655 Boies et al. Aug 2002 A1
20020113877 Welch Aug 2002 A1
20020117992 Hirono et al. Aug 2002 A1
20020118106 Brenn Aug 2002 A1
20020127120 Hahn et al. Sep 2002 A1
20020138217 Shen et al. Sep 2002 A1
20020143482 Karanam et al. Oct 2002 A1
20020152298 Kikta et al. Oct 2002 A1
20020157408 Egawa et al. Oct 2002 A1
20020157409 Pham et al. Oct 2002 A1
20020161545 Starling et al. Oct 2002 A1
20020163436 Singh et al. Nov 2002 A1
20020170299 Jayanth et al. Nov 2002 A1
20020173929 Seigel Nov 2002 A1
20020187057 Loprete et al. Dec 2002 A1
20020189267 Singh et al. Dec 2002 A1
20020193890 Pouchak Dec 2002 A1
20020198629 Ellis Dec 2002 A1
20030004660 Hunter Jan 2003 A1
20030004765 Wiegand Jan 2003 A1
20030005710 Singh et al. Jan 2003 A1
20030006884 Hunt Jan 2003 A1
20030014218 Trigiani et al. Jan 2003 A1
20030019221 Rossi et al. Jan 2003 A1
20030036810 Petite Feb 2003 A1
20030037555 Street et al. Feb 2003 A1
20030050737 Osann Mar 2003 A1
20030050824 Suermondt et al. Mar 2003 A1
20030051490 Jayanth Mar 2003 A1
20030055603 Rossi et al. Mar 2003 A1
20030055663 Struble Mar 2003 A1
20030063983 Ancel et al. Apr 2003 A1
20030070438 Kikuchi et al. Apr 2003 A1
20030070544 Mulvaney et al. Apr 2003 A1
20030074285 Hoffman et al. Apr 2003 A1
20030077179 Collins et al. Apr 2003 A1
20030078677 Hull et al. Apr 2003 A1
20030078742 VanderZee et al. Apr 2003 A1
20030089493 Takano et al. May 2003 A1
20030094004 Pham et al. May 2003 A1
20030108430 Yoshida et al. Jun 2003 A1
20030115890 Jayanth et al. Jun 2003 A1
20030135786 Vollmar et al. Jul 2003 A1
20030137396 Durej et al. Jul 2003 A1
20030150924 Peter Aug 2003 A1
20030150926 Rosen Aug 2003 A1
20030150927 Rosen Aug 2003 A1
20030171851 Brickfield et al. Sep 2003 A1
20030183085 Alexander Oct 2003 A1
20030191606 Fujiyama et al. Oct 2003 A1
20030199247 Striemer Oct 2003 A1
20030205143 Cheng Nov 2003 A1
20030213851 Burd et al. Nov 2003 A1
20030216837 Reich et al. Nov 2003 A1
20030216888 Ridolfo Nov 2003 A1
20030233172 Granqvist et al. Dec 2003 A1
20040016241 Street et al. Jan 2004 A1
20040016244 Street et al. Jan 2004 A1
20040016251 Street et al. Jan 2004 A1
20040016253 Street et al. Jan 2004 A1
20040019584 Greening et al. Jan 2004 A1
20040024495 Sunderland Feb 2004 A1
20040037706 Hahn et al. Feb 2004 A1
20040042904 Kim Mar 2004 A1
20040047406 Hunt Mar 2004 A1
20040049715 Jaw Mar 2004 A1
20040059691 Higgins Mar 2004 A1
20040068390 Saunders Apr 2004 A1
20040078695 Bowers et al. Apr 2004 A1
20040079093 Gauthier et al. Apr 2004 A1
20040093879 Street et al. May 2004 A1
20040095237 Chen et al. May 2004 A1
20040111186 Rossi et al. Jun 2004 A1
20040117166 Cassiolato Jun 2004 A1
20040133314 Ehlers et al. Jul 2004 A1
20040133367 Hart Jul 2004 A1
20040140772 Gullo et al. Jul 2004 A1
20040140812 Scallante et al. Jul 2004 A1
20040144106 Douglas et al. Jul 2004 A1
20040153437 Buchan Aug 2004 A1
20040159113 Singh et al. Aug 2004 A1
20040159114 Demuth et al. Aug 2004 A1
20040183687 Petite et al. Sep 2004 A1
20040184627 Kost et al. Sep 2004 A1
20040184928 Millet et al. Sep 2004 A1
20040184929 Millet et al. Sep 2004 A1
20040184930 Millet et al. Sep 2004 A1
20040184931 Millet et al. Sep 2004 A1
20040187502 Jayanth et al. Sep 2004 A1
20040191073 Iimura et al. Sep 2004 A1
20040199480 Unsworth Oct 2004 A1
20040210419 Wiebe et al. Oct 2004 A1
20040213384 Alles et al. Oct 2004 A1
20040230582 Pagnano et al. Nov 2004 A1
20040230899 Pagnano et al. Nov 2004 A1
20040239266 Lee et al. Dec 2004 A1
20040261431 Singh et al. Dec 2004 A1
20050043923 Forster et al. Feb 2005 A1
20050053471 Hong et al. Mar 2005 A1
20050056031 Jeong Mar 2005 A1
20050066675 Manole et al. Mar 2005 A1
20050073532 Scott et al. Apr 2005 A1
20050086341 Enga et al. Apr 2005 A1
20050100449 Hahn et al. May 2005 A1
20050103036 Maekawa May 2005 A1
20050125439 Nourbakhsh et al. Jun 2005 A1
20050126190 Lifson et al. Jun 2005 A1
20050131624 Gaessler et al. Jun 2005 A1
20050149570 Sasaki et al. Jul 2005 A1
20050154495 Shah Jul 2005 A1
20050166610 Jayanth Aug 2005 A1
20050169636 Aronson et al. Aug 2005 A1
20050172647 Thybo et al. Aug 2005 A1
20050195775 Petite et al. Sep 2005 A1
20050198063 Thomas et al. Sep 2005 A1
20050201397 Petite Sep 2005 A1
20050204756 Dobmeier et al. Sep 2005 A1
20050207741 Shah et al. Sep 2005 A1
20050214148 Ogawa et al. Sep 2005 A1
20050222715 Ruhnke et al. Oct 2005 A1
20050228607 Simons Oct 2005 A1
20050229612 Hrejsa et al. Oct 2005 A1
20050229777 Brown et al. Oct 2005 A1
20050232781 Herbert et al. Oct 2005 A1
20050235660 Pham Oct 2005 A1
20050235661 Pham Oct 2005 A1
20050235662 Pham Oct 2005 A1
20050235663 Pham Oct 2005 A1
20050235664 Pham Oct 2005 A1
20050247194 Kang et al. Nov 2005 A1
20050251293 Seigel Nov 2005 A1
20050252220 Street et al. Nov 2005 A1
20050262856 Street et al. Dec 2005 A1
20050262923 Kates Dec 2005 A1
20060010898 Suharno et al. Jan 2006 A1
20060015777 Loda Jan 2006 A1
20060020426 Singh Jan 2006 A1
20060021362 Sadegh et al. Feb 2006 A1
20060032245 Kates Feb 2006 A1
20060032246 Kates Feb 2006 A1
20060032247 Kates Feb 2006 A1
20060032248 Kates Feb 2006 A1
20060032379 Kates Feb 2006 A1
20060036349 Kates Feb 2006 A1
20060041335 Rossi et al. Feb 2006 A9
20060042276 Doll et al. Mar 2006 A1
20060071089 Kates Apr 2006 A1
20060071666 Unsworth Apr 2006 A1
20060074917 Chand et al. Apr 2006 A1
20060097063 Zeevi May 2006 A1
20060098576 Brownrigg et al. May 2006 A1
20060117773 Street et al. Jun 2006 A1
20060123807 Sullivan et al. Jun 2006 A1
20060129339 Bruno Jun 2006 A1
20060130500 Gauthier et al. Jun 2006 A1
20060137364 Braun et al. Jun 2006 A1
20060137368 Kang et al. Jun 2006 A1
20060138866 Bergmann et al. Jun 2006 A1
20060140209 Cassiolato et al. Jun 2006 A1
20060151037 Lepola et al. Jul 2006 A1
20060179854 Esslinger Aug 2006 A1
20060182635 Jayanth Aug 2006 A1
20060185373 Butler et al. Aug 2006 A1
20060196196 Kates Sep 2006 A1
20060196197 Kates Sep 2006 A1
20060201168 Kates Sep 2006 A1
20060222507 Jayanth Oct 2006 A1
20060229739 Morikawa Oct 2006 A1
20060235650 Vinberg et al. Oct 2006 A1
20060238388 Jayanth Oct 2006 A1
20060242200 Horowitz et al. Oct 2006 A1
20060244641 Jayanth et al. Nov 2006 A1
20060256488 Benzing et al. Nov 2006 A1
20060259276 Rossi et al. Nov 2006 A1
20060271589 Horowitz et al. Nov 2006 A1
20060271623 Horowitz et al. Nov 2006 A1
20060280627 Jayanth Dec 2006 A1
20070002505 Watanabe et al. Jan 2007 A1
20070006124 Ahmed et al. Jan 2007 A1
20070027735 Rokos Feb 2007 A1
20070067512 Donaires et al. Mar 2007 A1
20070089434 Singh et al. Apr 2007 A1
20070089435 Singh et al. Apr 2007 A1
20070089438 Singh et al. Apr 2007 A1
20070089439 Singh et al. Apr 2007 A1
20070089440 Singh et al. Apr 2007 A1
20070101750 Pham et al. May 2007 A1
20070159978 Anglin et al. Jul 2007 A1
20070186569 Street et al. Aug 2007 A1
20070204635 Tanaka et al. Sep 2007 A1
20070204921 Alles Sep 2007 A1
20070205296 Bell et al. Sep 2007 A1
20070229305 Bonicatto et al. Oct 2007 A1
20070239894 Thind et al. Oct 2007 A1
20080000241 Larsen et al. Jan 2008 A1
20080015797 Kates Jan 2008 A1
20080016888 Kates Jan 2008 A1
20080051945 Kates Feb 2008 A1
20080058970 Perumalsamy et al. Mar 2008 A1
20080078289 Sergi et al. Apr 2008 A1
20080109185 Cheung et al. May 2008 A1
20080114569 Seigel May 2008 A1
20080121729 Gray May 2008 A1
20080186898 Petite Aug 2008 A1
20080209925 Pham Sep 2008 A1
20080216494 Pham et al. Sep 2008 A1
20080216495 Kates Sep 2008 A1
20080223051 Kates Sep 2008 A1
20080234869 Yonezawa et al. Sep 2008 A1
20080315000 Gorthala et al. Dec 2008 A1
20080319688 Kim Dec 2008 A1
20090007777 Cohen et al. Jan 2009 A1
20090030555 Gray Jan 2009 A1
20090037142 Kates Feb 2009 A1
20090038010 Ma et al. Feb 2009 A1
20090055465 DePue et al. Feb 2009 A1
20090057424 Sullivan et al. Mar 2009 A1
20090057428 Geadelmann et al. Mar 2009 A1
20090068947 Petite Mar 2009 A1
20090071175 Pham Mar 2009 A1
20090072985 Patel et al. Mar 2009 A1
20090093916 Parsonnet et al. Apr 2009 A1
20090094998 McSweeney et al. Apr 2009 A1
20090096605 Petite et al. Apr 2009 A1
20090099699 Steinberg et al. Apr 2009 A1
20090106601 Ngai et al. Apr 2009 A1
20090112672 Flamig et al. Apr 2009 A1
20090119036 Jayanth et al. May 2009 A1
20090125151 Steinberg et al. May 2009 A1
20090140880 Flen et al. Jun 2009 A1
20090151374 Kasahara Jun 2009 A1
20090187281 Kates Jul 2009 A1
20090215424 Petite Aug 2009 A1
20090229469 Campbell et al. Sep 2009 A1
20090241570 Kuribayashi et al. Oct 2009 A1
20090296832 Hunt Dec 2009 A1
20090324428 Tolbert, Jr. et al. Dec 2009 A1
20100006042 Pitonyak et al. Jan 2010 A1
20100011962 Totsugi Jan 2010 A1
20100017465 Brownrigg et al. Jan 2010 A1
20100039984 Brownrigg Feb 2010 A1
20100044449 Tessier Feb 2010 A1
20100070084 Steinberg et al. Mar 2010 A1
20100070234 Steinberg et al. Mar 2010 A1
20100070666 Brindle Mar 2010 A1
20100078493 Alles Apr 2010 A1
20100081357 Alles Apr 2010 A1
20100081372 Alles Apr 2010 A1
20100102136 Hadzidedic et al. Apr 2010 A1
20100168924 Tessier et al. Jul 2010 A1
20100169030 Parlos Jul 2010 A1
20100179703 Singh et al. Jul 2010 A1
20100191487 Rada et al. Jul 2010 A1
20100194582 Petite Aug 2010 A1
20100214709 Hall et al. Aug 2010 A1
20100250054 Petite Sep 2010 A1
20100257410 Cottrell et al. Oct 2010 A1
20100262299 Cheung et al. Oct 2010 A1
20100265909 Petite et al. Oct 2010 A1
20100280667 Steinberg Nov 2010 A1
20100282857 Steinberg Nov 2010 A1
20100287489 Alles Nov 2010 A1
20100305718 Clark et al. Dec 2010 A1
20100308119 Steinberg et al. Dec 2010 A1
20100312881 Davis et al. Dec 2010 A1
20100318227 Steinberg et al. Dec 2010 A1
20100330985 Addy Dec 2010 A1
20110004350 Cheifetz et al. Jan 2011 A1
20110022429 Yates et al. Jan 2011 A1
20110023045 Yates et al. Jan 2011 A1
20110023945 Hayashi et al. Feb 2011 A1
20110040785 Steenberg et al. Feb 2011 A1
20110042541 Spencer et al. Feb 2011 A1
20110045454 McManus et al. Feb 2011 A1
20110054842 Kates Mar 2011 A1
20110071960 Singh Mar 2011 A1
20110077896 Steinberg et al. Mar 2011 A1
20110102159 Olson et al. May 2011 A1
20110103460 Bonicatto May 2011 A1
20110106471 Curtis et al. May 2011 A1
20110118905 Mylaraswamy et al. May 2011 A1
20110121952 Bonicatto et al. May 2011 A1
20110144932 Alles Jun 2011 A1
20110166828 Steinberg et al. Jul 2011 A1
20110181438 Millstein et al. Jul 2011 A1
20110184563 Foslien et al. Jul 2011 A1
20110185895 Freen Aug 2011 A1
20110190910 Lombard et al. Aug 2011 A1
20110212700 Petite Sep 2011 A1
20110218957 Coon et al. Sep 2011 A1
20110264324 Petite et al. Oct 2011 A1
20110264409 Jayanth et al. Oct 2011 A1
20110290893 Steinberg Dec 2011 A1
20110307103 Cheung et al. Dec 2011 A1
20110309953 Petite et al. Dec 2011 A1
20110310929 Petite et al. Dec 2011 A1
20110315019 Lyon et al. Dec 2011 A1
20110320050 Petite et al. Dec 2011 A1
20120005590 Lombard et al. Jan 2012 A1
20120054242 Ferrara et al. Mar 2012 A1
20120065783 Fadell et al. Mar 2012 A1
20120065935 Steinberg et al. Mar 2012 A1
20120066168 Fadell et al. Mar 2012 A1
20120075092 Petite et al. Mar 2012 A1
20120092154 Petite Apr 2012 A1
20120125559 Fadell et al. May 2012 A1
20120125592 Fadell et al. May 2012 A1
20120126019 Warren et al. May 2012 A1
20120126020 Filson et al. May 2012 A1
20120126021 Warren et al. May 2012 A1
20120128025 Huppi et al. May 2012 A1
20120130546 Matas et al. May 2012 A1
20120130547 Fadell et al. May 2012 A1
20120130548 Fadell et al. May 2012 A1
20120130679 Fadell et al. May 2012 A1
20120131504 Fadell et al. May 2012 A1
20120143528 Kates Jun 2012 A1
20120179300 Warren et al. Jul 2012 A1
20120186774 Matsuoka et al. Jul 2012 A1
20120191257 Corcoran et al. Jul 2012 A1
20120199660 Warren et al. Aug 2012 A1
20120203379 Sloo et al. Aug 2012 A1
20120221150 Arensmeier Aug 2012 A1
20120229521 Hales, IV et al. Sep 2012 A1
20120232969 Fadell et al. Sep 2012 A1
20120233478 Mucignat et al. Sep 2012 A1
20120239207 Fadell et al. Sep 2012 A1
20120239221 Mighdoll et al. Sep 2012 A1
20120245968 Beaulieu et al. Sep 2012 A1
20120248210 Warren et al. Oct 2012 A1
20120248211 Warren et al. Oct 2012 A1
20120260804 Kates Oct 2012 A1
20120265491 Drummy Oct 2012 A1
20120265586 Mammone Oct 2012 A1
20120271673 Riley Oct 2012 A1
20120291629 Tylutki et al. Nov 2012 A1
20120318135 Hoglund et al. Dec 2012 A1
20120318137 Ragland et al. Dec 2012 A1
20130066479 Shetty et al. Mar 2013 A1
20130182285 Matsuhara et al. Jul 2013 A1
20130287063 Kates Oct 2013 A1
20140000290 Kates Jan 2014 A1
20140000291 Kates Jan 2014 A1
20140000292 Kates Jan 2014 A1
20140000293 Kates Jan 2014 A1
20140000294 Kates Jan 2014 A1
20140012422 Kates Jan 2014 A1
20140074730 Arensmeier et al. Mar 2014 A1
20140262134 Arensmeier et al. Sep 2014 A1
20140266755 Arensmeier et al. Sep 2014 A1
Foreign Referenced Citations (132)
Number Date Country
1147440 May 1983 CA
2528778 Dec 2004 CA
2567264 Jul 2007 CA
173493 Nov 1934 CH
1169619 Jan 1998 CN
1742427 Mar 2006 CN
1922445 Feb 2007 CN
101048713 Oct 2007 CN
101156033 Apr 2008 CN
101270908 Sep 2008 CN
101361244 Feb 2009 CN
101506600 Aug 2009 CN
101802521 Aug 2010 CN
101821693 Sep 2010 CN
842351 Jun 1952 DE
764179 Apr 1953 DE
1144461 Feb 1963 DE
1403516 Oct 1968 DE
1403467 Oct 1969 DE
3118638 May 1982 DE
3133502 Jun 1982 DE
3422398 Dec 1985 DE
29723145 Apr 1998 DE
0060172 Sep 1982 EP
0085246 Aug 1983 EP
0124603 Nov 1984 EP
0254253 Jan 1988 EP
0346152 Dec 1989 EP
0351272 Jan 1990 EP
0351833 Jan 1990 EP
0355255 Feb 1990 EP
0398436 Nov 1990 EP
0410330 Jan 1991 EP
0419857 Apr 1991 EP
0432085 Jun 1991 EP
0453302 Oct 1991 EP
0479421 Apr 1992 EP
0557023 Aug 1993 EP
0579374 Jan 1994 EP
0660213 Jun 1995 EP
0747598 Dec 1996 EP
0877462 Nov 1998 EP
0982497 Mar 2000 EP
1008816 Jun 2000 EP
1087142 Mar 2001 EP
1087184 Mar 2001 EP
1138949 Oct 2001 EP
1139037 Oct 2001 EP
1187021 Mar 2002 EP
1209427 May 2002 EP
1241417 Sep 2002 EP
1245912 Oct 2002 EP
1245913 Oct 2002 EP
1435002 Jul 2004 EP
1487077 Dec 2004 EP
2180270 Apr 2010 EP
2472862 Jul 1981 FR
2582430 Nov 1986 FR
2589561 May 1987 FR
2628558 Sep 1989 FR
2660739 Oct 1991 FR
2062919 May 1981 GB
2064818 Jun 1981 GB
2075774 Nov 1981 GB
2116635 Sep 1983 GB
2347217 Aug 2000 GB
56010639 Feb 1981 JP
59145392 Aug 1984 JP
61046485 Mar 1986 JP
62116844 May 1987 JP
63061783 Mar 1988 JP
63302238 Dec 1988 JP
01014554 Jan 1989 JP
02110242 Apr 1990 JP
02294580 Dec 1990 JP
04080578 Mar 1992 JP
06058273 Mar 1994 JP
08087229 Apr 1996 JP
08284842 Oct 1996 JP
2000350490 Dec 2000 JP
2002155868 May 2002 JP
2003018883 Jan 2003 JP
2003176788 Jun 2003 JP
2004316504 Nov 2004 JP
2005241089 Sep 2005 JP
2005345096 Dec 2005 JP
2006046219 Feb 2006 JP
2006046519 Feb 2006 JP
2009002651 Jan 2009 JP
2010048433 Mar 2010 JP
10-1998-0036844 Aug 1998 KR
1020000000261 Jan 2000 KR
1020000025265 May 2000 KR
1020020041977 Jun 2002 KR
20030042857 Jun 2003 KR
1020040021281 Mar 2004 KR
1020060020353 Mar 2006 KR
30009 Jun 2003 RU
55218 Jul 2006 RU
WO-8601262 Feb 1986 WO
WO-8703988 Jul 1987 WO
WO-8705097 Aug 1987 WO
WO-8802527 Apr 1988 WO
WO-8806703 Sep 1988 WO
WO-9718636 May 1997 WO
WO-9748161 Dec 1997 WO
WO-9917066 Apr 1999 WO
WO-9965681 Dec 1999 WO
WO-0021047 Apr 2000 WO
WO-0169147 Sep 2001 WO
WO-0214968 Feb 2002 WO
WO-0249178 Jun 2002 WO
WO-02075227 Sep 2002 WO
WO-02090840 Nov 2002 WO
WO-02090913 Nov 2002 WO
WO-02090914 Nov 2002 WO
WO-03031996 Apr 2003 WO
WO-03090000 Oct 2003 WO
WO-2004049088 Jun 2004 WO
WO-2005022049 Mar 2005 WO
WO-2005073686 Aug 2005 WO
WO-2005108882 Nov 2005 WO
WO-2006023075 Mar 2006 WO
WO-2006025880 Mar 2006 WO
WO-2006091521 Aug 2006 WO
WO-2008010988 Jan 2008 WO
WO-2008079108 Jul 2008 WO
WO-2008144864 Dec 2008 WO
WO-2009058356 May 2009 WO
WO-2010138831 Dec 2010 WO
WO-2011069170 Jun 2011 WO
WO-2012092625 Jul 2012 WO
Non-Patent Literature Citations (477)
Entry
Advisory Action regarding U.S. Appl. No. 13/269,188, dated Apr. 13, 2015.
Advisory Action and Interview Summary regarding U.S. Appl. No. 13/407,180, dated May 27, 2015.
Final Office Action and Interview Summary regarding U.S. Appl. No. 13/407,180, mailed Mar. 13, 2015.
Final Office Action for U.S. Appl. No. 13/770,123 dated Dec. 22, 2014.
First Chinese Office Action regarding Application No. 201380005300.2, dated Apr. 30, 2015. Translation provided by Unitalen Attorneys at Law.
Haiad et al., “EER & SEER as Predictors of Seasonal Energy Performance”, Oct. 2004, Southern California Edison, http://www.doe2.com/download/DEER/SEER%2BProgThermostats/EER-SEER—CASE—ProjectSummary—Oct2004—V6a.pdf.
Interview Summary regarding U.S. Appl. No. 13/269,188, mailed Mar. 18, 2015.
Non-Final Office Action regarding U.S. Appl. No. 13/932,611, dated Jan. 30, 2015.
Notice of Allowance for U.S. Appl. No. 13/836,043 dated Feb. 4, 2015.
Notice of Allowance for related U.S. Appl. No. 13/836,043, dated Oct. 9, 2014.
Notice of Allowance regarding U.S. Appl. No. 13/767,479, dated Mar. 31, 2015.
Notice of Allowance regarding U.S. Appl. No. 13/835,621, dated Mar. 10, 2015.
Notice of Allowance regarding U.S. Appl. No. 13/836,453, mailed Apr. 15, 2015.
Notice of Allowance regarding U.S. Appl. No. 13/835,742, mailed Apr. 17, 2015.
Office Action for U.S. Appl. No. 13/269,188 dated Feb. 10, 2015.
Office Action for U.S. Appl. No. 13/767,479 dated Feb. 6, 2015.
Office Action for Canadian Application No. 2,828,740 dated Jan. 12, 2015.
Office Action for related U.S. Appl. No. 13/269,188, dated Oct. 6, 2014.
Office Action for related U.S. Appl. No. 13/767,479, dated Oct. 21, 2014.
Office Action from U.S. Appl. No. 13/369,067 dated Apr. 3, 2015.
Office Action regarding U.S. Appl. No. 13/770,479, mailed Mar. 16, 2015.
Office Action regarding U.S. Appl. No. 13/770,123, mailed Apr. 2, 2015.
Patent Examination Report for Australian Application No. 2012223466 dated Jan. 6, 2015.
Third Chinese Office Action regarding Application No. 201110349785.X, dated Jan. 30, 2015. Translation provided by Unitalen Attorneys at Law.
U.S. Office Action regarding U.S. Appl. No. 13/269,188, dated May 8, 2015.
U.S. Office Action regarding U.S. Appl. No. 14/212,632, dated May 15, 2015.
U.S. Appl. No. 13/770,123, filed Feb. 19, 2013.
Extended European Search Report regarding European Application No. 08845689.2-1608/2207964, dated Jun. 19, 2015.
Extended European Search Report regarding European Application No. 08848538.8-1608 /2220372, dated Jun. 19, 2015.
Interview Summary regarding U.S. Appl. No. 13/407,180, dated Jun. 11, 2015.
Interview Summary regarding U.S. Appl. No. 13/770,479, dated Jun. 16, 2015.
Notice of Allowance regarding U.S. Appl. No. 13/932,611, dated Jul. 6, 2015.
Applicant-Initiated Interview Summary and Advisory Action regarding U.S. Appl. No. 13/369,067, dated Jul. 23, 2015.
Faramarzi et al., “Performance Evaluation of Rooftop Air Conditioning Units at High Ambient Temperatures,” 2004 ACEEE Summer Study on Energy Efficiency in Buildings—http://aceee.org/files/proceedings/2004/data/papers/SSO4—Panel3—Paper05.pdf.
Interview Summary regarding U.S. Appl. No. 13/369,067, dated Jul. 16, 2015.
Restriction Requirement regarding U.S. Appl. No. 14/244,967, dated Jul. 14, 2015.
Notice of Allowance regarding U.S. Appl. No. 12/261,643, mailed Jul. 29, 2015.
Applicant-Initiated Interview Summary regarding U.S. Appl. No. 14/212,632, dated Sep. 2, 2015.
Final Office Action regarding U.S. Appl. No. 13/770,479, dated Sep. 4, 2015.
Notice of Allowance and Interview Summary regarding U.S. Appl. No. 13/269,188, dated Aug. 26, 2015.
Notice of Allowance regarding U.S. Appl. No. 13/369,067, dated Sep. 2, 2015.
Notice of Allowance regarding U.S. Appl. No. 13/407,180, dated Sep. 4, 2015.
Notice of Allowance regarding U.S. Appl. No. 13/770,123, dated Aug. 13, 2015.
Office Action regarding Indian Patent Application No. 733/KOLNP/2009, dated Aug. 12, 2015.
Office Action regarding U.S. Appl. No. 14/209,415, dated Sep. 10, 2015.
Search Report regarding European Patent Application No. 13736303.2-1806, dated Sep. 17, 2015.
First Office Action regarding Chinese Patent Application No. 201280010796.8, dated Sep. 14, 2015. Translation provided by Unitalen Attorneys At Law.
Notice of Allowance regarding U.S. Appl. No. 13/770,123, dated Oct. 1, 2015.
Interview Summary regarding U.S. Appl. No. 13/770,479, dated Nov. 25, 2015.
Office Action and Interview Summary regarding U.S. Appl. No. 14/244,967, dated Oct. 7, 2015.
Office Action regarding Australian Patent Application No. 2013323760, dated Sep. 25, 2015.
Office Action regarding Chinese Patent Application No. 201380049458.X, dated Nov. 13, 2015. Translation provided by Unitalen Attorneys at Law.
Office Action regarding U.S. Appl. No. 14/212,632, dated Nov. 19, 2015.
Office Action regarding U.S. Appl. No. 14/255,519, dated Nov. 9, 2015.
Search Report regarding European Patent Application No. 08251185.8-1605 / 2040016, dated Dec. 4, 2015.
Interview Summary regarding U.S. Appl. No. 12/054,011, dated Jan. 30, 2013.
Office Action regarding U.S. Appl. No. 14/193,568, dated Nov. 3, 2015.
Office Action regarding Australian Patent Application No. 2015207920, dated Dec. 4, 2013.
Office Action regarding Chinese Patent Application No. 201380005300.2, dated Jan. 4, 2016. Translation provided by Unitalen Attorneys at Law.
Advisory Action regarding U.S. Appl. No. 14/212,632, dated Feb. 9, 2016.
Advisory Action regarding U.S. Appl. No. 14/212,632, dated Mar. 8, 2016.
Office Action regarding European Patent Application No. 08848538.8-1608, dated Feb. 3, 2016.
Office Action regarding U.S. Appl. No. 14/209,415, dated Mar. 10, 2016.
Office Action regarding U.S. Appl. No. 14/244,967, dated Feb. 12, 2016.
Office Action regarding U.S. Appl. No. 14/212,632, dated Apr. 7, 2016.
Office Action regarding U.S. Appl. No. 12/943,626, dated May 4, 2016.
Office Action regarding Australian Patent Application No. 2014229103, dated Apr. 28, 2016.
U.S. Appl. No. 12/261,643, filed Oct. 30, 2008.
U.S. Appl. No. 13/269,188, filed Oct. 7, 2011.
U.S. Appl. No. 13/369,067, filed Feb. 8, 2012.
U.S. Appl. No. 13/407,180, filed Feb. 28, 2012.
U.S. Appl. No. 13/835,742, filed Mar. 15, 2013.
U.S. Appl. No. 13/836,453, filed Mar. 15, 2013.
U.S. Appl. No. 13/932,611, filed Jul. 1, 2013.
U.S. Appl. No. 14/033,604, filed Sep. 23, 2013.
Interview Summary regarding U.S. Appl. No. 14/209,415, dated Jun. 20, 2016.
Office Action regarding U.S. Appl. No. 14/193,568, dated Jun. 1, 2016.
Office Action regarding U.S. Appl. No. 14/080,473, dated Jun. 6, 2016.
Search Report regarding European Patent Application No. 13841699.5, dated Jun. 30, 2016.
Office Action regarding Chinese Patent Application No. 201480016023.X, dated Jun. 22, 2016. Translation provided by Unitalen Attorneys at Law.
Office Action regarding U.S. Appl. No. 14/727,756, dated Aug. 22, 2016.
Advisory Action regarding U.S. Appl. No. 14/193,568, dated Aug. 10, 2016.
Office Action regarding U.S. Appl. No. 14/208,636, dated Aug. 4, 2016.
Office Action regarding U.S. Appl. No. 14/244,967, dated Aug. 29, 2016.
“A Practical Example of a Building's Automatic Control,” cited in First Office Action from the Patent Office of the People's Republic of China dated Jun. 29, 2007, regarding Application No. 200510005907.8, including translation by CCPIT Patent and Trademark Law Office.
“Air Conditioning Equipment and Diagnostic Primer,” Field Diagnostic Services, Inc., Sep. 9, 2002.
“Manual for Freezing and Air Conditioning Technology,” Fan Jili, Liaoning Science and Technology Press, Sep. 1995 (cited in First Office Action issued by the Chinese Patent Office regarding Application No. 200780030810.X dated Dec. 25, 2009).
“Product Performance Introduction of York Company,” cited in First Office Action from the Patent Office of the People's Republic of China dated Jun. 29, 2007 regarding Application No. 200510005907.8, including translation by CCPIT Patent and Trademark Law Office.
“Small-type Freezing and Air Conditioning Operation,” Chinese State Economy and Trading Committee, China Meteorological Press, Mar. 2003 (cited in First Office Action issued by the Chinese Patent Office regarding Application No. 200780030810.X dated Dec. 25, 2009).
About CABA: CABA eBulletin, http://www.caba.org/aboutus/ebulletin/issue17/domosys.html, 2 pages.
Advanced Utility Metering: Period of Performance, Subcontractor Report, National Renewable Energy Laboratory, Sep. 2003, 59 pages.
Advisory Action Before the Filing of an Appeal Brief regarding U.S. Appl. No. 11/098,575, dated Nov. 16, 2009.
Advisory Action Before the Filing of an Appeal Brief regarding U.S. Appl. No. 11/098,575, dated Sep. 28, 2009.
Advisory Action Before the Filing of an Appeal Brief regarding U.S. Appl. No. 09/977,552, dated Nov. 10, 2005.
Advisory Action from related U.S. Appl. No. 13/784,890 dated Mar. 14, 2014.
Advisory Action regarding U.S. Appl. No. 12/261,643, dated Nov. 22, 2013.
Advisory Action regarding U.S. Appl. No. 11/214,179, dated Aug. 28, 2009.
BChydro, “Power Factor” Guides to Energy Management: The GEM Series, Oct. 1999.
Building Control Unit (BCU) Installation and Operation Manual, Computer Process Controls, Jan. 28, 1998, 141 pages.
Building Environmental Control (BEC) Installation and Operation Manual, Computer Process Controls, Jan. 5, 1998.
Case Studies: Automated Meter Reading and Load Shed System, http://groupalpha.corn/CaseStudies2.html, Aug. 23, 2004, 1 page.
Communication from European Patent Office concerning Substantive Examination regarding European Patent Application No. 06790063.9, dated Jun. 6, 2011.
Cost Cutting Techniques Used by the Unscrupulous, http://www.kellyshvac.com/howto.html, Oct. 7, 2004, 3 pages.
Einstein RX-300 Refrigeration Controller Installation and Operation Manual, Computer Process Controls, Apr. 1, 1998, 329 pages.
Election/Restriction Requirement regarding U.S. Appl. No. 09/977,552, dated Jan. 25, 2007.
European Search Report for Application No. EP 12 182 243.1, dated Oct. 29, 2012.
European Search Report for EP 01 30 7547; Feb. 20, 2002; 1 Page.
European Search Report for EP 02 25 0266; May 17, 2002; 3 Pages.
European Search Report for EP 02 72 9050, Jun. 17, 2004, 2 pages.
European Search Report for EP 82306809.3; Apr. 28, 1983; 1 Page.
European Search Report for EP 91 30 3518; Jul. 22, 1991; 1 Page.
European Search Report for EP 93 30 4470; Oct. 26, 1993; 1 Page.
European Search Report for EP 94 30 3484; Apr. 3, 1997; 1 Page.
European Search Report for EP 96 30 4219; Dec. 1, 1998; 2 Pages.
European Search Report for EP 98 30 3525; May 28, 1999; 2 Pages.
European Search Report for EP 99 30 6052; Dec. 28, 1999; 3 Pages.
European Search Report regarding Application No. 04022784.5-2315 / 1500821, dated Aug. 14, 2012.
European Search Report regarding Application No. 07811712.4-1608 / 2069638 PCT/US2007019563, dated Jan. 7, 2014.
European Search Report regarding Application No. EP02729051, dated Feb. 17, 2005.
Examination Report received from Australian Government IP Australia dated Oct. 29, 2009 regarding patent application No. 2008202088.
Examiner Interview regarding U.S. Appl. No. 11/256,641, dated Sep. 16, 2008.
Examiner Interview Summary regarding U.S. Appl. No. 11/394,380, dated Jul. 29, 2010.
Examiner Interview Summary regarding U.S. Appl. No. 10/940,877, dated Dec. 8, 2008.
Examiner Interview Summary regarding U.S. Appl. No. 10/940,877, dated Mar. 2, 2007.
Examiner Interview Summary regarding U.S. Appl. No. 10/940,877, dated Mar. 25, 2008.
Examiner's Answer from related U.S. Appl. No. 13/784,890 dated Jul. 3, 2014.
Examiner's Answer regarding U.S. Appl. No. 09/977,552, dated Dec. 17, 2009.
Examiner's First Report on Australian Patent Application No. 2002259066, dated Mar. 1, 2006.
Examiner's First Report on Australian Patent Application No. 2007292917 dated Jan. 10, 2012.
Examiner's First Report on Australian Patent Application No. 2008319275, dated Jan. 31, 2011.
Examiner's Report No. 2 regarding Australian Patent Application No. 2008325240, dated Mar. 5, 2012.
Examiner-Initiated Interview Summary regarding U.S. Appl. No. 11/214,179, dated Dec. 11, 2009.
Extended European Search Report regarding Application No. 07796879.0-1602 / 2041501 PCT/US2007016135, dated Jul. 14, 2014.
Final Office Action for U.S. Appl. No. 11/850,846, mailed Aug. 13, 2012.
Final Office Action from related U.S. Appl. No. 13/269,188 dated May 23, 2013; 11 pages.
Final Office Action from related U.S. Appl. No. 13/369,067 dated May 1, 2014; 19 pages.
Final Office Action from related U.S. Appl. No. 13/767,479 dated Mar. 14, 2014; 6 pages.
Final Office Action from related U.S. Appl. No. 13/836,043 dated Mar. 12, 2014; 5 pages.
Final Office Action regarding U.S. Appl. No. 11/497,579, dated May 14, 2010.
Final Office Action regarding U.S. Appl. No. 11/497,644, dated Dec. 22, 2010.
Final Office Action regarding U.S. Appl. No. 11/850,846, mailed Jan. 17, 2014.
Final Office Action regarding U.S. Appl. No. 13/770,123, dated Nov. 15, 2013.
Final Office Action regarding U.S. Appl. No. 13/932,611, mailed May 28, 2014.
Final Office Action regarding U.S. Appl. No. 11/214,179, dated Jul. 21, 2011.
Final Office Action regarding U.S. Appl. No. 09/977,552, dated Oct. 22, 2008.
Final Office Action regarding U.S. Appl. No. 09/977,552, dated Apr. 26, 2004.
Final Office Action regarding U.S. Appl. No. 09/977,552, dated May 13, 2005.
Final Office Action regarding U.S. Appl. No. 09/977,552, dated Jun. 18, 2003.
Final Office Action regarding U.S. Appl. No. 09/977,552, dated Jul. 23, 2007.
Final Office Action regarding U.S. Appl. No. 10/061,964, dated Mar. 8, 2004.
Final Office Action regarding U.S. Appl. No. 10/940,877, dated Nov. 13, 2007.
Final Office Action regarding U.S. Appl. No. 10/940,877, dated Apr. 27, 2009.
Final Office Action regarding U.S. Appl. No. 10/940,877, dated May 2, 2006.
Final Office Action regarding U.S. Appl. No. 11/098,575, dated Jun. 17, 2010.
Final Office Action regarding U.S. Appl. No. 11/214,179, dated May 29, 2009.
Final Office Action regarding U.S. Appl. No. 11/256,641, dated Feb. 2, 2009.
Final Office Action regarding U.S. Appl. No. 11/337,918, dated Feb. 17, 2011.
Final Office action regarding U.S. Appl. No. 11/337,918, dated Feb. 4, 2010.
Final Office Action regarding U.S. Appl. No. 12/261,643, dated Jun. 27, 2012.
Final Office Action regarding U.S. Appl. No. 12/261,643, dated Sep. 16, 2013.
Final Office Action regarding U.S. Appl. No. 12/261,643, dated Jul. 7, 2011.
First Examination Communication regarding European Application No. EP02729051.9, dated Dec. 23, 2005.
First Examination Report regarding Australian Patent Application No. 2010319488, dated Jan. 10, 2013.
First Examination Report regarding Australian Patent Application No. 2012241185, dated Sep. 27, 2013.
First Office Action from the Patent Office of the People's Republic of China dated Jun. 8, 2007, Application No. 200480027753.6 and Translation provided by CCPIT.
First Office Action from the Patent Office of the People's Republic of China regarding Application No. 200510005907.8, dated Jun. 29, 2007.
First Office Action from the State Intellectual Property Office of the People's Republic of China regarding Chinese Patent Application No. 200890100287.3, issued Oct. 25, 2010. Translation provided by Unitalen Attorneys at Law.
First Office Action issued by the Chinese Patent Office on May 30, 2008 regarding Application No. 200580013451.8, 8 Pages.
First Office Action issued by the Chinese Patent Office regarding Application No. 200780030810.X dated Dec. 25, 2009.
First Office Action received from the Chinese Patent Office dated Feb. 2, 2007 regarding Application No. 200480011463.2, translated by CCPIT Patent and Trademark Law Office.
First Office Action regarding Canadian Patent Application No. 2,777,349, dated Jul. 19, 2013.
First Office Action regarding Chinese Patent Application No. 200780032977.X, dated Sep. 27, 2010. English translation provided by Unitalen Attorneys at Law.
First Office Action regarding Chinese Patent Application No. 200910211779.0, dated May 3, 2012. English translation provided by Unitalen Attorneys at Law.
First Office Action regarding Chinese Patent Application No. 201010117657.8, dated Dec. 29, 2010. English translation provided by Unitalen Attorneys at Law.
First Office Action regarding Chinese Patent Application No. 201110349785.X, dated Nov. 21, 2013, and Search Report. English translation provided by Unitalen Attorneys at Law.
First Official Report regarding Australian Patent Application No. 2007214381, dated Dec. 12, 2008.
Flow & Level Measurement: Mass Flowmeters, http://www.omega.com/literature/transactions/volume4/T9904-10-MASS.html, 2001, 19 pages.
Fourth Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Applicaiton No. 200510005907.8, dated Dec. 8, 2011. Translation provided by Unitalen Attorneys at Law.
Fourth Office Action regarding Chinese Patent Application No. 200910211779.0, dated Jan. 6, 2014. English translation provided by Unitalen Attorneys at Law.
Frequently Asked Questions, http://www.lipaedge.com/faq.asp, Copyright © 2001, 5 pages.
Home Comfort Zones, MyTemp Room-by-Room Zone Control, Nov. 2009.
Home Comfort Zones, MyTemp User Manual v4.3, May 2008.
Home Comfort Zones, Save Energy with MyTemp™ Zone Control, Dec. 2009.
Home Comfort Zones, Smart Controller™ MyTemp™ Room by Room Temperature Control and Energy Management, User Manual, Aug. 2007.
Honeywell, A7075A1000 HVAC Service Assistant, 2001.
Honeywell, Advanced Portable A/C Diagnostics, The HVAC Service Assistant, 2003.
Honeywell, Alerts and Delta T Diagnostics with Prestige® 2.0 IAQ Thermostat, 69-2678-02, Sep. 2011.
Honeywell, Excel 5000® System, Excel Building Supervisor—Integrated, 74-2034, Copyright © 1994, Rev. Nov. 1994, 12 pages.
Honeywell, Excel 5000® System, Excel Building Supervisor, 74-2033-1, Copyright © 1996, Rev. Jun. 1996, 12 pages.
Honeywell, HVAC Service Assistant, TRGpro Palm™ OS Interface and HVAC Service Assistant A7075A1000, 2002.
Honeywell, Prestige System Installation Guide, THX9321/9421 Prestige® IAQ and RF EIM, 64-2490-03, Jul. 2011.
Honeywell, RedLINK™ Wireless Comfort Systems brochure, 50-1194, Sep. 2011.
HVAC Service Assistant, ACRx Efficiency and Capacity Estimating Technology, Field Diagnostics, 2004.
International Preliminary Examination Report regarding PCT/US02/13456, dated Sep. 15, 2003.
International Preliminary Report on Patentability for International Application No. PCT/US2008/009618, dated Mar. 24, 2010.
International Preliminary Report on Patentability for International Application No. PCT/US2008/012362, dated May 4, 2010.
International Preliminary Report on Patentability for International Application No. PCT/US2008/012364, dated May 4, 2010.
International Preliminary Report on Patentability regarding Application No. PCT/US2010/056315, mailed May 24, 2012.
International Preliminary Report on Patentability regarding International Application No. PCT/US2007/019563 dated Mar. 10, 2009.
International Search Report and Written Opinion of the International Searching Authority regarding International Application No. PCT/US06/33702, dated Sep. 26, 2007.
International Search Report for International Application No. PCT/US07/019563, dated Jan. 15, 2008, 3 Pages.
International Search Report for International Application No. PCT/US2005/11154, dated Oct. 19, 2005.
International Search Report for International Application No. PCT/US2007/016135 dated Oct. 22, 2007.
International Search Report for International Application No. PCT/US2008/012362, dated Feb. 12, 2009.
International Search Report for International Application No. PCT/US2008/012364 dated Mar. 13, 2009.
International Search Report for PCT/US02/13459; ISA/US; date mailed Sep. 19, 2002.
International Search Report for PCT/US2012/026973, Sep. 3, 2012, 5 pages.
International Search Report for PCT/US2013/061389, Jan. 22, 2014, 7 pages.
International Search Report from PCT /US2008/060900, Aug. 4, 2008, 6 pages.
International Search Report from related PCT Application No. PCT/US2014/028074 mailed Jun. 19, 2014.
International Search Report regarding Application No. PCT/US2010/036601, mailed Dec. 29, 2010.
International Search Report regarding Application No. PCT/US2010/056315, mailed Jun. 28, 2011.
International Search Report regarding Application No. PCT/US2013/021161, mailed May 8, 2013.
International Search Report, Int'l. App. No. PCT/US 06/05917, dated Sep. 26, 2007.
International Search Report, International Application No. PCT/US02/13456, dated Aug. 22, 2002, 2 Pages.
International Search Report, International Application No. PCT/US04/13384; Dated Aug. 1, 2004; 1 Page.
International Search Report, International Application No. PCT/US2004/027654, dated Aug. 25, 2004, 4 Pages.
International Search Report, International Application No. PCT/US2006/040964, dated Feb. 15, 2007, 2 Pages.
International Search Report; International Application No. PCT/IB96/01435; May 23, 1997; 1 Page.
International Search Report; International Application No. PCT/US98/18710; Jan. 26, 1999; 1 Page.
Interview Summary from related U.S. Appl. No. 12/054,011 dated Jan. 30, 2012.
Interview Summary regarding U.S. Appl. No. 11/497,644, dated May 4, 2010.
Interview Summary regarding U.S. Appl. No. 11/098,582, dated Apr. 27, 2010.
Interview Summary regarding U.S. Appl. No. 11/214,179, dated Jan. 30, 2009.
Interview Summary regarding U.S. Appl. No. 11/497,579, dated Jul. 15, 2010.
Issue Notification regarding U.S. Appl. No. 11/214,179, dated Mar. 14, 2012.
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Appendix C, pp. 1060-1063, Copyright 2004.
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Section II, Chapter 4, pp. 176-201, Copyright 2004.
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Section II, Chapter 5, pp. 239-245, Copyright 2004.
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Section II, Chapter 6, p. 322, Copyright 2004.
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Section IV, Chapter 9, pp. 494-504, Copyright 2004.
K. A. Manske et al.; Evaporative Condenser Control in Industrial Refrigeration Systems; University of Wisconsin—Madison, Mechanical Engineering Department; International Journal of Refrigeration, vol. 24, No. 7; pp. 676-691; 2001, 21 pages.
Li et al., “Development, Evaluation, and Demonstration of a Virtual Refrigerant Charge Sensor,” Jan. 2009, HVAC&R Research, Oct. 27, 2008, 21 pages.
Liao et al., A Correlation of Optimal Heat Rejection Pressures in Transcritical Carbon Dioxide Cycles, Applied Thermal Engineering 20 (2000), Jul. 25, 1999, 831-841.
LIPA Launches Free, First-in-Nation Internet-Based Air Conditioner Control Program to Help LIPA and Its Customers Conserve Electricity & Save Money, Apr. 19, 2001, http://www.lipower.org/newscmter/pr/2001/april19—0l.html, 3 pages.
Low-Cost Multi-Service Home Gateway Creates New Business Opportunities, Coactive Networks, Copyright 1998-1999, 7 pages.
Nickles, Donald, “Broadband Communications Over Power Transmission Lines,” A Guest Lecture From the Dr. Shreekanth Mandaynam Engineering Frontiers Lecture Series, May 5, 2004, 21 pages.
Non Final Office Action for related U.S. Appl. No. 13/369,067 dated Aug. 12, 2014.
Non Final Office Action for related U.S. Appl. No. 13/835,621 dated Aug. 8, 2014.
Non Final Office Action from related U.S. Appl. No. 13/269,188 dated Aug. 14, 2012; 9 pages.
Non Final Office Action from related U.S. Appl. No. 13/269,188 dated Oct. 4, 2013; 11 pages.
Non Final Office Action from related U.S. Appl. No. 13/269,188 dated Feb. 20, 2014; 9 pages.
Non Final Office Action from related U.S. Appl. No. 13/269,188 dated Jul. 17, 2014; 10 pages.
Non Final Office Action from related U.S. Appl. No. 13/369,067 dated Jan. 16, 2014; 16 pages.
Non Final Office Action from related U.S. Appl. No. 13/767,479 dated Oct. 24, 2013; 8 pages.
Non Final Office Action from related U.S. Appl. No. 13/767,479 dated Jul. 23, 2014; 9 pages.
Non Final Office Action from related U.S. Appl. No. 13/835,621 dated Oct. 30, 2013; 8 pages.
Non Final Office Action from related U.S. Appl. No. 13/835,621 dated Apr. 2, 2014; 11 pages.
Non Final Office Action from related U.S. Appl. No. 13/835,742 dated Oct. 7, 2013; 9 pages.
Non Final Office Action from related U.S. Appl. No. 13/835,810 dated Nov. 15, 2013; 9 pages.
Non Final Office Action from related U.S. Appl. No. 13/836,043 dated Oct. 23, 2013; 8 pages.
Non Final Office Action from related U.S. Appl. No. 13/836,043 dated Jul. 11, 2014; 5 pages.
Non Final Office Action from related U.S. Appl. No. 13/836,244 dated Oct. 15, 2013; 11 pages.
Non Final Office Action from related U.S. Appl. No. 13/836,244 dated Feb. 20, 2014; 10 pages.
Non Final Office Action from related U.S. Appl. No. 13/836,453 dated Aug. 20, 2013; 8 pages.
Non-Final Office Action for U.S. Appl. No. 11/098,575 dated Jan. 27, 2010.
Non-Final Office Action for U.S. Appl. No. 11/776,879, dated Mar. 16, 2012.
Non-Final Office Action for U.S. Appl. No. 12/685,375, mailed Aug. 6, 2012.
Non-Final Office Action for U.S. Appl. No. 13/030,549, dated Nov. 5, 2012.
Non-Final Office Action in U.S. Appl. No. 11/850,846, mailed May 24, 2013.
Non-Final Office Action in U.S. Appl. No. 13/784,890, mailed Jun. 11, 2013.
Non-Final Office Action in U.S. Appl. No. 12/685,375, mailed Jan. 19, 2012.
Non-Final office Action regarding U.S. Appl. No. 11/850,846, dated Apr. 24, 2012.
Non-Final Office Action regarding U.S. Appl. No. 13/770,123, dated Jul. 3, 2013.
Non-Final Office Action regarding U.S. Appl. No. 13/932,611, mailed Nov. 25, 2013.
Non-Final Office Action regarding U.S. Appl. No. 11/214,179, dated Jan. 24, 2011.
Non-Final Office Action regarding U.S. Appl. No. 11/214,179, dated Nov. 5, 2008.
Non-Final Office Action regarding U.S. Appl. No. 11/214,179, dated Jun. 8, 2010.
Non-Final Office Action regarding U.S. Appl. No. 12/261,643, dated Jan. 27, 2011.
Non-Final Office Action regarding U.S. Appl. No. 12/261,643, dated Mar. 12, 2013.
Non-Final Office Action regarding U.S. Appl. No. 12/943,626, dated Dec. 20, 2012.
Non-Final Office Action regarding U.S. Appl. No. 12/955,355, dated Sep. 11, 2012.
Non-Final Office Action regarding U.S. Appl. No. 13/176,021, dated May 8, 2012.
Non-Final Office Action regarding U.S. Appl. No. 13/435,543, dated Jun. 21, 2012.
Non-Final Office Action regarding U.S. Appl. No. 13/770,123, dated Jun. 11, 2014.
Non-Final Office Action regarding U.S. Appl. No. 13/770,479, dated Jan. 16, 2014.
Notice of Allowance and Fee(s) Due regarding U.S. Appl. No. 12/789,562, dated Oct. 26, 2012.
Notice of Allowance and Fees Due and Notice of Allowability regarding U.S. Appl. No. 11/098,582, dated Feb. 24, 2009.
Notice of Allowance and Fees Due and Notice of Allowability regarding U.S. Appl. No. 11/098,582, dated Sep. 24, 2010.
Notice of Allowance and Fees Due and Notice of Allowability regarding U.S. Appl. No. 11/256,641, dated May 19, 2009.
Notice of Allowance and Fees Due regarding U.S. Appl. No. 12/261,643, dated Jun. 23, 2014.
Notice of Allowance and Fees Due regarding U.S. Appl. No. 12/943,626, dated Jun. 19, 2014.
Notice of Allowance and Fees Due regarding U.S. Appl. No. 13/737,566, dated Jun. 18, 2014.
Notice of Allowance and Fees Due regarding U.S. Appl. No. 13/737,566, dated Sep. 24, 2014.
Notice of Allowance and Fees Due, Interview Summary and Notice of Allowability regarding U.S. Appl. No. 11/214,179, dated Nov. 23, 2011.
Notice of Allowance and Notice of Allowability regarding U.S. Appl. No. 10/286,419, dated Dec. 2, 2004.
Notice of Allowance and Notice of Allowability regarding U.S. Appl. No. 10/675,137, dated Dec. 16, 2005.
Notice of Allowance dated Dec. 21, 2007 from Related U.S. Appl. No. 11/417,609.
Notice of Allowance dated Dec. 3, 2007 from Related U.S. Appl. No. 11/130,562.
Notice of Allowance dated Feb. 12, 2007 from Related U.S. Appl. No. 11/130,871 (Kates).
Notice of Allowance dated Jul. 13, 2006 from Related U.S. Appl. No. 11/130,601 (Kates).
Notice of Allowance dated Jul. 25, 2007 from Related U.S. Appl. No. 10/916,223 (Kates).
Notice of Allowance dated Jun. 11, 2007 from Related U.S. Appl. No. 10/916,222.
Notice of Allowance dated May 29, 2007 from Related U.S. Appl. No. 11/130,569 (Kates).
Notice of Allowance dated Nov. 3, 2008 from Related U.S. Appl. No. 11/417,701.
Notice of Allowance dated Oct. 26, 2007 from Related U.S. Appl. No. 10/916,223.
Notice of Allowance for U.S. Appl. No. 13/835,742 dated Dec. 24, 2014.
Notice of Allowance for U.S. Appl. No. 13/835,810 date Jan. 2, 2015.
Notice of Allowance for U.S. Appl. No. 13/836,453 dated Dec. 24, 2014.
Notice of Allowance for related U.S. Appl. No. 13/835,810 dated Aug. 5, 2014.
Notice of Allowance for U.S. Appl. No. 10/698,048, dated Sep. 1, 2005.
Notice of Allowance from related U.S. Appl. No. 13/835,742 dated Jan. 31, 2014; 7 pages.
Notice of Allowance from related U.S. Appl. No. 13/835,742 dated Jun. 2, 2014; 8 pages.
Notice of Allowance from related U.S. Appl. No. 13/835,810 dated Mar. 20, 2014; 9 pages.
Notice of Allowance from related U.S. Appl. No. 13/836,453 dated Jan. 14, 2014; 8 pages.
Notice of Allowance from related U.S. Appl. No. 13/836,453 dated Apr. 21, 2014; 8 pages.
Notice of Allowance from related U.S. Appl. No. 13/836,453 dated Aug. 4, 2014.
Notice of Allowance from related U.S. Appl. No. 13/836,244 dated Jul. 2, 2014; 8 pages.
Notice of Allowance regarding U.S. Appl. No. 10/061,964, dated Jul. 19, 2004.
Notice of Allowance regarding U.S. Appl. No. 10/940,877, dated Sep. 4, 2009.
Notice of Allowance regarding U.S. Appl. No. 11/776,879, dated Jul. 9, 2012.
Notice of Allowance regarding U.S. Appl. No. 12/261,677, dated Dec. 15, 2011.
Notice of Allowance regarding U.S. Appl. No. 12/685,424, dated Apr. 25, 2011.
Notice of Allowance regarding U.S. Appl. No. 13/303,286, dated Jul. 19, 2012.
Notice of Panel Decision from Pre-Appeal Brief Review regarding U.S. Appl. No. 09/977,552, dated Aug. 4, 2009.
Notification of First Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880122964.6, dated Nov. 5, 2012. Translation provided by Unitalen Attorneys at Law.
Office Action Communication regarding U.S. Appl. No. 09/977,552, dated Apr. 18, 2007.
Office Action dated Apr. 19, 2006 from Related U.S. Appl. No. 10/916,223 (Kates).
Office Action dated Aug. 17, 2007 from Related U.S. Appl. No. 11/417,609.
Office Action dated Aug. 17, 2007 from Related U.S. Appl. No. 11/417,701.
Office Action dated Aug. 21, 2007 from Related U.S. Appl. No. 11/417,557.
Office Action dated Feb. 1, 2007 from Related U.S. Appl. No. 11/130,562 (Kates).
Office Action dated Feb. 13, 2009 from Related U.S. Appl. No. 12/033,765.
Office Action dated Feb. 13, 2009 from Related U.S. Appl. No. 12/050,821.
Office Action dated Feb. 15, 2008 from Related U.S. Appl. No. 11/417,557.
Office Action dated Feb. 3, 2009 from Related U.S. Appl. No. 11/866,295.
Office Action dated Jan. 18, 2006 from Related U.S. Appl. No. 11/130,601 (Kates).
Office Action dated Jan. 18, 2006 from Related U.S. Appl. No. 11/130,871 (Kates).
Office Action dated Jan. 23, 2007 from Related U.S. Appl. No. 10/916,222.
Office Action dated Jan. 6, 2006 from Related U.S. Appl. No. 11/130,562 (Kates).
Office Action dated Jan. 6, 2006 from Related U.S. Appl. No. 10/916,222.
Office Action dated Jul. 1, 2008 from Related U.S. Appl. No. 11/927,425.
Office Action dated Jul. 11, 2006 from Related U.S. Appl. No. 11/130,562 (Kates).
Office Action dated Jul. 11, 2006 from Related U.S. Appl. No. 10/916,222.
Office Action dated Jul. 11, 2007 from Related U.S. Appl. No. 11/417,609 (Kates).
Office Action dated Jul. 11, 2007 from Related U.S. Appl. No. 11/417,701 (Kates).
Office Action dated Jul. 16, 2008 from Related U.S. Appl. No. 11/417,701.
Office Action dated Jul. 24, 2008 from Related U.S. Appl. No. 11/417,557.
Office Action dated Jul. 27, 2006 from Related U.S. Appl. No. 11/130,871 (Kates).
Office Action dated Jun. 17, 2009 from Related U.S. Appl. No. 12/033,765.
Office Action dated Jun. 19, 2009 from Related U.S. Appl. No. 11/866,295.
Office Action dated Jun. 22, 2009 from Related U.S. Appl. No. 12/050,821.
Office Action dated Jun. 27, 2007 from Related U.S. Appl. No. 11/417,557 (Kates).
Office Action dated Mar. 30, 2006 from Related U.S. Appl. No. 11/130,569 (Kates).
Office Action dated May 4, 2005 from Related U.S. Appl. No. 10/916,223 (Kates).
Office Action dated May 6, 2009 from Related U.S. Appl. No. 11/830,729.
Office Action dated Nov. 14, 2006 from Related U.S. Appl. No. 11/130,569 (Kates).
Office Action dated Nov. 16, 2006 from Related U.S. Appl. No. 10/916,223 (Kates).
Office Action dated Nov. 8, 2005 from Related U.S. Appl. No. 10/916,222.
Office Action dated Nov. 9, 2005 from Related U.S. Appl. No. 11/130,562 (Kates).
Office Action dated Nov. 9, 2005 from Related U.S. Appl. No. 11/130,601 (Kates).
Office Action dated Nov. 9, 2005 from Related U.S. Appl. No. 11/130,871 (Kates).
Office Action dated Oct. 27, 2005 from Related U.S. Appl. No. 10/916,223 (Kates).
Office Action dated Sep. 18, 2007 from Related U.S. Appl. No. 11/130,562.
Office Action for U.S. Appl. No. 13/835,621 dated Dec. 29, 2014.
Office Action for U.S. Appl. No. 11/394,380, dated Jan. 6, 2009.
Office Action for U.S. Appl. No. 11/497,579, dated Oct. 27, 2009.
Office Action for U.S. Appl. No. 11/497,644, dated Dec. 19, 2008.
Office Action for U.S. Appl. No. 11/497,644, dated Jul. 10, 2009.
Office Action regarding U.S. Appl. No. 10/286,419, dated Jun. 10, 2004.
Office Action regarding U.S. Appl. No. 11/098,575, dated Jan. 29, 2009.
Office Action regarding U.S. Appl. No. 11/098,575, dated Mar. 26, 2008.
Office Action regarding U.S. Appl. No. 11/098,575, dated Jul. 13, 2009.
Office Action regarding U.S. Appl. No. 11/098,575, dated Sep. 9, 2008.
Office Action regarding U.S. Appl. No. 11/120,166, dated Oct. 2, 2006.
Office Action regarding U.S. Appl. No. 11/120,166, dated Oct. 2, 2007.
Office Action regarding U.S. Appl. No. 11/120,166, dated Dec. 15, 2008.
Office Action regarding U.S. Appl. No. 11/120,166, dated Feb. 17, 2010.
Office Action regarding U.S. Appl. No. 11/120,166, dated Apr. 12, 2007.
Office Action regarding U.S. Appl. No. 11/120,166, dated Jun. 5, 2008.
Office Action regarding U.S. Appl. No. 11/120,166, dated Jul. 20, 2009.
Office Action regarding U.S. Appl. No. 11/394,380, dated Sep. 25, 2009.
Office Action regarding U.S. Appl. No. 11/497,644, dated Jan. 29, 2010.
Office Action regarding U.S. Appl. No. 11/497,644, dated Jun. 14, 2010.
Office Action regarding U.S. Appl. No. 09/977,552, dated Jan. 11, 2008.
Office Action regarding U.S. Appl. No. 09/977,552, dated Jan. 14, 2003.
Office Action regarding U.S. Appl. No. 09/977,552, dated Oct. 18, 2004.
Office Action regarding U.S. Appl. No. 09/977,552, dated Dec. 3, 2003.
Office Action regarding U.S. Appl. No. 09/977,552, dated Jul. 12, 2006.
Office Action regarding U.S. Appl. No. 10/061,964, dated Oct. 3, 2003.
Office Action regarding U.S. Appl. No. 10/675,137, dated Feb. 4, 2005.
Office Action regarding U.S. Appl. No. 10/675,137, dated Jun. 29, 2005.
Office Action regarding U.S. Appl. No. 10/675,137, dated Sep. 7, 2004.
Office Action regarding U.S. Appl. No. 10/698,048, dated Mar. 21, 2005.
Office Action regarding U.S. Appl. No. 10/940,877, dated Oct. 27, 2006.
Office Action regarding U.S. Appl. No. 10/940,877, dated Nov. 14, 2005.
Office Action regarding U.S. Appl. No. 10/940,877, dated Dec. 8, 2008.
Office Action regarding U.S. Appl. No. 10/940,877, dated May 21, 2007.
Office Action regarding U.S. Appl. No. 10/940,877, dated Jun. 5, 2008.
Office Action regarding U.S. Appl. No. 11/098,582 dated Mar. 3, 2010.
Office Action regarding U.S. Appl. No. 11/098,582, dated Jul. 7, 2008.
Office Action regarding U.S. Appl. No. 11/098,582, dated Aug. 4, 2009.
Office Action regarding U.S. Appl. No. 11/098,582, dated Sep. 21, 2007.
Office Action regarding U.S. Appl. No. 11/256,641, dated Apr. 29, 2008.
Office Action regarding U.S. Appl. No. 11/337,918, dated Mar. 25, 2008.
Office Action regarding U.S. Appl. No. 11/337,918, dated Aug. 17, 2009.
Office Action regarding U.S. Appl. No. 11/337,918, dated Oct. 28, 2008.
Office Action regarding U.S. Appl. No. 11/776,879, dated Sep. 17, 2010.
Office Action regarding U.S. Appl. No. 11/850,846, dated Aug. 13, 2010.
Office Action regarding U.S. Appl. No. 12/261,643, dated Nov. 2, 2011.
Office Action regarding U.S. Appl. No. 12/261,643, dated Feb. 15, 2012.
Office Action regarding U.S. Appl. No. 12/261,677, dated Aug. 4, 2011.
Office Action regarding U.S. Appl. No. 13/303,286, dated Mar. 26, 2012.
Office Action regarding U.S. Appl. No. 13/737,566, dated Dec. 20, 2013.
Official Action regarding Australian Patent Application No. 2008325240, dated Jan. 19, 2011.
Palani, M. et al, Monitoring the Performance of a Residential Central Air Conditioner under Degraded Conditions on a Test Bench, ESL-TR-92/05-05, May 1992.
Palani, M. et al, The Effect of Reducted Evaporator Air Flow on the Performance of a Residential Central Air Conditioner, ESL-HH-92-05-04, Energy Systems Laboratory, Mechanical Engineering Department, Texas A&M University, Eighth Symposium on Improving Building System in Hot and Humid Climates, May 13-14, 1992.
Patent Examination Report for Austrialian Application No. 2012223466 dated Jan. 6, 2015.
Patent Examination Report No. 3 regarding Australian Patent Application No. 2008325240, dated Jul. 19, 2012.
Pin, C. et al., “Predictive Models as Means to Quantify the Interactions of Spoilage Organisms,” International Journal of Food Microbiology, vol. 41, No. 1, 1998, pp. 59-72, XP-002285119.
Record of Oral Hearing regarding U.S. Appl. No. 09/977,552, dated Nov. 29, 2012.
Refrigeration Monitor and Case Control Installation and Operation Manual, Computer Process Controls, Aug. 12, 1999.
Reh, F. John, “Cost Benefit Analysis”, http://management.about.com/cs/money/a/CostBenefit.htm, Dec. 8, 2003.
Response to Rule 312 Communication regarding U.S. Appl. No. 09/977,552, dated Oct. 31, 2003.
Restriction from related U.S. Appl. No. 13/269,188 dated Apr. 9, 2013; 5 pages.
Restriction Requirement regarding U.S. Appl. No. 10/940,877, dated Jul. 25, 2005.
Restriction Requirement regarding U.S. Appl. No. 11/214,179, dated Feb. 2, 2010.
Second Examination Communication regarding European Application No. EP02729051.9, dated Jul. 3, 2006.
Second Office action issued by the Chinese Patent Office dated Jun. 19, 2009 regarding Application No. 200510005907.8, translation provided by CCPIT Patent and Trademark Law Office.
Second Office Action issued by the Chinese Patent Office on Mar. 6, 2009 regarding Application No. 200580013451.8, 7 Pages.
Second Office Action received from the Chinese Patent Office dated Jun. 26, 2009 regarding Application No. 200480011463.2, translated by CCPIT Patent and Trademark Law Office.
Second Office Action regarding Chinese Patent Application No. 200780030810X, dated Aug. 4, 2010. English translation provided by Unitalen Attorneys at Law.
Second Office Action regarding Chinese Patent Application No. 200890100287.3, dated Jan. 27, 2011. English translation provided by Unitalen Attorneys at Law.
Second Office Action regarding Chinese Patent Application No. 200910211779.0, dated Feb. 4, 2013. English translation provided by Unitalen Attorneys at Law.
Second Official Report regarding Australian Patent Application No. 2007214381, dated Oct. 30, 2009.
Supplementary European Search Report for EP 02 73 1544, Jun. 18, 2004, 2 Pages.
Supplementary European Search Report regarding Application No. EP 07 81 1712, dated Jan. 7, 2014.
Supplementary European Search Report regarding Application No. PCT/US2006/005917, dated Nov. 23, 2009.
Supplementary European Search Report regarding European Application No. EP06790063, dated Jun. 15, 2010.
Tamarkin, Tom D., “Automatic Meter Reading,” Public Power magazine, vol. 50, No. 5, Sep.-Oct. 1992, http://www.energycite.com/news/amr.html, 6 pages.
Texas Instruments, Inc. Mechanical Data for “PT (S-PQFP-G48) Plastic Quad Flatpack,” Revised Dec. 1996, 2 pages.
Texas Instruments, Inc., Product catalog for “TRF690 1 Single-Chip RF Transceiver,” Copyright 2001-2003, Revised Oct. 2003, 27 pages.
The Honeywell HVAC Service Assistant, A Tool for Reducing Electrical Power Demand and Energy Consumption, Field Diagnostics, 2003.
The International Search Report regarding International Application No. PCT/US2007/019563, dated Jan. 15, 2008.
The LS2000 Energy Management System, User Guide, http://www.surfnetworks.com/htmlmanuals/IonWorksEnergyManagement-LS2000-Load-Shed -System-by-Surf-Networks,Inc.html, Sep. 2004, 20 pages.
Third Office Action issued by the Chinese Patent Office on Jun. 19, 2009 regarding Application No. 200580013451.8, translated by CCPIT Patent and Trademark Law Office.
Third Office Action regarding Chinese Application No. 2005100059078 from the State Intellectual Property Office of People's Republic of China, dated Sep. 24, 2011. Translation provided by Unitalen Attorneys at Law.
Third Office Action regarding Chinese Patent Application No. 200910211779.0, dated Sep. 4, 2013. English translation provided by Unitalen Attorneys at Law.
Torcellini, P., et al., “Evaluation of the Energy Performance and Design Process of the Thermal Test Facility at the National Renewable Energy Laboratory”, dated Feb. 2005.
Trane EarthWise™ CenTra Vac™ Water-Cooled Liquid Chillers 165-3950 Tons 50 and 60 Hz; CTV PRC007—EN; Oct. 2002; 56 pages.
Translation of claims and Abstract of KR Patent Laying-Open No. 2000-0000261.
Udelhoven, Darrell, “Air Conditioner EER, SEER Ratings, BTUH Capacity Ratings, & Evaporator Heat Load,” http://www.udarrell.com/air-conditioner-capacity-seer.html, Apr. 3, 2003, 15 pages.
Udelhoven, Darrell, “Air Conditioning System Sizing for Optimal Efficiency,” http://www.udarrell.com/ airconditioning-sizing.html, Oct. 6, 2003, 7 pages.
Udelhoven, Darrell, “Optimizing Air Conditioning Efficiency TuneUp Optimizing the Condensor Output, Seer, Air, HVAC Industry,” http://www.udarrell.com/air-conditioning-efficiency.html, Jul. 19, 2002, 13 pages.
Ultrasite 32 User's Guide, Computer Process Controls, Sep. 28, 1999.
Ultrasite User's Guide BCU Supplement, Computer Process Controls, Sep. 4, 1997.
Ultrasite User's Guide BEC Supplement, Computer Process Controls, Oct. 6, 1997.
Ultrasite User's Guide RMCC Supplement, Computer Process Controls, Jun. 9, 1997.
UltraSite User's Guide, Computer Process Controls, Apr. 1, 1996.
Vandenbrink et al.,“Design of a Refrigeration Cycle Evaporator Unit,” Apr. 18, 2003.
Watt, James; Development of Empirical Temperature and Humidity-Based Degraded-Condition Indicators for Low-Tonnage Air Conditioners; ESL-TH-97/12-03; Dec. 1997.
Written Opinion from related PCT Application No. PCT/US2014/028074 mailed Jun. 19, 2014.
Written Opinion of the International Searching Authority for International Application No. PCT/US2008/012364 dated Mar. 12, 2009.
Written Opinion of the International Searching Authority regarding Application No. PCT/US2010/036601, mailed Dec. 29, 2010.
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/021161, mailed May 8, 2013.
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2007/019563, dated Jan. 15, 2008.
Written Opinion of the International Searching Authority, Int'l. App. No. PCT/US 06/05917, dated Sep. 26, 2007.
Written Opinion regarding PCT/US02/13459, dated Apr. 23, 2003.
Office Action regarding Australian Patent Application No. 2015255255, dated Sep. 8, 2016.
Office Action regarding Canadian Patent Application No. 2,908,362, dated Sep. 21, 2016.
Search Report regarding European Patent Application No. 14763232.7, dated Oct. 27, 2016.
Search Report regarding European Patent Application No. 14764311.8, dated Oct. 27, 2016.
U.S. Appl. No. 12/943,626, filed Nov. 10, 2010.
U.S. Appl. No. 13/770,479, filed Feb. 19, 2013.
U.S. Appl. No. 13/784,890, filed Mar. 5, 2013.
U.S. Appl. No. 14/080,473, filed Nov. 14, 2013.
U.S. Appl. No. 14/209,415, filed Mar. 13, 2014.
U.S. Appl. No. 14/212,632, filed Mar. 14, 2014.
U.S. Appl. No. 14/244,967, filed Apr. 4, 2014.
U.S. Appl. No. 14/255,519, filed Apr. 17, 2014.
U.S. Appl. No. 14/300,782, filed Jun. 10, 2014.
U.S. Appl. No. 14/607,782, filed Jan. 28, 2015.
U.S. Appl. No. 14/727,756, filed Jun. 1, 2015.
U.S. Appl. No. 14/841,058, filed Aug. 31, 2015.
U.S. Appl. No. 14/949,090, filed Nov. 23, 2015.
U.S. Appl. No. 15/096,186, filed Apr. 11, 2016.
U.S. Appl. No. 15/096,196, filed Apr. 11, 2016.
Related Publications (1)
Number Date Country
20150155701 A1 Jun 2015 US
Provisional Applications (1)
Number Date Country
61585382 Jan 2012 US
Continuations (1)
Number Date Country
Parent 13737566 Jan 2013 US
Child 14617451 US