The present inventions relate generally to systems and methods for pavement reinforcement. More particularly, the present inventions are concerned with systems and methods of transferring loads between adjacent cast-in-place slabs, such as concrete slabs, and for accurately positioning dowels between adjacent sections of slabs.
In the construction of concrete floors or surfaces (i.e. sidewalks, driveways, roads, etc.), it has long been the practice to make the surface from a series of individual blocks or slabs. Adjacent slabs meet each other at joints which are typically spaced so that each slab has enough strength to overcome internal stresses that would otherwise cause random stress relief cracks.
One problem that can arise when slabs are poured in separate subsections is that the junctions or joints between adjacent sections are subject to damage from downward forces exerted against the slab. To reduce the effects of such forces, it is common practice to embed dowels into the slab. The dowels bridge across the joint between adjacent subsections of the slab and extend a short distance into each subsection. The dowels are placed at regular intervals along the joint, and act to equalize and transfer loads that are exerted against the joint. Various systems have been developed utilizing dowels of a variety of shapes and sizes, including generally planar plate-type dowels, as well as dowels having square, circular or other shaped cross-sections.
If the dowels are not installed correctly, problems can arise. Specifically, if the dowels are not parallel to the slab surface and perpendicular to the joint between the slab sections, unwanted stresses can be created in the slab, which can lead to cracking of the slab. A number of systems and methods have been developed to better ensure proper alignment of the dowels. In some systems dowels, or sheaths for supporting the dowels, are attached to forms prior to pouring of a concrete slab. For example, in U.S. Pat. No. 6,354,760, the disclosure of which is incorporated herein by reference in its entirety, a generally planar plate-type dowel is shown which is supported by a sheath that is embedded within one of two adjacent concrete slabs. The sheath is nailed to an inner surface of a wood form as a first slab is poured. Once the slab has properly hardened, the form is removed and the sheath remains. The dowel is then positioned in the sheath such that half of the dowel protrudes beyond the edge of the slab into a location that will be occupied by the adjacent slab. The adjacent slab is poured and the protruding portion of the dowel is surrounded by the concrete of the second slab.
The generally planar plate-type dowels discussed above provide several advantages over square and round tubular dowels such as increased relative movement between slabs in a direction parallel to the longitudinal axis of the joint; and reduced loadings per square inch close to the joint, while transferring loads between adjacent cast-in-place slabs. Nevertheless, current systems and methods utilizing planar plate-type dowels require that the dowel be installed in new concrete as it is poured. Alternatively, systems and methods have been developed in which a hole is drilled into pre-existing hardened concrete for insertion of a tubular dowel, allowing tubular dowels to be utilized in section repair or other retrofitting applications in which the concrete has been poured and set/hardened prior to placement of dowel (or sheath) within the slab. Notwithstanding the noted disadvantages of tubular dowels versus planar dowels, drilling in existing concrete is extremely time consuming and creates considerable dust which is undesirable for interior retrofit applications. Therefore, it would be beneficial to provide a system and method for utilizing planar dowels in connection with existing or retrofit concrete applications, and which is easier and less dusty than existing retrofit systems utilizing tubular dowels.
A disadvantage of prior art systems and methods of utilizing planar dowels in new concrete pours in which a sheath is embedded in a slab, is that only wooden forms can be used for forming the slab. This is because the sheath must be nailed to the form before the concrete is poured. Nevertheless, many contractors prefer to utilize reusable metal forms as opposed to wooden forms. Therefore, it would be beneficial to provide a system and method for utilizing planar dowels in slabs that are made with metal forms.
Utilization of the generally planar sheaths of the prior art for positioning dowels within a slab require vibration of the wet concrete to allow the concrete to consolidate around the sheath. When the adjacent slab is poured, the wet concrete for that slab must also be vibrated to allow the concrete to consolidate around the protruding portion of the dowel. Vibration of the wet concrete requires additional labor and special tools that are not necessary in applications in which generally narrow tubular dowels are utilized. Therefore it would be beneficial to provide a system and method for utilizing planar dowels in slabs that reduces the labor required during pouring.
Another disadvantage of prior art systems for locating planar dowels in a slab is that attachment of the sheath to the form requires extremely careful positioning of the sheath with respect to the top edge of the form as well as extremely careful leveling of the form at the location in which the slab edge is to be made. Even slight misalignment of either the sheath or of the form board will result in misalignment of the dowel with the slab and can result in undesired stresses in the slab. Misalignment or dislocation of the sheaths can result after the sheath has been mounted to the form either as the form is being positioned or after the form is in position by workers accidentally stepping on the sheaths or bumping against the sheaths. Misalignment of the form board can also result from workers accidentally kicking the form board, or misalignment can be the result of a warped form board. Therefore, it would be beneficial to provide a system and method for ensuring proper alignment of planar dowels in slabs.
An object of the instant invention is to provide a system and method for doweling in existing concrete that is faster and cleaner than drilling. Another object of the instant invention is to provide a system and method for positioning planar dowels into existing concrete. Yet another object of the instant invention is to provide a system and method for utilizing planar dowels with metal forms in new concrete applications. Still another object of the instant invention is to provide a system and method for properly aligning planar dowels in a slab. Another object of the instant invention is to provide a system and method for utilizing planar dowels in a slab that minimizes the amount of labor required during new concrete pours.
The objects of the instant invention are accomplished through the use of a generally planar plate-type dowel and a machine, such as a saw, for making a generally planar cut horizontally into an edge of a hardened concrete slab. One end of the dowel is shaped to generally conform to the shape of the cut made by the saw. The size of the dowel is slightly smaller than the size of the cut to allow slight movement generally parallel to the edge of the slab in which the cut is located.
In operation, a first slab of concrete is either a pre-existing slab that is being repaired, or a relatively new slab that has been allowed to set or harden. In the context of a repair application, a generally straight edge to the existing concrete may be made by cutting away a section of the existing slab. In the context of a relatively new slab, a straight edge will be made by a form board that is removed after the concrete has hardened. Once the concrete is hardened and/or a straight edge is obtained, a saw is used to plunge-cut into the edge of the slab at a depth midway between the top surface and the base of the slab. The dowel is then inserted into the cut and the adjacent slab such that half of the dowel is located within the cut in the existing slab and half is protruding from the slab into a location in which an adjacent slab of concrete is to be poured. The adjacent slab is then poured and vibration of the wet concrete of the adjacent slab is used to consolidate the concrete around the protruding portion of the dowel.
Although vibration of the concrete is necessary for the adjacent slab, roughly half the amount of vibration-related labor is utilized in connection with the system and method of the instant invention as is required by systems of the prior art. This is because vibration labor is only utilized on the adjacent slab, as opposed to both slabs as is necessary in the prior art systems. Cutting into an existing, hardened, slab and placement of a dowel in the cut-away, eliminates the need for vibration in the first slab.
In a preferred embodiment of the instant invention the saw is self-guided by a control unit that moves across the top of the slab following the slab edge. The saw can be adjusted to provide a series of spaced-apart cuts along the edge of the slab. In another preferred embodiment, the saw will include a mist system to eliminate dust created as the concrete is cut. Such a system is ideal for interior use of the inventive system.
In a preferred embodiment of the instant invention rubber gaskets, or seal spacers, are connected to the dowel to aid in alignment of the dowel in the cutaway in the slab and to prevent concrete slurry from migrating into the cutaway area in which the dowel is located as the adjacent slab is poured.
The dowel plates utilized in the instant invention can be made in a variety of shapes and sizes depending upon the desired application and the shape of the cut into which the dowel is to be located. The shape can include two generally symmetrical ends, one of which is positioned in the cut-away of the existing slab and the other protruding from the slab to extend into the adjacent slab when it is poured. Alternatively, the shape can be asymmetrical. If an asymmetrical dowel plate is utilized, one end will have a shape generally conforming to the shape of the cut that is made in the existing slab. The shape of the other end will have little significance as the wet concrete will consolidate around the protruding end by vibration of the concrete. The dowel plates utilized in the instant invention can also be utilized in connection with a mounting sheath similar to that used by systems of the prior art, allowing a single dowel to be used both for new construction and retrofit applications.
The system and method of the instant invention provides a means for positioning planar dowels into a retrofit application that is much faster and cleaner than the systems of the prior art. Sawing into a slab of concrete is much faster than drilling. In addition, the use of a wet saw device greatly reduces the amount of dust created during installation. In addition, the system of the instant invention allows the use of any type of forms, whether wood, metal or otherwise, as there is no need to nail sheaths to the forms prior to pouring of the slab. Furthermore, the instant invention eliminates the possibility of misalignment of dowels caused by improper form alignment or by accidental dislocation of dowel mounting sheaths as the slab is poured. This is accomplished by cutting into the slab after the slab has hardened. The angle and position of the cut is gauged by the actual surface of the slab, providing ideal alignment of the dowel with respect to the slab surface.
The foregoing and other objects are intended to be illustrative of the invention and are not meant in a limiting sense. Many possible embodiments of the invention may be made and will be readily evident upon a study of the following specification and accompanying drawings comprising a part thereof. Various features and subcombinations of invention may be employed without reference to other features and subcombinations. Other objects and advantages of this invention will become apparent from the following description taken in connection with the accompanying drawings, wherein is set forth by way of illustration and example, an embodiment of this invention and various features thereof.
Preferred embodiments of the invention, illustrative of the best mode in which the applicant has contemplated applying the principles, are set forth in the following description and are shown in the drawings and are particularly and distinctly pointed out and set forth in the appended claims.
As required, a detailed embodiment of the present inventions is disclosed herein; however, it is to be understood that the disclosed embodiment is merely exemplary of the principles of the invention, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure.
Referring to
Saw blade 18 is plunged horizontally into edge 110 of slab 100 through the extension of engagement cylinder 16 and is refracted from slab 100 by springs (not shown) which are positioned to provide a retracting force on saw blade 18 when engagement cylinder 16 is in the extended position. In a preferred embodiment engagement cylinder 16 comprises a hydraulic piston, however it will be appreciated that alternative engagement mechanisms may be utilized. When pressure is applied to the hydraulic piston, engagement cylinder 16, which is connected to the end of support arm 15, is extended to push drive unit 14 (as well as saw blade 18) inward on support arm 15 towards power unit 12. When pressure is released from the hydraulic piston, the force of the springs will pull drive unit 16 outwards towards the end of support arm 15 away from power unit 12. Drive unit 14 moves horizontally along support arm 15 by riding along slide rails 13.
Power unit 12 includes a drive mechanism or motor to propel saw unit 10 on wheels 20. Power unit 12 also includes control circuitry for saw unit 10 including controls for saw drive unit 14, saw blade 18, engagement cylinder 16, retracting cylinder 17, and any other desired components of saw unit 10. Retracting cylinder 17 connects power unit 12 to support arm 15, such that upon refraction of retracting cylinder 17 support arm 15 is pivotally raised upward to raise saw blade 18 away from the surface of slab 100 for transportation of saw unit 10. Upon extension of refracting cylinder 17 support arm 15 is pivotally lowered toward the surface of slab 100 into the generally parallel orientation shown in
As is shown in
Referring to
Referring to
Referring to
In the foregoing description, certain terms have been used for brevity, clearness and understanding; but no unnecessary limitations are to be implied therefrom beyond the requirements of the prior art, because such terms are used for descriptive purposes and are intended to be broadly construed. Moreover, the description and illustration of the inventions is by way of example, and the scope of the inventions is not limited to the exact details shown or described.
Although the foregoing detailed description of the present invention has been described by reference to an exemplary embodiment, and the best mode contemplated for carrying out the present invention has been shown and described, it will be understood that certain changes, modification or variations may be made in embodying the above invention, and in the construction thereof, other than those specifically set forth herein, may be achieved by those skilled in the art without departing from the spirit and scope of the invention, and that such changes, modification or variations are to be considered as being within the overall scope of the present invention. Therefore, it is contemplated to cover the present invention and any and all changes, modifications, variations, or equivalents that fall with in the true spirit and scope of the underlying principles disclosed and claimed herein. Consequently, the scope of the present invention is intended to be limited only by the attached claims, all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
Having now described the features, discoveries and principles of the invention, the manner in which the invention is constructed and used, the characteristics of the construction, and advantageous, new and useful results obtained; the new and useful structures, devices, elements, arrangements, parts and combinations, are set forth in the appended claims.
It is also to be understood that the following claims are intended to cover all of the generic and specific features of the invention herein described, and all statements of the scope of the invention which, as a matter of language, might be said to fall therebetween.
This application is a division of application Ser. No. 13/736,411 filed on Jan. 8, 2013, U.S. Pat. No. 8,573,884 issued on Nov. 5, 2013, which is a division of application Ser. No. 13/116,851 filed on May 26, 2011, U.S. Pat. No. 8,356,955 issued on Jan. 22, 2013, which is a continuation of application Ser. No. 12/144,481 filed on Jun. 23, 2008, now abandoned, which is a division of application Ser. No. 11/150,403, filed on Jun. 10, 2005, now abandoned, which claims priority pursuant to 35 U.S.C. 119(e) to provisional application No. 60/578,512, filed on Jun. 10, 2004, now expired, the entire disclosures of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60578512 | Jun 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13736411 | Jan 2013 | US |
Child | 14070966 | US | |
Parent | 13116851 | May 2011 | US |
Child | 13736411 | US | |
Parent | 11150403 | Jun 2005 | US |
Child | 12144481 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12144481 | Jun 2008 | US |
Child | 13116851 | US |