None.
The present invention relates to medical monitoring systems for monitoring hospital patients and patient care equipment based on a variety of parameters and conditions associated with monitored biometric or physiological information and equipment information and for providing user-defined responses to those parameters and conditions.
Modern medical care often involves the use of medication management systems, which include medication delivery and monitoring devices such as medication delivery pumps and/or patient parameter monitors. Medication management systems for configuring, controlling, and monitoring medication delivery devices have been disclosed. For example, commonly owned U.S. patent application Ser. No. 10/930,358, which published as US20050144043A1 on Jun. 30, 2005 and U.S. patent application Ser. No. 10/783,573, which published as US20050278194A1 on Dec. 15, 2005, disclose a medication management system wherein customizable drug library or medical device configuration information is prepared using a drug library editor (DLE) program and module of a medication management unit (MMU). The MMU downloads the customizable drug library to the medication delivery pump and receives status or activity information from the pump. Commonly owned U.S. patent application Ser. No. 10/783,877, which published as WO2005050526A2 on Jun. 2, 2005, discloses how the drug library or medical device configuration information is created, edited, stored and communicated to a medication delivery device in the context of a medication management system to deliver substances, such as fluids and/or fluid medication to patients.
According to the above-mentioned commonly owned published patent applications, a typical medication management system includes a point of care computer, such as a barcode point of care computer and/or pharmacy computer, and/or an MMU, in communication with one or more medication delivery devices. The point of care computer(s) and/or the MMU, with associated memory, store various information, such as patient information, prescription information, customized drug library or other information, for managing medication delivery to a patients, such as performing five-rights checking, configuring the medication delivery devices, and receiving and storing activity information received from the medication delivery devices.
Caregivers use outputs from patient monitoring and equipment monitoring devices to make various patient care decisions. Patient monitoring devices and patient care equipment monitoring devices may be connected to a receiver, which receives the output signals from the patient monitoring devices and patient care equipment monitoring devices. In some cases, the receivers may display and/or record the information from the patient and patient care equipment monitoring devices. In other cases, the devices may include a monitor and/or recording medium. The receivers or devices may also have preset or adjustable alarms that are triggered when one of the outputs from the patient or patient care equipment monitoring devices deviates from a pre-set limit.
One drawback of such conventional monitoring systems is the occurrence of false positive alarms. Such false positive alarms may occur due to a momentary deviation of a monitored state that deviates from the pre-set limits, but which rapidly returns to a normal state. For example, one application of such a conventional alarm monitoring system is for use in monitoring a patient's reaction to a controlled administration of analgesia. In such systems, currently practiced technologies are subject to the following problems: (1) false alarms due to erroneous respiratory or blood gas readings associated with motion artifacts or poor sensor placement and coupling; and (2) false alarms resulting from patient circumstances in which monitored conditions are not truly indicative of an adverse event. Such an alarm may be triggered, for example, if a patient monitor is briefly disconnected from a monitoring device. False positive alarms waste the time of hospital personnel who need to respond to such alarms. Frequent false positive alarms may also desensitize medical responders to the alarm. In addition, a false positive alarm may cause a medial responder to take improper action believing that the alarm is a true alarm.
Another drawback of such conventional systems is the relative lack of ability to require a response only when there has been a change in multiple monitored parameters, such as a change in blood oxygen levels coupled with a change in breathing. Specifically, for monitoring analgesic application via a pump, alarms are typically associated with univariate parameters, such as SpO2 alone or end tidal CO2 (ETCO2) alone, for detecting changes in these parameters consistent with respiratory depression. These systems are subject to a variety of problems due to the complexity of the body's response to analgesia and the insufficiency of a single variable to represent the range of clinical circumstances and patient parameters that may result from the administration. For example, an undesirable adverse event associated with administration of analgesics, sedatives and anesthetics can be depression of the patient's respiratory and/or central nervous systems. Exacerbating the risk to patients is the profound variation in drug efficacy between patients and through time. Consequently, avoidance of drug overdose is of particular concern to healthcare professionals and can result in the under administration of narcotics. The latter problem leads to unnecessary and significant discomfort and is associated with longer hospital stays and recovery times.
Yet another drawback of such systems is the difficulty of creating a readily customized rule set for monitoring, alarming and requiring responses thereto. Additionally, these systems typically lacked the ability to automatically respond to changes in a plurality of monitored conditions. Furthermore, such traditional systems often lacked the ability to automatically change from a first rule set to a second rule set based on a change in the monitored parameters.
The system disclosed herein is designed to enable hospital personnel to configure a rule set by inputting, via a user-interface, a wide variety of monitored patient or equipment parameters, and conditions associated with those parameters, which, when satisfied by inputs from the medical equipment and patient monitoring devices, trigger a user-defined or user-selected response. The rule set can include Boolean combinations of these parameters and respective conditions to establish a set of multi-variable inputs that must occur before a response is triggered. Authorized hospital personnel can also customize the type of parameter, the conditions for that parameter to be met and type of response for each rule set. The software utilized to implement this invention may use a context free grammar, specifically, Backus-Naur form metasyntax, to build the rule sets comprised of parameters, conditions and responses.
All of the patents and patent application referred to within this Background of the Invention section of the present specification are hereby incorporated by reference and made a part of this specification. In addition, the present invention is provided to solve the problems discussed above and, to provide advantages and aspects not provided by medical systems, as well as achieve other objects not explicitly stated above. A full discussion of the features, advantages and objects of the present invention is deferred to the following detailed description, which proceeds with reference to the accompanying drawings.
Other features and advantages of the invention will be apparent from the following specification taken in conjunction with the following drawings.
To understand the present invention, it will now be described by way of example, with reference to the accompanying drawings in which:
While this invention is susceptible of embodiments in many different forms, there is shown in the drawings and will herein be described in detail preferred embodiments of the invention with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the broad aspect of the invention to the embodiments illustrated.
The patient monitor 120 can optionally include a processor and patient monitoring application for monitoring the information received by the various biometric sensors. Patient monitor 120 may include a user interface associated therewith to receive input from a patient or caregiver. A patient monitor processor compares the information received from the sensors and generates an alarm signal based on the comparison. Alarm signals can be generated if an alarm limit is met, or alternately when the alarm limit is exceeded. Alarm limits can include an upper limit, a lower limit, or both upper and lower limits that together define one or more acceptable ranges. Patient monitor 120 is communicatively networked with a patient monitor interface and rule set processor 125 for transmitting the monitored information and/or alarms to the patient monitor interface and rule set processor 125.
As shown in
The system 100 may further have a plurality of medication delivery pumps 130 for the administration of a plurality of medications. The medication delivery pump may further include a user interface that permits a caregiver to provide inputs to the medication delivery pump 130. Such inputs may include a pain score associated with the patient, which may be used to determine the amount and frequency of patient controlled analgesic (PCA) permitted. In one embodiment, the medication delivery pump has a user interface configured to permit a caregiver to select a rule set, herein sometimes referred to as an algorithm, for monitoring the patient and patient care equipment and responding to inputs from the patient and patient care equipment, as described in greater detail below. In addition, the user interface on the medication delivery pump 130 provides a means, such as a push button or a touch screen interface, for a caregiver to respond to an alarm or an infusion event (for example, an infusion pause).
The medication delivery pump 130 is in communication with the patient monitor interface and rule set processor 125 for communicating information between the medication delivery pump 130, the patient monitor interface and rule set processor 125, the patient monitor 120, and other components of the system 100 as described below. As a result, medical pump information can be communicated from the medication delivery pump 130 to other components of the system 100. Such medical pump information may include both medical pump status information and medical event information. Medical pump status information can include but is not limited to whether an active delivery of medication is taking place, the rate of the delivery, volume (delivered or remaining to be delivered) and the length of time passed since the delivery began. Medical pump event information can include but is not limited to whether any alarms or alerts have issued since the last communication, whether an occlusion has taken place, and whether power was lost to the medical pump, among other medical pump event information. Status information and/or medication delivery status information is used herein to refer to at least medical pump status information, medical pump event information, and/or other status and/or event information. The medical delivery status information may be transmitted as historical logs of information or real time communication or information.
The medication delivery pump 130 may also communicate the rule set selected by a caregiver at the medication delivery pump 130 to the patient monitor interface and rule set processor 125. The patient monitor interface and rule set processor 125 is communicatively connected with a central memory 135, which has a library of rule sets or portions thereof stored therein. The library of rule sets can be a part of a customizable drug library or other libraries that can be downloaded to medical devices. In one embodiment, the patient interface and rule set processor 125 applies the selected rule set to the information received from the patient monitor 120, such as ETCO2, SpO2, respiratory rate, heart rate, blood pressure, temperature and other patient parameter information, and/or the information received from the medication delivery pump 130, such as the medical delivery status information, to the rule set. Depending upon whether the conditions and parameters of the rule set are satisfied, the patient interface and rule set processor 125 may generate an output signal to the medication delivery pump 130 that instructs the medication delivery pump to adjust the medication delivery in some manner.
In another embodiment, the patient monitor interface and rule set processor 125 may send information from the patient monitor 120 to the medication delivery pump 130 without processing it through a rule set. The medication delivery pump 130 or the patient monitor 120 may be configured to receive alarm limits inputted by a caregiver. The alarm limits may correspond to the patient information received at the medication delivery pump 130. Alternatively, or additionally, the alarm limits may relate to information regarding the medication delivery pump 130 itself. A pump processor compares the selected alarm limits to the relevant information, and, if the information satisfies (meets, exceeds, falls under or between) the alarm limits, generates an alarm signal from the pump 130. The alarm signal from the pump may be conveyed to the patient monitor and rule set processor 125 and to other components of the system 100 as described below.
The medication delivery pump 130 may display the patient information on a display screen of the medication delivery pump. The display screen may also display a variety of medical pump status information including but not limited to a patient identifier, room number, delivery mode, delivery rate, whether an active delivery of medication is taking place, how long since the delivery began, basal rate, PCA bolus amount, lockout period for the PCA bolus, and lockout volume for the PCA bolus.
In an alternative embodiment that will be easily understood by one skilled in the art in view of the figures and description herein, the patient monitor interface and rule set processor 125 could be a part of either the medication delivery pump 130 or the patient monitor 120 or another component of the system rather than a separate unit. Processing capacity and functions can be distributed among the components of the system 100 as shown and described or they can be rearranged and/or combined within any of the other processors in the system.
The central memory 135 is in communication with a rule set configuration processor 140. The rule set configuration processor 140, which may be a personal computer, personal digital assistant (PDA) or the like, has a user input that permits an administrator to create and configure a rule set, sometimes referred to herein as an algorithm, as described in greater detail below. The rule set is then sent to and stored in the central memory 135.
The central memory 135 also may receive certain information from the patient monitor interface and rule set processor 125. Specifically, the central memory 135 may receive logs of the patient information generated by the patient monitor 120 and the medication delivery pump information generated by the medication delivery pump 130. This information may also be sent to the central memory 135 from the patient monitor interface and rule set processor 125 in real time.
The central memory 135 may also store information related to the patient's medical history and recent medical treatments, and, in particular, the patient's recent history of infused medication. This information may be accessed by the patient monitor interface and rule set processor 125 or any other component of the system 100 when such information is required as an input for processing a rule set. For example, a rule set may require inputs regarding the amount of a drug still active in the patient, which could be determined based on the amount of the drug that the patient has received and how recently the drug was delivered to the patient, which would be stored in the central memory 135. A detailed example of such a rule set is described below.
The central memory 135 may also receive outputs from the patient monitor interface and rule set processor 125 that are generated as a response to processing inputs via a rule set. Specifically, if the parameters and associated conditions of a certain rule set are satisfied, the patient monitor interface and rule set processor 125 may send an alarm instruction to the central memory 135, which may then be sent to a caregiver, as described below. In another example, if the parameters and conditions of a rule set are satisfied, the patient monitor interface and rule set processor 125 may send a signal to the central memory 135 to access a different rule set stored in the central memory 135.
The central memory 135 may further distribute the information that it receives from the patient monitor interface and rule set processor 125 to a reports server 145, a central monitor 150 and a remote notification server 155. In particular, the reports server 145 may receive summaries, overviews and logs of the medication delivery pump information and the patient monitor information for generating reports that can be sent to or made available to administrators. The central monitor 150 may receive similar information for displaying information from the medication delivery pump 130 and patient monitor 120 and provide this information to a caregiver at a location remote from the patient. The remote notification server 155 will typically receive instructions to notify caregivers of certain changes in patient or equipment status. For example, if the parameters and conditions of a rule set are satisfied and the rule set dictates that a caregiver should be notified in such an event, the remote notification server 155 will generate a notification to the caregiver. Such notifications may be conveyed to one or more small personal digital assistant computers including but not limited to a pager, cell phone or PDA that is in communication with the remote notification server 155. The small digital assistant computers can be carried by the caregivers and used by them to identify themselves through the use of built in barcode scanners or otherwise as they perform certain caregiving functions, such as performing scheduled rounds in which the caregivers deliver medication to patients in patient rooms within a caregiving facility.
In an alternative embodiment, the reports server 145, central monitor 150 and remote notification server 155, or any combination of these devices may be networked directly to the patient monitor interface and rule set processor 125, the pump 130 and/or the patient monitor 120.
Communication of information between the various components of the system may occur in a variety of ways. Information may be communicated between the various devices in a real-time constant stream, the information may be pushed from the sending to device to the receiving device on a periodic basis or on a continuous loop, the information may be pulled from the sending device by the receiving device on a periodic basis or on a continuous loop, and/or the various devices may be configured to push or pull the information based on various triggering events, for example, the passage of time or once a certain amount of information has been accumulated. The components of the system shown in
The medication delivery pump or medical pump 130 includes but is not limited to enteral pumps, infusion pumps, cassette pumps, syringe pumps, peristaltic pumps, or any fluid pumping device for the delivery of fluids intravenously, intra-arterially or otherwise to a patient. A pump processing unit or pump processor may be included in pump 130 and performs various operations, as described in greater detail herein. An input/output device or user interface communicates with the pump processing unit and allows the user to receive output from pump processing unit and/or input information or commands into the pump processing unit. Those of ordinary skill in the art will appreciate that input/output device may be provided as a separate display device and/or a separate input device. For example, in one embodiment of the present invention, the medical pump 130 includes a patient-controlled analgesia (PCA) request device which is in electrical communication with the processor, for receiving an input from a person to generate a medication request signal from the PCA request device.
A pump memory communicates with the pump processor and stores code and data necessary for the pump processor to calculate and output the operating parameters of the pump 130. The pump memory stores a programming code, such as a medication delivery programming code or application for processing data to determine and control the operating parameters of the medical pump 130.
With continued reference to
The central memory 135 can include a central programming code, such as a central medication management application and/or central patient monitoring application and other applications, for execution by the central processor, which can perform various medication management, patient monitoring, and other functions, as described in greater detail herein. Further, the medical pump 130 can include many aspects of a LifeCare PCA® Infusion System, and the medication management application within the central memory 135 can include many aspects of Hospira MedNet® Software, both manufactured and sold by Hospira, Inc., the assignee of the present invention, in conjunction with the present invention.
Generally, in terms of hardware architecture, as shown in
The processors are hardware devices for executing software, particularly software stored in memory. The processors can be any custom made or commercially available processor, a central processing unit (CPU), an auxiliary processor among several processors associated with the medical pumps 130, patient parameter monitors 120, patient monitor interface and rule set processor 125, rule set configuration processor 140, central monitor 150, reports server 145 and remote notification server 155 of the medication management and/or patient parameter monitoring system 100, a semiconductor based microprocessor (in the form of a microchip or chip set), a macroprocessor, or generally any device for executing software instructions. Examples of suitable commercially available microprocessors are as follows: a PA-RISC series microprocessor from Hewlett-Packard Company, an 80×86 or Pentium series microprocessor from Intel Corporation, a PowerPC microprocessor from IBM, a Sparc microprocessor from Sun Microsystems, Inc., or a 68xxx series microprocessor from Motorola Corporation. The processors may also represent a distributed processing architecture such as, but not limited to, EJB, CORBA, and DCOM. In one embodiment, the central memory 135 and reports server 145 is on a WINDOWS based server or series of servers.
Each memory of each of the medical pumps 130, patient parameter monitors 120, patient monitor interface and rule set processor 125, rule set configuration processor 140, central monitor 150, reports server 145 and remote notification server 155 of the medication management and/or patient parameter monitoring systems 100, can include any one or a combination of volatile memory elements (e.g., random access memory (RAM, such as DRAM, SRAM, SDRAM, etc.)) and nonvolatile memory elements (e.g., ROM, hard drive, tape, CDROM, etc.). Moreover, these memories may incorporate electronic, magnetic, optical, and/or other types of storage media. The memories can have a distributed architecture where various components are situated remote from one another, but are still accessed by the processors of the medical pumps 130, patient parameter monitors 120, patient monitor interface and rule set processor 125, rule set configuration processor 140, central monitor 150, reports server 145, and remote notification server 155 of the medication management and/or patient parameter monitoring system 100.
The software within one or more of the above referenced memories may include one or more separate programs. The separate programs comprise ordered listings of executable instructions for implementing logical functions. In the examples of
The I/O devices referred to above may include input devices, for example input modules for PLCs, a keyboard, mouse, scanner, microphone, touch screens, interfaces for various medical devices, bar code readers, biometric receivers, PCA request devices, stylus, laser readers, radio-frequency device readers, etc. Furthermore, the I/O devices may also include output devices, for example but not limited to, output modules for PLCs, a printer, bar code printers, displays, etc. Finally, the I/O devices may further include devices that communicate both inputs and outputs, for instance but not limited to, a modulator/demodulator (modem; for accessing another device, system, or network), a radio frequency (RF) or other transceiver, a telephonic interface, a bridge, and a router.
If the medical pumps 130, patient parameter monitors 120, patient monitor interface and rule set processor 125, rule set configuration processor 140, central monitor 150, reports server 145, and remote notification server 155 of the medication management and/or patient parameter monitoring system 100 are a PC, workstation, PDA, or the like, the software in the respective memories may further include a basic input output system (BIOS) (not shown in
When the medical pumps 120, patient parameter monitors 130, patient monitor interface and rule set processor 125, rule set configuration processor 140, central monitor 150, reports server 145, and remote notification server 155 of the medication management and/or patient parameter monitoring system 100, are in operation, the processors therein are configured to execute software stored within respective memories, to communicate data to and from memories, and to generally control operations of the components of the medication management and/or patient parameter monitoring system 100, pursuant to the software. The medication delivery applications, network interface applications, patient monitoring applications, central medication management applications, central patient monitoring applications, and/or biometric applications, and the O/S, in whole or in part, but typically the latter, are read by respective processors, perhaps buffered within the processors, and then executed.
When the medication management and/or patient parameter monitoring system 100 is implemented in software, as is shown in
As referenced above, an administrator, also referred to herein as an authorized user, may configure a rule set for use with the system 100 at a rule set configuration processor 140. A rule set includes one or more parameters, for example patient physiological or biometric parameters, which may have conditions associated with the respective parameters, and one or more responses.
Methods of creating, establishing, or receiving a rule set configuration 200 and 300 are shown in
As shown at steps 230, 325, the rule set configuration processor 140 is configured to optionally receive additional parameters, condition operators and/or condition values. If the administrator opts to enter additional parameters, conditions, and/or condition values, the administrator enters, and the rule set configuration processor 140 receives, a Boolean operator, for example including but not limited to AND, OR, NOT, etc. for connecting the multiple parameters, conditions, and/or condition values shown at steps 235, 330 and optionally additional parameters, conditions, and/or condition values as shown at steps 240, 245, 315, 320. As can be understood in view of
Once all of the parameters have been received, the rule set configuration processor 140 is configured to receive a first medical system response, as shown at steps 250, 335, entered by the administrator. The medical system responses may include the generation of an update to a central monitoring system, generation of a prompt to a caregiver requiring input from the caregiver, or an automated adjustment of a patient care device. For example, one such response might be to send a message to the caregiver suggesting an alternate form of treatments. Another such response is to send a signal to the medication delivery pump instructing it to pause an infusion or modify the rate of infusion, for example by decreasing it. Yet another response can include a call to the central memory to retrieve a different, previously entered, rule set and to implement that different rule set. The call can be based on the name of the different rule set that has previously been created and stored, and therefore has a name to use to refer to it within the call process. As shown in steps 255, 260, and 335, 340, a user may enter a plurality of responses. Once all conditions and responses have been received by the rule set configuration processor 140, the configuration process is complete and the rule set is then saved at steps 265, 345.
Flexibility in permitting authorized users to configure rule sets that incorporate a variety of parameters, conditions and responses can be achieved by using a context free grammar such as a Backus Naur Format (BNF) code. A partial listing of an exemplary BNF code for building the rule sets is listed in Appendix A, hereto.
In the exemplary grammar in Appendix A, variables, which are referred to herein as non-terminal symbols are shown in angled brackets < and >. (It should be noted that use of the <conditions> symbol in the exemplary grammar in Appendix A is not intended to have the same meaning as the term “conditions” as used within other portions of the specification.) Each non-terminal symbol can be comprised of a number of alternatives. The alternatives for the non-terminal symbol are listed after the: =sign and each alternative is separated by the | symbol. The alternatives may themselves be non-terminal symbols or they may be terminal symbols that are shown in quotes. The alternatives may also comprise both a non-terminal portion and a terminal portion. For the convenient reference, the convention of indicating non-terminal symbols in angled brackets and terminal symbols in quotes is used in the description herein. The exemplary grammar for constructing a rule is further described below.
The grammar in the example shown provides for an alarm integration algorithm that includes at least one algorithm name, one or more conditions, and one or more do statements that include one or more responses. The algorithm name, the conditions symbol and the responses symbol are all non-terminal symbols (as indicated in the grammar above by the fact that these terms are provided in angled brackets < and >) that can be satisfied by a plurality of alternatives that are provided for each of these non-terminal symbols. For the <algorithm name> symbol, the alternatives comprise a bracketed string of characters, which is a string of characters surrounded by square brackets [ ]. The <condition> symbol may be satisfied by a single condition alternative or more than one condition alternative. For the <condition> symbol, the condition symbol alternatives comprise alarm and equipment parameters and associated conditions. These condition symbol alternatives may have one or more non-terminal symbols. For example, the condition symbol alternatives in the above-described grammar have the non-terminal symbols <alarm>, <count>, <duration> and <device>. Alternatively, some of the condition alternatives may be terminal. For example, one such terminal parameter satisfying the <condition> symbol may be “power is lost.” The <alarm> symbol may be satisfied by either the entry of an <alarm-type>, which is non-terminal, followed by the text “alarm” or by the entry of an <alarm-type> followed by the text “alarm from” followed by a <device>. The <alarm-type> alternatives are all terminal alternatives, which are text entries as shown in the above grammar. The <alarm-type> alternatives may indicate the type of the alarm, e.g. “LOW_RESP_RATE” would indicate a low respiratory rate alarm.
The <count> symbol is satisfied by the alternatives “1 time” or <between-2-and-100> “times.” The <between-2-and-100> times symbol is satisfied by the integers “2” through “100”. The <duration> symbol is satisfied by a number of non-terminal symbols including <seconds>, <minutes>, <hours>, <minutes> <seconds>, <hours> <minutes> or <hours> <minutes> <seconds>. The <hours> symbol is satisfied by either “1 hour” or <between-2-and-24> followed by “hours” where <between-2-and-24> is satisfied by the integers “2” to “24”. The <minutes> symbol is satisfied by the alternatives “1 minute” or <between-2-and-59> followed by “minutes” where <between-2-and-59> is satisfied by the integers “2” to “59”. The <seconds> symbol is satisfied by either “1 second” or <between-2-and-59> followed by “seconds”.
The <device> symbol is satisfied by the symbol <device-manufacturer> followed by <device-model>, where both <device-manufacturer> and <device-model> are satisfied by bracketed strings.
The <responses> symbol is satisfied by either the <response> symbol or a <response> followed by a comma and the <responses> symbol, thereby enabling the <response> symbol to comprise either a single response or more than one response. The <response> symbol is satisfied by a plurality of response alternatives, which can include both terminal symbols and non-terminal symbols. As shown in the exemplary grammar, the response alternatives may include terminal symbol instructions such as an instruction to update the central monitor, an issuance of a remote notification, a decreasing of the infusion rate of a pump by a set percentage or a pausing of an infusion. Non-terminal symbols may include the response alternative of switching to <algorithm-name>, which would enable the response alternative of switching to another algorithm. As described above, the <algorithm-name> is comprised of a bracketed string of characters. Alternatively, some of the terminal responses described above could be structured as non-terminal responses. For example, the responses relating to decreasing the infusion rate could be structured as “DECREASE_INFUSION_RATE_BY” <percentage-change> “percent” where <percentage-change> is satisfied by the integers “1” to “99”.
An interface for creating rule sets is shown in
In another aspect of the invention, once an authorized user has constructed the rule set and stored that rule set on the rule set configuration processor 140 and/or the central memory 135, the rule set may be selected by a caregiver and used to monitor the patient and patient care equipment system 100. The rule sets may be cataloged, grouped, or cross-referenced in the central storage in a variety of ways, including but not limited to by patient type (for example, an adult versus a pediatric patient), drug name (for example, morphine) or drug type (for example, opiate, narcotic, antibiotic, or cardiac), or location or ward within the care facility, which is sometimes referred to as a clinical care area (CCA), (for example, intensive care unit or ICU versus Emergency). For example, the rule sets may be organized, named, or entitled by patient parameter, e.g. “Sleep Apnea,”; patient characteristic, e.g. “Pediatric”; monitored variables; infused drugs; estimated patient drug sensitivity based upon infusion history and patient age, weight, etc.; and/or history of invalid infusion pump alarms and/or actions.
As shown in
An example of a rule set configured to implement a series of new or different rule sets follows. In the case of PCA monitoring, three rule sets may be provided which respond to alarms associated with a patient's respiratory rate and ETCO2 level. The first rule includes the parameter that one of the two alarms must be active for a minimum of 30 seconds prior to an action (e.g., pausing drug infusion). The second rule has a more restrictive parameter in which both alarms must be active for a minimum of 30 seconds prior to an action. The third rule defines the parameter for an infusion pause as an active ETCO2 alarm for more than thirty seconds.
Although the clinician begins the PCA program using the first rule set, generation of two successive invalid pause events will lead to a change to the second rule at the time the second event is identified as invalid. This change could be automatic, in the case where the response specifies that the rule set be switched, or it could merely be suggested in the case where the rule set is configured to suggest to the caregiver that he or she switch rule sets. Similarly, if the two or more successive alarms are associated with only respiratory rate, the rule set could suggest through the pump interface that the clinician enable the third rule set. In this manner a series of rules sets are linked providing greater or lesser sensitivity to externally generated alarms. Suggestions for shifts between rule sets or changes to existing rule sets could also be generated to system administrators based on information acquired during the operation of the system.
An example of an application of a rule set in which a patient's recorded history of infusion events is used as a condition follows. To detect the potential for respiratory distress, a patient's respiratory rate and ETCO2 are assessed using a respiratory monitor and a caregiver sets limits to 3-60 breaths per minute or bpm and 8-60 mmHg respectively, beyond which an alarm will be produced. With the respiratory monitor configured, the rule set is implemented within one of the processors described herein to reduce the number of false positives by requiring an alarm to be present for a minimum of 30 seconds AND within N time constants of a bolus infusion of the medication associated with respiratory distress. In this context, N is generally set to one (1) but can be modified depending upon the patient's age, disease status, co-morbidities and/or other constraints. For example, in the case of morphine delivery to a patient with liver disease, the standard time constant related to drug action is increased due to the lower metabolizing of the liver. The time constant is set to a default value associated with each drug.
Alternately, a status variable can be defined representing the patient drug load. The status variable can be used, in conjunction with individual alarms and a probability function, to improve the detection of a drug-induced adverse event and more specifically, respiratory depression. The drug load is estimated through the relationship:
Drug Load=Background Infusion+Summation(Bolus Dose*(time since dose)/(drug half-life))
Alternately, a first-order approximation for the pharmacokinetic drug elimination is:
Drug Load=Background Infusion+Summation(Bolus Dose*exp(−(time since dose)*(elimination rate constant)))
Where the elimination rate constant is estimated by the ln(2)/(half life).
In the simplest case, the function is a pre-set limit common to the particular drug. However, alternate functions can be used as well, including a percentage increase over time, a percentage increase over a pre-set limit, a sudden change in the rate of drug load, or other constraints. As a further alternative, fuzzy logic may be used to map the drug load to “high” or “low” and thereby qualify the output of the second alarm system as “probable” or “improbable”. In the former situation, a rule set can be configured to create an alarm to a caregiver and to pause the delivery pump. In the latter situation, the rule set may be configured to only send an alarm to the caregiver.
In a further alternative, the drug load can be estimated as the mean drug consumption (MDC) over a period of time and used with the probability measures provided above.
In yet another example, the grammar disclosed above can be combined with both a drug infusion history for estimating the current patient drug load and the history of drug infusion requests. In particular, the demand to delivery ratio (D/D) and mean drug consumption (MDC) may be used as parameters in a rule set. A low MDC suggests alarms indicative of respiratory depression are likely invalid. However, when MDC is high, the D/D ratio is used to further qualify the drug infusion. When MDC is within 80% of maximum and D/D ratio is low (<1), the probability of a valid alarm event is likely. However, when the D/D ratio is high (>2), an indicator is provided suggesting the current pain medication is ineffective and therefore leading to high infusion rates and respiratory depression. Thus, both the calculated MDC and D/D ratio may be used in connection with respiratory rate as conditions in the rule set to provide further discrimination and decision support.
As mentioned herein, a response within a rule set can suggest or “recommend” to a caregiver to take certain actions related to the rule set and the parameters and conditions therein. For example, if a patient has not requested a PCA bolus for a twelve (12) hour period of time, the present system and method can be configured to allow an administrator or caregiver to configure a rule set to recommend to “change the therapy”. Thus, the parameter that the administrator or caregiver could select would be “PCA Bolus Requests”. The condition that the administrator or caregiver could select would be “None in 12 Hours”. Alternative configurations could include the parameter being “No PCA Bolus Requests” and the condition being “In 12 Hours”. Likewise, the response that the administrator or caregiver could select would be “Suggestion—Change Therapy [In View Of No PCA Bolus Requests In 12 Hours]”. Other examples come to mind in view of the present example and description. The caregiver may either respond on their own accord or based on the system-generated suggestion respond by reduce the basal rate of infusion or wean the patient off of PCA therapy.
In another example, if a patient's pain scores are high (e.g., greater than 8 on a 10 point scale) and the patient PCA requests are frequent (e.g. more than ten (10) PCA denied events in a 4 hour period) then the present system and method can be configured to allow an administrator or caregiver to configure a rule set to recommend to “change the medication”. Thus, the parameters that the administrator or caregiver could select would be “Average of Pain Scores” and “Denied PCA Bolus Requests”. The Boolean operator that the administrator or caregiver could select would be an “AND” between the two parameters. The conditions the caregiver would select are “greater than 8” for the “Average Pain Scores” parameter and “More than ten (10) PCA denied events in four (4) hours” for the “Denied PCA Bolus Requests” parameter. Alternative configurations are possible. The response that the administrator or caregiver could select would be “Suggestion—Change Medication”. Other examples come to mind in view of the present example and description. The caregiver may then, either on their own accord or based on the system-generated suggestion, respond by changing the medication. “Changing medication” can involve any one or a combination of the following: changing the program of the pump 130, changing to a different drug, or changing to a different drug concentration.
Any process descriptions or blocks in figures represented in the figures should be understood as representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process, and alternate implementations are included within the scope of the embodiments of the present invention in which functions may be executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those having ordinary skill in the art.
Because of the interconnection of the various processors within the system 100, rule sets can be created or selected in a variety of locations within the system. By way of example and not limitation, rule sets can be created, modified, and saved at any processor in the system that has sufficient processing capability and access to memory for storage. By way of example and not limitation, rule sets can be selected on the patient monitor 120, on the pump or medication delivery device 130, on the patient monitor interface and rule set processor 125 or any combination thereof. The patient monitor interface and rule set processor 125 can be a communications engine located on the pump 130, on the patient monitor 120, on a separate module or shared between such components.
While the specific embodiments have been illustrated and described, numerous modifications come to mind without significantly departing from the invention. The scope of protection is only limited by the scope of the accompanying claims.
One exemplary simple rule according to the grammar is listed below.
Another such more complicated exemplary rule set that has several parameters as well as several responses according to the grammar listed below.
This application is a continuation of U.S. patent application Ser. No. 15/467,903, filed Mar. 23, 2017, now U.S. Pat. No. 10,238,801, which is a continuation of U.S. patent application Ser. No. 13/586,615, filed Aug. 15, 2012, now U.S. Pat. No. 9,604,000, which is a divisional of U.S. patent application Ser. No. 12/761,107, filed on Apr. 15, 2010, now U.S. Pat. No. 8,271,106, which claims the benefit of priority to U.S. Ser. No. 61/170,205 filed on Apr. 17, 2009. The foregoing applications are all hereby incorporated by reference in their entireties for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4024864 | Davies et al. | May 1977 | A |
4055175 | Clemens et al. | Oct 1977 | A |
4151845 | Clemens | May 1979 | A |
4213454 | Shim | Jul 1980 | A |
4240438 | Updike et al. | Dec 1980 | A |
4280494 | Cosgrove et al. | Jul 1981 | A |
4308866 | Jeliffe | Jan 1982 | A |
4370983 | Lichtenstein et al. | Feb 1983 | A |
4373527 | Fischell | Feb 1983 | A |
4392849 | Petre et al. | Jul 1983 | A |
4395259 | Prestele et al. | Jul 1983 | A |
4457751 | Rodler | Jul 1984 | A |
4464170 | Clemens | Aug 1984 | A |
4469481 | Kobayashi | Sep 1984 | A |
4475901 | Kraegen et al. | Oct 1984 | A |
4494950 | Fischell | Jan 1985 | A |
4498843 | Schneider et al. | Feb 1985 | A |
4515584 | Abe et al. | May 1985 | A |
4526568 | Clemens et al. | Jul 1985 | A |
4529401 | Leslie et al. | Jul 1985 | A |
4543955 | Schroeppel | Oct 1985 | A |
4551133 | Zegers de Beyl et al. | Nov 1985 | A |
4553958 | LeCocq | Nov 1985 | A |
4559037 | Franetzki et al. | Dec 1985 | A |
4613937 | Batty | Sep 1986 | A |
4624661 | Arimond | Nov 1986 | A |
4633878 | Bombardieri | Jan 1987 | A |
4634426 | kamen | Jan 1987 | A |
4634427 | Hannula et al. | Jan 1987 | A |
4674652 | Aten et al. | Jun 1987 | A |
4676776 | Howson et al. | Jun 1987 | A |
4679562 | Luksha | Jul 1987 | A |
4685903 | Cable et al. | Aug 1987 | A |
4695954 | Rose | Sep 1987 | A |
4696671 | Epstein et al. | Sep 1987 | A |
4714462 | DiDomenico | Dec 1987 | A |
4722734 | Kolin | Feb 1988 | A |
4731051 | Fischell | Mar 1988 | A |
4741732 | Crankshaw et al. | May 1988 | A |
4756706 | Kerns et al. | Jul 1988 | A |
4776842 | Franetzki et al. | Oct 1988 | A |
4785969 | McLaughlin | Nov 1988 | A |
4803625 | Fu et al. | Feb 1989 | A |
4835372 | Gombrich et al. | May 1989 | A |
4838275 | Lee | Jun 1989 | A |
4838856 | Mulreany et al. | Jun 1989 | A |
4838857 | Strowe et al. | Jun 1989 | A |
4854324 | Hirschman et al. | Aug 1989 | A |
4857716 | Gombrich et al. | Aug 1989 | A |
4858154 | Anderson et al. | Aug 1989 | A |
4898578 | Rubalcaba, Jr. | Feb 1990 | A |
4908017 | Howson et al. | Mar 1990 | A |
4933873 | Kaufman et al. | Jun 1990 | A |
4943279 | Samiotes et al. | Jul 1990 | A |
4946439 | Eggers | Aug 1990 | A |
4953745 | Rowlett | Sep 1990 | A |
4978335 | Arthur, III | Dec 1990 | A |
5000739 | Kulisz et al. | Mar 1991 | A |
5010473 | Jacobs | Apr 1991 | A |
5014698 | Cohen | May 1991 | A |
5016172 | Dessertine | May 1991 | A |
5026084 | Paisfield | Jun 1991 | A |
5034004 | Crankshaw | Jul 1991 | A |
5041086 | Koenig et al. | Aug 1991 | A |
5058161 | Weiss | Oct 1991 | A |
5078683 | Sancoff et al. | Jan 1992 | A |
5084828 | Kaufman et al. | Jan 1992 | A |
5088981 | Howson et al. | Feb 1992 | A |
5097505 | Weiss | Mar 1992 | A |
5100380 | Epstein et al. | Mar 1992 | A |
5102392 | Sakai et al. | Apr 1992 | A |
5104374 | Bishko et al. | Apr 1992 | A |
5109850 | Blanco et al. | May 1992 | A |
5131816 | Brown | Jul 1992 | A |
5142484 | Kaufman et al. | Aug 1992 | A |
5153827 | Coutre et al. | Oct 1992 | A |
5157640 | Backner | Oct 1992 | A |
5161222 | Montejo et al. | Nov 1992 | A |
5177993 | Beckman et al. | Jan 1993 | A |
5181910 | Scanlon | Jan 1993 | A |
5190522 | Wocicki et al. | Mar 1993 | A |
5199439 | Zimmerman et al. | Apr 1993 | A |
5200891 | Kehr et al. | Apr 1993 | A |
5216597 | Beckers | Jun 1993 | A |
5221268 | Barton et al. | Jun 1993 | A |
5230061 | Welch | Jul 1993 | A |
5243982 | Möstl et al. | Sep 1993 | A |
5244463 | Cordner, Jr. et al. | Sep 1993 | A |
5249260 | Nigawara et al. | Sep 1993 | A |
5256156 | Kern et al. | Oct 1993 | A |
5256157 | Samiotes et al. | Oct 1993 | A |
5261702 | Mayfield | Nov 1993 | A |
5317506 | Coutre et al. | May 1994 | A |
5319355 | Russek | Jun 1994 | A |
5319363 | Welch et al. | Jun 1994 | A |
5330634 | Wong et al. | Jul 1994 | A |
5338157 | Blomquist | Aug 1994 | A |
5341476 | Lowell | Aug 1994 | A |
5364346 | Schrezenmeir | Nov 1994 | A |
5366346 | Danby | Nov 1994 | A |
5368562 | Blomquist et al. | Nov 1994 | A |
5373454 | Kanda et al. | Dec 1994 | A |
5376070 | Purvis et al. | Dec 1994 | A |
5378231 | Johnson et al. | Jan 1995 | A |
5389071 | Kawahara et al. | Feb 1995 | A |
5389078 | Zalesky et al. | Feb 1995 | A |
5417222 | Dempsey et al. | May 1995 | A |
5423748 | Uhala | Jun 1995 | A |
5429602 | Hauser | Jul 1995 | A |
5431627 | Pastrone et al. | Jul 1995 | A |
5432777 | Le Boudec et al. | Jul 1995 | A |
5445621 | Poli et al. | Aug 1995 | A |
5447164 | Shaya et al. | Sep 1995 | A |
5455851 | Chaco et al. | Oct 1995 | A |
5461365 | Schlager et al. | Oct 1995 | A |
5464392 | Epstein et al. | Nov 1995 | A |
5465082 | Chaco | Nov 1995 | A |
5485408 | Blomquist | Jan 1996 | A |
5486286 | Peterson et al. | Jan 1996 | A |
5493430 | Lu et al. | Feb 1996 | A |
5496273 | Pastrone et al. | Mar 1996 | A |
5505828 | Wong et al. | Apr 1996 | A |
5507288 | Bocker et al. | Apr 1996 | A |
5507786 | Morgan et al. | Apr 1996 | A |
5508499 | Ferrario | Apr 1996 | A |
5515713 | Saugues et al. | May 1996 | A |
5520637 | Pager et al. | May 1996 | A |
5522798 | Johnson et al. | Jun 1996 | A |
5547470 | Johnson et al. | Aug 1996 | A |
5554013 | Owens et al. | Sep 1996 | A |
5562615 | Nassif | Oct 1996 | A |
5577169 | Prezioso | Nov 1996 | A |
5582323 | Kurtenbach | Dec 1996 | A |
5582593 | Hultman | Dec 1996 | A |
5594786 | Chaco et al. | Jan 1997 | A |
5598519 | Narayanan | Jan 1997 | A |
5620608 | Rosa et al. | Apr 1997 | A |
5630710 | Tune et al. | May 1997 | A |
5636044 | Yuan et al. | Jun 1997 | A |
5643212 | Coutre et al. | Jul 1997 | A |
5651775 | Walker et al. | Jul 1997 | A |
5658131 | Aoki et al. | Aug 1997 | A |
5658250 | Blomquist et al. | Aug 1997 | A |
5665065 | Colman et al. | Sep 1997 | A |
5669877 | Blomquist | Sep 1997 | A |
5672154 | Sillén et al. | Sep 1997 | A |
5681285 | Ford et al. | Oct 1997 | A |
5685844 | Marttila | Nov 1997 | A |
5687717 | Halpern et al. | Nov 1997 | A |
5689229 | Chaco et al. | Nov 1997 | A |
5697899 | Hillman et al. | Dec 1997 | A |
5699509 | Gary et al. | Dec 1997 | A |
5713856 | Eggers et al. | Feb 1998 | A |
5718562 | Lawless et al. | Feb 1998 | A |
5719761 | Gatti et al. | Feb 1998 | A |
5733259 | Valcke et al. | Mar 1998 | A |
5738102 | Lemelson | Apr 1998 | A |
5744027 | Connell et al. | Apr 1998 | A |
5752621 | Passamante | May 1998 | A |
5754111 | Garcia | May 1998 | A |
5764034 | Bowman et al. | Jun 1998 | A |
5764159 | Neftel et al. | Jun 1998 | A |
5772635 | Dastur et al. | Jun 1998 | A |
5774865 | Glynn | Jun 1998 | A |
5778256 | Darbee | Jul 1998 | A |
5778345 | McCartney | Jul 1998 | A |
5781442 | Engleson et al. | Jul 1998 | A |
5782805 | Meinzer et al. | Jul 1998 | A |
5788669 | Peterson | Aug 1998 | A |
5797515 | Liff et al. | Aug 1998 | A |
5800387 | Duffy et al. | Sep 1998 | A |
5814015 | Gargano et al. | Sep 1998 | A |
5822544 | Chaco et al. | Oct 1998 | A |
5822715 | Worthington et al. | Oct 1998 | A |
5827179 | Lichter et al. | Oct 1998 | A |
5832448 | Brown | Nov 1998 | A |
5836910 | Duffy et al. | Nov 1998 | A |
5850344 | Conkright | Dec 1998 | A |
5867821 | Ballantyne et al. | Feb 1999 | A |
5870733 | Bass et al. | Feb 1999 | A |
5871465 | Vasko | Feb 1999 | A |
5873731 | Predergast | Feb 1999 | A |
5885245 | Lynch et al. | Mar 1999 | A |
5897493 | Brown | Apr 1999 | A |
5897498 | Canfield, II et al. | Apr 1999 | A |
5910252 | Truitt et al. | Jun 1999 | A |
5912818 | McGrady et al. | Jun 1999 | A |
5915240 | Karpf | Jun 1999 | A |
5920054 | Uber, III | Jul 1999 | A |
5920263 | Huttenhoff et al. | Jul 1999 | A |
5924074 | Evans | Jul 1999 | A |
5931764 | Freeman et al. | Aug 1999 | A |
5935099 | Peterson et al. | Aug 1999 | A |
5935106 | Olsen | Aug 1999 | A |
5941846 | Duffy et al. | Aug 1999 | A |
5956501 | Brown | Sep 1999 | A |
5957885 | Bollish et al. | Sep 1999 | A |
5960085 | de la Huerga | Sep 1999 | A |
5961448 | Swenson et al. | Oct 1999 | A |
5967559 | Abramowitz | Oct 1999 | A |
5971594 | Sahai et al. | Oct 1999 | A |
5975081 | Hood et al. | Nov 1999 | A |
5990838 | Burns et al. | Nov 1999 | A |
5997476 | Brown | Dec 1999 | A |
6000828 | Leet | Dec 1999 | A |
6003006 | Colella et al. | Dec 1999 | A |
6012034 | Hamparian et al. | Jan 2000 | A |
6017318 | Gauthier et al. | Jan 2000 | A |
6021392 | Lester et al. | Feb 2000 | A |
6024539 | Blomquist | Feb 2000 | A |
6032155 | de la Huerga | Feb 2000 | A |
6032676 | Moore | Mar 2000 | A |
6073106 | Rozen et al. | Jun 2000 | A |
6104295 | Gaisser et al. | Aug 2000 | A |
6112182 | Akers et al. | Aug 2000 | A |
RE36871 | Epstein et al. | Sep 2000 | E |
6115390 | Chuah | Sep 2000 | A |
6122536 | Sun et al. | Sep 2000 | A |
6126637 | Kriesel et al. | Oct 2000 | A |
6135949 | Russo et al. | Oct 2000 | A |
6150942 | O'Brien | Nov 2000 | A |
6151643 | Cheng et al. | Nov 2000 | A |
6157914 | Seto et al. | Dec 2000 | A |
6159147 | Lichter et al. | Dec 2000 | A |
6167567 | Chiles et al. | Dec 2000 | A |
6182667 | Hanks et al. | Feb 2001 | B1 |
6189105 | Lopes | Feb 2001 | B1 |
6195589 | Ketcham | Feb 2001 | B1 |
6208974 | Campbell et al. | Mar 2001 | B1 |
6222323 | Yamashita et al. | Apr 2001 | B1 |
6223440 | Rashman | May 2001 | B1 |
6226277 | Chuah | May 2001 | B1 |
6227371 | Song | May 2001 | B1 |
6234176 | Domae et al. | May 2001 | B1 |
6241704 | Peterson et al. | Jun 2001 | B1 |
6248067 | Causey, III et al. | Jun 2001 | B1 |
6249705 | Snell | Jun 2001 | B1 |
6257265 | Brunner et al. | Jul 2001 | B1 |
6259355 | Chaco et al. | Jul 2001 | B1 |
6269340 | Ford et al. | Jul 2001 | B1 |
6270455 | Brown | Aug 2001 | B1 |
6271813 | Palalau | Aug 2001 | B1 |
6277072 | Bardy | Aug 2001 | B1 |
6280380 | Bardy | Aug 2001 | B1 |
6283761 | Joao | Sep 2001 | B1 |
6285665 | Chuah | Sep 2001 | B1 |
6292860 | Cochcroft, Jr. | Sep 2001 | B1 |
6312378 | Bardy | Nov 2001 | B1 |
6327254 | Chuah | Dec 2001 | B1 |
6330008 | Razdow et al. | Dec 2001 | B1 |
6339718 | Zatezalo et al. | Jan 2002 | B1 |
6346886 | de la Huerga | Feb 2002 | B1 |
6363282 | Nichols et al. | Mar 2002 | B1 |
6371719 | Hildebrandt | Apr 2002 | B1 |
6377548 | Chuah | Apr 2002 | B1 |
6388951 | Matsumoto et al. | May 2002 | B1 |
6406426 | Reuss et al. | Jun 2002 | B1 |
6408330 | de la Huerga | Jun 2002 | B1 |
6418334 | Unger et al. | Jul 2002 | B1 |
6427088 | Bowman et al. | Jul 2002 | B1 |
6428483 | Carlebach | Aug 2002 | B1 |
6442432 | Lee | Aug 2002 | B2 |
6469991 | Chuah | Oct 2002 | B1 |
6475180 | Peterson et al. | Nov 2002 | B2 |
6482158 | Mault | Nov 2002 | B2 |
6485418 | Yasushi et al. | Nov 2002 | B2 |
6494694 | Lawless et al. | Dec 2002 | B2 |
6494831 | Koritzinsky | Dec 2002 | B1 |
6497680 | Holst et al. | Dec 2002 | B1 |
6514460 | Fendrock | Feb 2003 | B1 |
6517482 | Eiden et al. | Feb 2003 | B1 |
6519569 | White et al. | Feb 2003 | B1 |
6520930 | Critchlow et al. | Feb 2003 | B2 |
6540672 | Simonsen et al. | Apr 2003 | B1 |
6542902 | Dulong et al. | Apr 2003 | B2 |
6544212 | Galley et al. | Apr 2003 | B2 |
6544228 | Heitmeier | Apr 2003 | B1 |
6546350 | Hartmann et al. | Apr 2003 | B1 |
6551276 | Mann et al. | Apr 2003 | B1 |
6554798 | Mann et al. | Apr 2003 | B1 |
6558320 | Causey et al. | May 2003 | B1 |
6558351 | Steil et al. | May 2003 | B1 |
6565509 | Say et al. | May 2003 | B1 |
6567416 | Chuah | May 2003 | B1 |
6571294 | Simmon et al. | May 2003 | B2 |
6572542 | Houben et al. | Jun 2003 | B1 |
6572545 | Knobbe et al. | Jun 2003 | B2 |
6578002 | Derzay et al. | Jun 2003 | B1 |
6581117 | Klein et al. | Jun 2003 | B1 |
6587034 | Heiman et al. | Jul 2003 | B1 |
6589229 | Connelly et al. | Jul 2003 | B1 |
6599281 | Struys et al. | Jul 2003 | B1 |
6602191 | Quy | Aug 2003 | B2 |
6605072 | Struys et al. | Aug 2003 | B2 |
6628809 | Rowe et al. | Sep 2003 | B1 |
6631353 | Davis et al. | Oct 2003 | B1 |
6640246 | Gardy, Jr. et al. | Oct 2003 | B1 |
6641533 | Causey, III et al. | Nov 2003 | B2 |
6647299 | Bourget | Nov 2003 | B2 |
6652455 | Kocher | Nov 2003 | B1 |
6653937 | Nelson et al. | Nov 2003 | B2 |
6659947 | Carter et al. | Dec 2003 | B1 |
6669630 | Joliat et al. | Dec 2003 | B1 |
6671563 | Engleson et al. | Dec 2003 | B1 |
6673033 | Sciulli et al. | Jan 2004 | B1 |
6674403 | Gray et al. | Jan 2004 | B2 |
6681003 | Linder et al. | Jan 2004 | B2 |
6689091 | Bui et al. | Feb 2004 | B2 |
6692241 | Watanabe et al. | Feb 2004 | B2 |
6694191 | Starkweather et al. | Feb 2004 | B2 |
6694334 | DuLong et al. | Feb 2004 | B2 |
6721286 | Williams et al. | Apr 2004 | B1 |
6721582 | Trepagnier et al. | Apr 2004 | B2 |
6725200 | Rost | Apr 2004 | B1 |
6731989 | Engleson et al. | May 2004 | B2 |
6740072 | Starkweather et al. | May 2004 | B2 |
6751651 | Crockett | Jun 2004 | B2 |
6752787 | Causey, III et al. | Jun 2004 | B1 |
6753830 | Gelbman | Jun 2004 | B2 |
6758810 | Lebel et al. | Jul 2004 | B2 |
6773396 | Flach et al. | Aug 2004 | B2 |
6774786 | Havekost et al. | Aug 2004 | B1 |
6775577 | Cmkovich et al. | Aug 2004 | B2 |
6780156 | Haueter et al. | Aug 2004 | B2 |
6790198 | White et al. | Sep 2004 | B1 |
6796956 | Hartlaub et al. | Sep 2004 | B2 |
6799149 | Hartlaub | Sep 2004 | B2 |
6809653 | Mann et al. | Oct 2004 | B1 |
6811534 | Bowman, IV et al. | Nov 2004 | B2 |
6816605 | Rowe et al. | Nov 2004 | B2 |
6839753 | Biondi et al. | Jan 2005 | B2 |
6852104 | Blomquist | Feb 2005 | B2 |
6859134 | Heiman et al. | Feb 2005 | B1 |
6871211 | Labounty et al. | Mar 2005 | B2 |
6873268 | Lebel et al. | Mar 2005 | B2 |
6876303 | Reeder et al. | Apr 2005 | B2 |
6885881 | Leonhardt | Apr 2005 | B2 |
6891525 | Ogoro | May 2005 | B2 |
6899695 | Herrera | May 2005 | B2 |
6915170 | Engleson et al. | Jul 2005 | B2 |
6923763 | Kovatchev et al. | Aug 2005 | B1 |
6924781 | Gelbman | Aug 2005 | B1 |
6928338 | Buchser et al. | Aug 2005 | B1 |
6936029 | Mann et al. | Aug 2005 | B2 |
6945954 | Hochman et al. | Sep 2005 | B2 |
6948492 | Wemeling et al. | Sep 2005 | B2 |
6958677 | Carter | Oct 2005 | B1 |
6958691 | Anderson et al. | Oct 2005 | B1 |
6958705 | Lebel et al. | Oct 2005 | B2 |
6961448 | Nichols et al. | Nov 2005 | B2 |
6969352 | Chiang et al. | Nov 2005 | B2 |
6969865 | Duchon et al. | Nov 2005 | B2 |
6974437 | Lebel et al. | Dec 2005 | B2 |
6979326 | Mann et al. | Dec 2005 | B2 |
6985870 | Martucci et al. | Jan 2006 | B2 |
6986347 | Hickle | Jan 2006 | B2 |
6997880 | Carlebach et al. | Feb 2006 | B2 |
6997920 | Mann et al. | Feb 2006 | B2 |
6998984 | Zittrain | Feb 2006 | B1 |
7017293 | Riley | Mar 2006 | B2 |
7025743 | Mann et al. | Apr 2006 | B2 |
7029455 | Flaherty | Apr 2006 | B2 |
7038584 | Carter | May 2006 | B2 |
7060031 | Webb et al. | Jun 2006 | B2 |
7060059 | Keith et al. | Jun 2006 | B2 |
7069552 | Lindberg et al. | Jun 2006 | B2 |
7072725 | Bristol et al. | Jul 2006 | B2 |
7079035 | Bock et al. | Jul 2006 | B2 |
7092943 | Roese et al. | Aug 2006 | B2 |
7096072 | Engleson et al. | Aug 2006 | B2 |
7099809 | Dori | Aug 2006 | B2 |
7103419 | Engleson et al. | Sep 2006 | B2 |
7103578 | Beck et al. | Sep 2006 | B2 |
7107106 | Engleson et al. | Sep 2006 | B2 |
7108680 | Rohr et al. | Sep 2006 | B2 |
7109878 | Mann et al. | Sep 2006 | B2 |
7117041 | Engleson et al. | Oct 2006 | B2 |
7136645 | Hanson et al. | Nov 2006 | B2 |
7137964 | Flaherty | Nov 2006 | B2 |
7142190 | Martinez | Nov 2006 | B2 |
7150741 | Erickson et al. | Dec 2006 | B2 |
7153289 | Vasko | Dec 2006 | B2 |
7154397 | Zerhusen et al. | Dec 2006 | B2 |
7156807 | Carter et al. | Jan 2007 | B2 |
7161484 | Tsoukalis et al. | Jan 2007 | B2 |
7167755 | Seeberger et al. | Jan 2007 | B2 |
7167920 | Traversat | Jan 2007 | B2 |
7171277 | Engleson et al. | Jan 2007 | B2 |
7171492 | Borella et al. | Jan 2007 | B1 |
7181493 | English et al. | Feb 2007 | B2 |
7185288 | McKeever | Feb 2007 | B2 |
7193514 | Ritson | Mar 2007 | B2 |
7197025 | Chuah | Mar 2007 | B2 |
7201734 | Hickle | Apr 2007 | B2 |
7204823 | Estes et al. | Apr 2007 | B2 |
7213009 | Pestotnik | May 2007 | B2 |
7216802 | de la Huerga | May 2007 | B1 |
7220240 | Struys et al. | May 2007 | B2 |
7224979 | Singhal et al. | May 2007 | B2 |
7229430 | Hickle et al. | Jun 2007 | B2 |
7230529 | Ketcherside | Jun 2007 | B2 |
7236936 | White et al. | Jun 2007 | B2 |
7238164 | Childers et al. | Jul 2007 | B2 |
7247154 | Hickle | Jul 2007 | B2 |
7248239 | Dowling | Jul 2007 | B2 |
7250856 | Havekost et al. | Jul 2007 | B2 |
7255683 | Vanderveen et al. | Aug 2007 | B2 |
7256888 | Staehr et al. | Aug 2007 | B2 |
7258534 | Fathallah et al. | Aug 2007 | B2 |
7263213 | Rowe | Aug 2007 | B2 |
7267664 | Rizzo | Sep 2007 | B2 |
7267665 | Steil et al. | Sep 2007 | B2 |
7275156 | Balfanz et al. | Sep 2007 | B2 |
7278983 | Ireland et al. | Oct 2007 | B2 |
7289815 | Gfeller et al. | Oct 2007 | B2 |
7289948 | Mohri | Oct 2007 | B1 |
7293107 | Hanson et al. | Nov 2007 | B1 |
7295119 | Rappaport et al. | Nov 2007 | B2 |
7295556 | Roese et al. | Nov 2007 | B2 |
7301451 | Hastings | Nov 2007 | B2 |
7308300 | Toews et al. | Dec 2007 | B2 |
7315825 | Rosenfeld et al. | Jan 2008 | B2 |
7319386 | Collins, Jr. et al. | Jan 2008 | B2 |
7324000 | Zittrain et al. | Jan 2008 | B2 |
7327705 | Fletcher et al. | Feb 2008 | B2 |
7343224 | DiGianfilippo et al. | Mar 2008 | B2 |
7346025 | Bryson | Mar 2008 | B2 |
7347836 | Peterson et al. | Mar 2008 | B2 |
7354420 | Steil et al. | Apr 2008 | B2 |
7369897 | Boveja et al. | May 2008 | B2 |
7369948 | Ferenczi et al. | May 2008 | B1 |
7383088 | Spinelli et al. | Jun 2008 | B2 |
7384410 | Eggers et al. | Jun 2008 | B2 |
7398183 | Holland et al. | Jul 2008 | B2 |
7399277 | Saidara et al. | Jul 2008 | B2 |
7402153 | Steil et al. | Jul 2008 | B2 |
7420472 | Tran | Sep 2008 | B2 |
7432807 | Schmitt | Oct 2008 | B2 |
7447643 | Olson | Nov 2008 | B1 |
7454314 | Holland et al. | Nov 2008 | B2 |
7457804 | Uber, III et al. | Nov 2008 | B2 |
7464040 | Joao | Dec 2008 | B2 |
7471994 | Ford et al. | Dec 2008 | B2 |
7483756 | Engleson et al. | Jan 2009 | B2 |
7489808 | Gerder | Feb 2009 | B2 |
7490021 | Holland et al. | Feb 2009 | B2 |
7490048 | Joao | Feb 2009 | B2 |
7491187 | Van Den Berghe et al. | Feb 2009 | B2 |
7523401 | Aldridge | Apr 2009 | B1 |
7524304 | Genosar | Apr 2009 | B2 |
7551078 | Carlson | Jun 2009 | B2 |
7559321 | Wermeling et al. | Jul 2009 | B2 |
7565197 | Haulbrich et al. | Jul 2009 | B2 |
7572230 | Neumann et al. | Aug 2009 | B2 |
7578802 | Hickle | Aug 2009 | B2 |
7621009 | Elhabashy | Nov 2009 | B2 |
D606533 | De Jong et al. | Dec 2009 | S |
7636718 | Steen et al. | Dec 2009 | B1 |
7640172 | Kuth | Dec 2009 | B2 |
7645258 | White et al. | Jan 2010 | B2 |
7647237 | Malave et al. | Jan 2010 | B2 |
7662124 | Duchon et al. | Feb 2010 | B2 |
7668731 | Martucci et al. | Feb 2010 | B2 |
7671733 | McNeal et al. | Mar 2010 | B2 |
7678071 | Lebel et al. | Mar 2010 | B2 |
7687678 | Jacobs | Mar 2010 | B2 |
7697994 | VanDanacker et al. | Apr 2010 | B2 |
7698239 | Lieuallen | Apr 2010 | B2 |
7705727 | Pestotnik | Apr 2010 | B2 |
7724147 | Brown et al. | May 2010 | B2 |
7739126 | Cave | Jun 2010 | B1 |
7746218 | Collins, Jr. | Jun 2010 | B2 |
7766873 | Moberg et al. | Aug 2010 | B2 |
7776029 | Whitehurst et al. | Aug 2010 | B2 |
7776031 | Hartlaub et al. | Aug 2010 | B2 |
7785313 | Mastrototaro | Aug 2010 | B2 |
7806852 | Jurson | Oct 2010 | B1 |
7806886 | Kanderian, Jr. et al. | Oct 2010 | B2 |
7826981 | Goode, Jr. et al. | Nov 2010 | B2 |
7835927 | Schlotterbeck et al. | Nov 2010 | B2 |
7836314 | Chieu | Nov 2010 | B2 |
7856276 | Ripart et al. | Dec 2010 | B2 |
7860583 | Condurso et al. | Dec 2010 | B2 |
7868754 | Salvat, Jr. | Jan 2011 | B2 |
7871394 | Halbert et al. | Jan 2011 | B2 |
7886231 | Hopermann et al. | Feb 2011 | B2 |
7895053 | Holland et al. | Feb 2011 | B2 |
7896842 | Palmroos et al. | Mar 2011 | B2 |
7899546 | Sieracki et al. | Mar 2011 | B2 |
7905710 | Wang et al. | Mar 2011 | B2 |
7920061 | Klein et al. | Apr 2011 | B2 |
7933780 | de la Huerga | Apr 2011 | B2 |
7938796 | Moubayed | May 2011 | B2 |
7945452 | Fathallah et al. | May 2011 | B2 |
7974714 | Hoffberg | Jul 2011 | B2 |
7996241 | Zak | Aug 2011 | B2 |
8034026 | Grant | Oct 2011 | B2 |
8038593 | Friedman et al. | Oct 2011 | B2 |
8048040 | Kiani | Nov 2011 | B2 |
8060576 | Chan et al. | Nov 2011 | B2 |
8065161 | Howard et al. | Nov 2011 | B2 |
8066672 | Mandro | Nov 2011 | B2 |
8078983 | Davis et al. | Dec 2011 | B2 |
8082018 | Duchon et al. | Dec 2011 | B2 |
8082312 | Chan et al. | Dec 2011 | B2 |
8147448 | Sundar et al. | Apr 2012 | B2 |
8149131 | Blornquist | Apr 2012 | B2 |
8169914 | Bajpai | May 2012 | B2 |
8171094 | Chan et al. | May 2012 | B2 |
8172798 | Hungerford et al. | May 2012 | B2 |
8185322 | Schroeder et al. | May 2012 | B2 |
8195478 | Petersen et al. | Jun 2012 | B2 |
8206350 | Mann et al. | Jun 2012 | B2 |
8219413 | Martinez et al. | Jul 2012 | B2 |
8231578 | Fathallah et al. | Jul 2012 | B2 |
8234128 | Martucci et al. | Jul 2012 | B2 |
8267892 | Spencer et al. | Sep 2012 | B2 |
8271106 | Wehba et al. | Sep 2012 | B2 |
8287495 | Michaud et al. | Oct 2012 | B2 |
8291337 | Gannin et al. | Oct 2012 | B2 |
8298184 | DiPerna et al. | Oct 2012 | B2 |
8352290 | Bartz et al. | Jan 2013 | B2 |
8359338 | Butterfield et al. | Jan 2013 | B2 |
8380536 | Howard et al. | Feb 2013 | B2 |
8387112 | Ranjan et al. | Feb 2013 | B1 |
8394077 | Jacobson et al. | Mar 2013 | B2 |
8403908 | Jacobson et al. | Mar 2013 | B2 |
8435206 | Evans et al. | May 2013 | B2 |
8449523 | Brukalo et al. | May 2013 | B2 |
8452953 | Buck et al. | May 2013 | B2 |
8453645 | Figueiredo et al. | Jun 2013 | B2 |
8480648 | Burnett et al. | Jul 2013 | B2 |
8494879 | Davis et al. | Jul 2013 | B2 |
8504179 | Blomquist | Aug 2013 | B2 |
8517990 | Teel et al. | Aug 2013 | B2 |
8518021 | Stewart et al. | Aug 2013 | B2 |
8543416 | Palmroos et al. | Sep 2013 | B2 |
8551038 | Tsoukalis et al. | Oct 2013 | B2 |
8560345 | Wehba et al. | Oct 2013 | B2 |
8577692 | Silkaitis et al. | Nov 2013 | B2 |
8579884 | Lanier et al. | Nov 2013 | B2 |
8655676 | Wehba et al. | Feb 2014 | B2 |
8660860 | Wehba et al. | Feb 2014 | B2 |
8662388 | Belkin | Mar 2014 | B2 |
8666769 | Butler et al. | Mar 2014 | B2 |
8700421 | Feng et al. | Apr 2014 | B2 |
8731960 | Butler et al. | May 2014 | B2 |
8768719 | Wehba et al. | Jul 2014 | B2 |
8771251 | Ruchti et al. | Jul 2014 | B2 |
8777894 | Butterfield et al. | Jul 2014 | B2 |
8777895 | Hsu et al. | Jul 2014 | B2 |
8799012 | Butler et al. | Aug 2014 | B2 |
8876793 | Ledford et al. | Nov 2014 | B2 |
8922330 | Moberg et al. | Dec 2014 | B2 |
8936565 | Chawla | Jan 2015 | B2 |
8952794 | Bloomquist et al. | Feb 2015 | B2 |
8998100 | Halbert et al. | Apr 2015 | B2 |
9026370 | Rubalcaba et al. | May 2015 | B2 |
9069887 | Gupta et al. | Jun 2015 | B2 |
9089642 | Murphy et al. | Jul 2015 | B2 |
9114217 | Sur et al. | Aug 2015 | B2 |
9123077 | Silkaitis et al. | Sep 2015 | B2 |
9192712 | DeBelser et al. | Nov 2015 | B2 |
9240002 | Hume et al. | Jan 2016 | B2 |
9381296 | Arrizza et al. | Jul 2016 | B2 |
9393362 | Cozmi et al. | Jul 2016 | B2 |
9498583 | Sur et al. | Nov 2016 | B2 |
9539383 | Kohlbrecher | Jan 2017 | B2 |
9572923 | Howard et al. | Feb 2017 | B2 |
9594875 | Arrizza et al. | Mar 2017 | B2 |
9604000 | Wehba et al. | Mar 2017 | B2 |
9641432 | Jha et al. | May 2017 | B2 |
9649431 | Gray et al. | May 2017 | B2 |
9662436 | Belkin et al. | May 2017 | B2 |
9690909 | Stewart et al. | Jun 2017 | B2 |
9707341 | Dumas, III et al. | Jul 2017 | B2 |
9724470 | Day et al. | Aug 2017 | B2 |
9764082 | Day et al. | Sep 2017 | B2 |
9971871 | Arrizza et al. | May 2018 | B2 |
9995611 | Ruchti et al. | Jun 2018 | B2 |
10022498 | Ruchti et al. | Jul 2018 | B2 |
10042986 | Ruchti et al. | Aug 2018 | B2 |
10046112 | Oruklu et al. | Aug 2018 | B2 |
10238799 | Kohlbrecher | Mar 2019 | B2 |
10238801 | Wehba et al. | Mar 2019 | B2 |
10242060 | Butler et al. | Mar 2019 | B2 |
20010016056 | Westphal et al. | Aug 2001 | A1 |
20010031944 | Peterson et al. | Oct 2001 | A1 |
20010032099 | Joao | Oct 2001 | A1 |
20010037060 | Thompson et al. | Nov 2001 | A1 |
20010044731 | Coffman et al. | Nov 2001 | A1 |
20010051787 | Haller et al. | Dec 2001 | A1 |
20010056358 | Dulong et al. | Dec 2001 | A1 |
20020010595 | Kapp | Jan 2002 | A1 |
20020013723 | Mise | Jan 2002 | A1 |
20020015018 | Shimazu et al. | Feb 2002 | A1 |
20020019584 | Schulze et al. | Feb 2002 | A1 |
20020026103 | Norris et al. | Feb 2002 | A1 |
20020029776 | Blomquist | Mar 2002 | A1 |
20020032583 | Joao | Mar 2002 | A1 |
20020038206 | Dori | Mar 2002 | A1 |
20020040208 | Flaherty et al. | Apr 2002 | A1 |
20020040282 | Bailey et al. | Apr 2002 | A1 |
20020082728 | Mueller et al. | Jun 2002 | A1 |
20020087115 | Hartlaub | Jul 2002 | A1 |
20020087116 | Hartlaub | Jul 2002 | A1 |
20020095486 | Bahl | Jul 2002 | A1 |
20020103675 | Vanelli | Aug 2002 | A1 |
20020123905 | Goodroe et al. | Sep 2002 | A1 |
20020152239 | Bautista-Lloyd et al. | Oct 2002 | A1 |
20020194329 | Ailing | Dec 2002 | A1 |
20030009244 | Engleson | Jan 2003 | A1 |
20030013959 | Grunwald et al. | Jan 2003 | A1 |
20030014222 | Klass et al. | Jan 2003 | A1 |
20030014817 | Gallant et al. | Jan 2003 | A1 |
20030025602 | Medema et al. | Feb 2003 | A1 |
20030028082 | Thompson | Feb 2003 | A1 |
20030036683 | Kehr et al. | Feb 2003 | A1 |
20030047126 | Tomaschko | Mar 2003 | A1 |
20030050621 | Lebel et al. | Mar 2003 | A1 |
20030059750 | Bindler et al. | Mar 2003 | A1 |
20030060688 | Ciarniello et al. | Mar 2003 | A1 |
20030069963 | Jayant et al. | Apr 2003 | A1 |
20030079746 | Hickle | May 2003 | A1 |
20030097529 | Arimilli et al. | May 2003 | A1 |
20030104982 | Wittmann et al. | Jun 2003 | A1 |
20030106553 | Vanderveen | Jun 2003 | A1 |
20030115358 | Yun | Jun 2003 | A1 |
20030120384 | Haitin et al. | Jun 2003 | A1 |
20030125662 | Bui | Jul 2003 | A1 |
20030130616 | Steil | Jul 2003 | A1 |
20030135087 | Hickle et al. | Jul 2003 | A1 |
20030139701 | White et al. | Jul 2003 | A1 |
20030140928 | Bui et al. | Jul 2003 | A1 |
20030140929 | Wilkes et al. | Jul 2003 | A1 |
20030141981 | Bui et al. | Jul 2003 | A1 |
20030143746 | Sage, Jr. | Jul 2003 | A1 |
20030144878 | Wilkes et al. | Jul 2003 | A1 |
20030158749 | Olchanski et al. | Aug 2003 | A1 |
20030187338 | Say et al. | Oct 2003 | A1 |
20030200116 | Forrester | Oct 2003 | A1 |
20030204416 | Acharya | Oct 2003 | A1 |
20030204781 | Peebles et al. | Oct 2003 | A1 |
20030212364 | Mann et al. | Nov 2003 | A1 |
20030212379 | Bylund et al. | Nov 2003 | A1 |
20030217962 | Childers et al. | Nov 2003 | A1 |
20040015132 | Brown | Jan 2004 | A1 |
20040019607 | Moubayed et al. | Jan 2004 | A1 |
20040030323 | Ullestad et al. | Feb 2004 | A1 |
20040039257 | Hickle | Feb 2004 | A1 |
20040057226 | Berthou et al. | Mar 2004 | A1 |
20040064341 | Langan et al. | Apr 2004 | A1 |
20040064342 | Browne et al. | Apr 2004 | A1 |
20040064435 | Moubayed et al. | Apr 2004 | A1 |
20040073811 | Sanin | Apr 2004 | A1 |
20040077934 | Massad | Apr 2004 | A1 |
20040078231 | Wilkes et al. | Apr 2004 | A1 |
20040078236 | Stoodley et al. | Apr 2004 | A1 |
20040104271 | Martucci et al. | Jun 2004 | A1 |
20040122530 | Hansen | Jun 2004 | A1 |
20040128162 | Schlotterbeck et al. | Jul 2004 | A1 |
20040128163 | Goodman et al. | Jul 2004 | A1 |
20040133441 | Brady et al. | Jul 2004 | A1 |
20040145480 | Despotis | Jul 2004 | A1 |
20040147034 | Gore et al. | Jul 2004 | A1 |
20040167464 | Ireland et al. | Aug 2004 | A1 |
20040167465 | Kohler | Aug 2004 | A1 |
20040167804 | Simpson | Aug 2004 | A1 |
20040172222 | Simpson et al. | Sep 2004 | A1 |
20040172283 | Vanderveen | Sep 2004 | A1 |
20040172301 | Mihai et al. | Sep 2004 | A1 |
20040172302 | Martucci et al. | Sep 2004 | A1 |
20040176667 | Mihai et al. | Sep 2004 | A1 |
20040176980 | Bulitta et al. | Sep 2004 | A1 |
20040176984 | White et al. | Sep 2004 | A1 |
20040181314 | Zaleski | Sep 2004 | A1 |
20040189708 | Larcheveque et al. | Sep 2004 | A1 |
20040193325 | Bonderud | Sep 2004 | A1 |
20040193328 | Butterfield et al. | Sep 2004 | A1 |
20040193453 | Butterfield et al. | Sep 2004 | A1 |
20040204673 | Flaherty et al. | Oct 2004 | A1 |
20040215278 | Stegink et al. | Oct 2004 | A1 |
20040220517 | Starkweather et al. | Nov 2004 | A1 |
20040225252 | Gillespie et al. | Nov 2004 | A1 |
20040236240 | Kraus et al. | Nov 2004 | A1 |
20040243438 | Mintz | Dec 2004 | A1 |
20040254434 | Goodnow et al. | Dec 2004 | A1 |
20050010269 | Lebel et al. | Jan 2005 | A1 |
20050020886 | Hutchinson et al. | Jan 2005 | A1 |
20050021006 | Tonnies | Jan 2005 | A1 |
20050027560 | Cook | Feb 2005 | A1 |
20050027567 | Taha | Feb 2005 | A1 |
20050038311 | Kuth | Feb 2005 | A1 |
20050038669 | Sachdeva et al. | Feb 2005 | A1 |
20050038680 | McMahon | Feb 2005 | A1 |
20050040226 | Al-Sheikh | Feb 2005 | A1 |
20050043620 | Fallows et al. | Feb 2005 | A1 |
20050049910 | Lancaster et al. | Mar 2005 | A1 |
20050055242 | Bello et al. | Mar 2005 | A1 |
20050055244 | Mullan et al. | Mar 2005 | A1 |
20050065465 | Lebel et al. | Mar 2005 | A1 |
20050065817 | Mihai et al. | Mar 2005 | A1 |
20050075544 | Shapiro et al. | Apr 2005 | A1 |
20050080801 | Kothandaraman et al. | Apr 2005 | A1 |
20050086071 | Fox, Jr. et al. | Apr 2005 | A1 |
20050086072 | Fox | Apr 2005 | A1 |
20050090808 | Malave et al. | Apr 2005 | A1 |
20050099624 | Staehr | May 2005 | A1 |
20050102162 | Blumenfeld | May 2005 | A1 |
20050102165 | Oshita et al. | May 2005 | A1 |
20050102669 | Marney et al. | May 2005 | A1 |
20050107923 | Vanderveen | May 2005 | A1 |
20050117529 | Ramos-Escano | Jun 2005 | A1 |
20050119788 | Engleson et al. | Jun 2005 | A1 |
20050119914 | Batch | Jun 2005 | A1 |
20050131739 | Rabinowitz et al. | Jun 2005 | A1 |
20050137522 | Aoki | Jun 2005 | A1 |
20050137573 | McLaughlin | Jun 2005 | A1 |
20050154769 | Eckart et al. | Jul 2005 | A1 |
20050160057 | Wefers et al. | Jul 2005 | A1 |
20050171503 | Van Den Berghe et al. | Aug 2005 | A1 |
20050171815 | Vanderveen | Aug 2005 | A1 |
20050177096 | Bollish et al. | Aug 2005 | A1 |
20050177395 | Blomquist | Aug 2005 | A1 |
20050182306 | Sloan | Aug 2005 | A1 |
20050182355 | Bui | Aug 2005 | A1 |
20050187950 | Parker | Aug 2005 | A1 |
20050192557 | Brauker et al. | Sep 2005 | A1 |
20050197554 | Polcha | Sep 2005 | A1 |
20050197621 | Poulsen et al. | Sep 2005 | A1 |
20050210037 | Wefers et al. | Sep 2005 | A1 |
20050216479 | Wefers et al. | Sep 2005 | A1 |
20050216480 | Wefers et al. | Sep 2005 | A1 |
20050223045 | Funahashi et al. | Oct 2005 | A1 |
20050224083 | Crass | Oct 2005 | A1 |
20050234746 | Funahashi | Oct 2005 | A1 |
20050240305 | Bogash et al. | Oct 2005 | A1 |
20050246416 | Blomquist | Nov 2005 | A1 |
20050251418 | Fox, Jr. et al. | Nov 2005 | A1 |
20050273059 | Mernoe et al. | Dec 2005 | A1 |
20050277873 | Stewart et al. | Dec 2005 | A1 |
20050277890 | Stewart et al. | Dec 2005 | A1 |
20050277911 | Stewart et al. | Dec 2005 | A1 |
20050278194 | Holland et al. | Dec 2005 | A1 |
20060004772 | Hagan et al. | Jan 2006 | A1 |
20060009727 | O'Mahony et al. | Jan 2006 | A1 |
20060009734 | Martin | Jan 2006 | A1 |
20060010098 | Goodnow et al. | Jan 2006 | A1 |
20060042139 | Mendes | Mar 2006 | A1 |
20060047270 | Shelton | Mar 2006 | A1 |
20060047538 | Condurso | Mar 2006 | A1 |
20060053036 | Coffman et al. | Mar 2006 | A1 |
20060064020 | Burnes et al. | Mar 2006 | A1 |
20060074633 | Mahesh et al. | Apr 2006 | A1 |
20060074920 | Wefers et al. | Apr 2006 | A1 |
20060079831 | Gilbert | Apr 2006 | A1 |
20060089854 | Holland et al. | Apr 2006 | A1 |
20060089855 | Holland et al. | Apr 2006 | A1 |
20060100746 | Leibner-Druska | May 2006 | A1 |
20060100907 | Holland et al. | May 2006 | A1 |
20060106649 | Eggers et al. | May 2006 | A1 |
20060111943 | Wu | May 2006 | A1 |
20060116904 | Brem | Jun 2006 | A1 |
20060116907 | Rhodes et al. | Jun 2006 | A1 |
20060122481 | Sievenpiper et al. | Jun 2006 | A1 |
20060122867 | Eggers et al. | Jun 2006 | A1 |
20060129429 | Moubayed et al. | Jun 2006 | A1 |
20060129434 | Smitherman et al. | Jun 2006 | A1 |
20060129435 | Smitherman et al. | Jun 2006 | A1 |
20060136266 | Tarassenko et al. | Jun 2006 | A1 |
20060136271 | Eggers et al. | Jun 2006 | A1 |
20060143051 | Eggers et al. | Jun 2006 | A1 |
20060173260 | Gaoni et al. | Aug 2006 | A1 |
20060173406 | Hayes et al. | Aug 2006 | A1 |
20060173715 | Wang et al. | Aug 2006 | A1 |
20060190302 | Eggers et al. | Aug 2006 | A1 |
20060195022 | Trepagnier et al. | Aug 2006 | A1 |
20060200007 | Brockway et al. | Sep 2006 | A1 |
20060200369 | Batch et al. | Sep 2006 | A1 |
20060211404 | Cromp et al. | Sep 2006 | A1 |
20060224141 | Rush et al. | Oct 2006 | A1 |
20060229918 | Fotsch et al. | Oct 2006 | A1 |
20060258985 | Russell | Nov 2006 | A1 |
20060259327 | Hoag | Nov 2006 | A1 |
20060264895 | Flanders | Nov 2006 | A1 |
20060265246 | Hoag | Nov 2006 | A1 |
20060267753 | Hussey et al. | Nov 2006 | A1 |
20060268710 | Appanna et al. | Nov 2006 | A1 |
20060277206 | Bailey et al. | Dec 2006 | A1 |
20060287885 | Frick | Dec 2006 | A1 |
20070015972 | Wang et al. | Jan 2007 | A1 |
20070016443 | Wachman et al. | Jan 2007 | A1 |
20070027506 | Stender et al. | Feb 2007 | A1 |
20070060796 | Kim | Mar 2007 | A1 |
20070060870 | Tolle et al. | Mar 2007 | A1 |
20070060871 | Istoc | Mar 2007 | A1 |
20070065363 | Dalal et al. | Mar 2007 | A1 |
20070073419 | Sesay | Mar 2007 | A1 |
20070078314 | Grounsell | Apr 2007 | A1 |
20070083870 | Kanakogi | Apr 2007 | A1 |
20070088333 | Levin et al. | Apr 2007 | A1 |
20070093786 | Goldsmith et al. | Apr 2007 | A1 |
20070100665 | Brown | May 2007 | A1 |
20070100667 | Bardy | May 2007 | A1 |
20070106126 | Mannheimer et al. | May 2007 | A1 |
20070112298 | Mueller et al. | May 2007 | A1 |
20070116037 | Moore | May 2007 | A1 |
20070118405 | Campbell et al. | May 2007 | A1 |
20070135866 | Baker | Jun 2007 | A1 |
20070136098 | Smythe et al. | Jun 2007 | A1 |
20070142822 | Remde | Jun 2007 | A1 |
20070156282 | Dunn | Jul 2007 | A1 |
20070156452 | Batch | Jul 2007 | A1 |
20070169008 | Varanasi et al. | Jul 2007 | A1 |
20070179448 | Lim et al. | Aug 2007 | A1 |
20070186923 | Poutiatine et al. | Aug 2007 | A1 |
20070191817 | Martin | Aug 2007 | A1 |
20070191973 | Holzbauer et al. | Aug 2007 | A1 |
20070213657 | Jennewine et al. | Sep 2007 | A1 |
20070214003 | Holland et al. | Sep 2007 | A1 |
20070215545 | Bissler et al. | Sep 2007 | A1 |
20070229249 | McNeal et al. | Oct 2007 | A1 |
20070232867 | Hansmann | Oct 2007 | A1 |
20070233035 | Wehba et al. | Oct 2007 | A1 |
20070233049 | Wehba et al. | Oct 2007 | A1 |
20070233206 | Frikart | Oct 2007 | A1 |
20070233520 | Wehba et al. | Oct 2007 | A1 |
20070251835 | Mehta et al. | Nov 2007 | A1 |
20070253021 | Mehta et al. | Nov 2007 | A1 |
20070254593 | Jollota et al. | Nov 2007 | A1 |
20070255125 | Moberg et al. | Nov 2007 | A1 |
20070257788 | Carlson | Nov 2007 | A1 |
20070258395 | Jollota et al. | Nov 2007 | A1 |
20070299389 | Halbert et al. | Dec 2007 | A1 |
20070299687 | Palmer et al. | Dec 2007 | A1 |
20070299695 | Jung et al. | Dec 2007 | A1 |
20080004904 | Tran | Jan 2008 | A1 |
20080009684 | Corsetti et al. | Jan 2008 | A1 |
20080033361 | Evans et al. | Feb 2008 | A1 |
20080034323 | Blomquist | Feb 2008 | A1 |
20080041942 | Aissa | Feb 2008 | A1 |
20080052704 | Wysocki | Feb 2008 | A1 |
20080065007 | Peterson et al. | Mar 2008 | A1 |
20080065417 | Jung et al. | Mar 2008 | A1 |
20080071217 | Moubayed et al. | Mar 2008 | A1 |
20080071251 | Moubayed et al. | Mar 2008 | A1 |
20080091466 | Butler et al. | Apr 2008 | A1 |
20080095339 | Elliott | Apr 2008 | A1 |
20080097289 | Steil et al. | Apr 2008 | A1 |
20080126969 | Blomquist | May 2008 | A1 |
20080139907 | Rao et al. | Jun 2008 | A1 |
20080149117 | Raghuram | Jun 2008 | A1 |
20080154177 | Moubayed et al. | Jun 2008 | A1 |
20080172337 | Banfield et al. | Jul 2008 | A1 |
20080184219 | Matsumoto | Jul 2008 | A1 |
20080188796 | Steil et al. | Aug 2008 | A1 |
20080200870 | Palmroos et al. | Aug 2008 | A1 |
20080214919 | Harmon et al. | Sep 2008 | A1 |
20080243055 | Fathallah et al. | Oct 2008 | A1 |
20080246748 | Cassidy et al. | Oct 2008 | A1 |
20080256305 | Kwon | Oct 2008 | A1 |
20080262469 | Bristol et al. | Oct 2008 | A1 |
20080269714 | Mastrototaro et al. | Oct 2008 | A1 |
20080269723 | Mastrototaro et al. | Oct 2008 | A1 |
20080275384 | Mastrototaro et al. | Nov 2008 | A1 |
20080300572 | Rankers et al. | Dec 2008 | A1 |
20080320387 | Sasaki et al. | Dec 2008 | A1 |
20080320466 | Dias | Dec 2008 | A1 |
20090005703 | Fasciano | Jan 2009 | A1 |
20090005728 | Weinert et al. | Jan 2009 | A1 |
20090006061 | Thukral et al. | Jan 2009 | A1 |
20090006129 | Thukral | Jan 2009 | A1 |
20090006133 | Weinert | Jan 2009 | A1 |
20090018495 | Panduro | Jan 2009 | A1 |
20090051560 | Manning et al. | Feb 2009 | A1 |
20090054743 | Stewart | Feb 2009 | A1 |
20090054754 | McMahon et al. | Feb 2009 | A1 |
20090057399 | Sajkowsky | Mar 2009 | A1 |
20090069785 | Miller et al. | Mar 2009 | A1 |
20090099867 | Newman | Apr 2009 | A1 |
20090135196 | Holland et al. | May 2009 | A1 |
20090143662 | Estes et al. | Jun 2009 | A1 |
20090149743 | Barron et al. | Jun 2009 | A1 |
20090150174 | Buck et al. | Jun 2009 | A1 |
20090156991 | Roberts | Jun 2009 | A1 |
20090157695 | Roberts | Jun 2009 | A1 |
20090158274 | Roberts | Jun 2009 | A1 |
20090177146 | Nesbitt et al. | Jul 2009 | A1 |
20090177769 | Roberts | Jul 2009 | A1 |
20090177992 | Rubalcaba et al. | Jul 2009 | A1 |
20090183147 | Davis et al. | Jul 2009 | A1 |
20090209938 | Aalto-Setala | Aug 2009 | A1 |
20090210250 | Prax et al. | Aug 2009 | A1 |
20090221890 | Saffer et al. | Sep 2009 | A1 |
20090231249 | Wang et al. | Sep 2009 | A1 |
20090270833 | DeBelser | Oct 2009 | A1 |
20090275886 | Bloomquist et al. | Nov 2009 | A1 |
20090275896 | Kamen et al. | Nov 2009 | A1 |
20090284691 | Marhefka et al. | Nov 2009 | A1 |
20090326340 | Wang | Dec 2009 | A1 |
20090326516 | Bangera et al. | Dec 2009 | A1 |
20100022988 | Wochner | Jan 2010 | A1 |
20100036310 | Hillman | Feb 2010 | A1 |
20100056992 | Hayter | Mar 2010 | A1 |
20100095229 | Dixon et al. | Apr 2010 | A1 |
20100121170 | Rule | May 2010 | A1 |
20100121415 | Skelton et al. | May 2010 | A1 |
20100121654 | Portnoy et al. | May 2010 | A1 |
20100130933 | Holland et al. | May 2010 | A1 |
20100131434 | Magent et al. | May 2010 | A1 |
20100138523 | Umess et al. | Jun 2010 | A1 |
20100146137 | Wu et al. | Jun 2010 | A1 |
20100156633 | Buck et al. | Jun 2010 | A1 |
20100160854 | Gauthier | Jun 2010 | A1 |
20100160860 | Celentano et al. | Jun 2010 | A1 |
20100191525 | Rabenko et al. | Jul 2010 | A1 |
20100198034 | Thomas et al. | Aug 2010 | A1 |
20100198196 | Wei | Aug 2010 | A1 |
20100200506 | Ware et al. | Aug 2010 | A1 |
20100212675 | Walling et al. | Aug 2010 | A1 |
20100217621 | Schoenberg | Aug 2010 | A1 |
20100234708 | Buck et al. | Sep 2010 | A1 |
20100250732 | Bucknell | Sep 2010 | A1 |
20100268157 | Wehba et al. | Oct 2010 | A1 |
20100271479 | Heydlauf | Oct 2010 | A1 |
20100273738 | Valcke et al. | Oct 2010 | A1 |
20100280486 | Khair et al. | Nov 2010 | A1 |
20100292634 | Kircher | Nov 2010 | A1 |
20100298765 | Budiman et al. | Nov 2010 | A1 |
20100318025 | John | Dec 2010 | A1 |
20110001605 | Kiani et al. | Jan 2011 | A1 |
20110040158 | Katz et al. | Feb 2011 | A1 |
20110060758 | Schlotterbeck et al. | Mar 2011 | A1 |
20110071844 | Cannon et al. | Mar 2011 | A1 |
20110072379 | Gannon | Mar 2011 | A1 |
20110078608 | Gannon et al. | Mar 2011 | A1 |
20110093284 | Dicks et al. | Apr 2011 | A1 |
20110099313 | Bolanowski | Apr 2011 | A1 |
20110125095 | Lebel et al. | May 2011 | A1 |
20110175728 | Baker, Jr. | Jul 2011 | A1 |
20110178462 | Moberg et al. | Jul 2011 | A1 |
20110231216 | Fyke et al. | Sep 2011 | A1 |
20110257496 | Terashima et al. | Oct 2011 | A1 |
20110257798 | Ali et al. | Oct 2011 | A1 |
20110259954 | Bartz et al. | Oct 2011 | A1 |
20110264043 | Kotnick et al. | Oct 2011 | A1 |
20110264044 | Bartz et al. | Oct 2011 | A1 |
20110266221 | Ware et al. | Nov 2011 | A1 |
20110270045 | Lebel et al. | Nov 2011 | A1 |
20110275904 | Lebel et al. | Nov 2011 | A1 |
20110286457 | Ee | Nov 2011 | A1 |
20110289497 | Kiaie et al. | Nov 2011 | A1 |
20110295196 | Chazot et al. | Dec 2011 | A1 |
20110295341 | Estes et al. | Dec 2011 | A1 |
20110296051 | Vange | Dec 2011 | A1 |
20110296411 | Tang et al. | Dec 2011 | A1 |
20110313789 | Karmen et al. | Dec 2011 | A1 |
20110319813 | Kamen et al. | Dec 2011 | A1 |
20110320049 | Chossat et al. | Dec 2011 | A1 |
20120011253 | Friedman et al. | Jan 2012 | A1 |
20120016305 | Jollota | Jan 2012 | A1 |
20120029941 | Malave et al. | Feb 2012 | A1 |
20120070045 | Vesper et al. | Mar 2012 | A1 |
20120095437 | Hemmerling | Apr 2012 | A1 |
20120112903 | Kaib et al. | May 2012 | A1 |
20120130198 | Beaule | May 2012 | A1 |
20120130308 | Silkaitis et al. | May 2012 | A1 |
20120143116 | Ware et al. | Jun 2012 | A1 |
20120150556 | Galasso et al. | Jun 2012 | A1 |
20120172802 | Blomquist | Jul 2012 | A1 |
20120179135 | Rinehart et al. | Jul 2012 | A1 |
20120179136 | Rinehart et al. | Jul 2012 | A1 |
20120203177 | Lanier | Aug 2012 | A1 |
20120245554 | Kawamura | Sep 2012 | A1 |
20120259978 | Petersen et al. | Oct 2012 | A1 |
20120277716 | Ali et al. | Nov 2012 | A1 |
20120284734 | McQuaid et al. | Nov 2012 | A1 |
20120323212 | Murphy | Dec 2012 | A1 |
20130006666 | Schneider | Jan 2013 | A1 |
20130006702 | Wu | Jan 2013 | A1 |
20130012880 | Blomquist | Jan 2013 | A1 |
20130015980 | Evans et al. | Jan 2013 | A1 |
20130036403 | Geist | Feb 2013 | A1 |
20130036412 | Birtwhistle et al. | Feb 2013 | A1 |
20130066265 | Grant | Mar 2013 | A1 |
20130072872 | Yodfat et al. | Mar 2013 | A1 |
20130085689 | Sur et al. | Apr 2013 | A1 |
20130096444 | Condurso et al. | Apr 2013 | A1 |
20130096648 | Benson | Apr 2013 | A1 |
20130102963 | Marsh et al. | Apr 2013 | A1 |
20130138452 | Cork et al. | May 2013 | A1 |
20130144206 | Lee et al. | Jun 2013 | A1 |
20130158504 | Ruchti et al. | Jun 2013 | A1 |
20130167245 | Birtwhistle et al. | Jun 2013 | A1 |
20130191770 | Bartz et al. | Jul 2013 | A1 |
20130204188 | Kamen et al. | Aug 2013 | A1 |
20130218080 | Peterfreund et al. | Aug 2013 | A1 |
20130261993 | Ruchti et al. | Oct 2013 | A1 |
20130274669 | Stempfle et al. | Oct 2013 | A1 |
20130275539 | Gross et al. | Oct 2013 | A1 |
20130291116 | Homer | Oct 2013 | A1 |
20130296823 | Melker et al. | Nov 2013 | A1 |
20130296984 | Burnett et al. | Nov 2013 | A1 |
20140039446 | Day | Feb 2014 | A1 |
20140257251 | Bush et al. | Sep 2014 | A1 |
20140266790 | Al-Ali et al. | Sep 2014 | A1 |
20140269643 | Sun | Sep 2014 | A1 |
20140350513 | Oruklu et al. | Nov 2014 | A1 |
20140358077 | Oruklu et al. | Dec 2014 | A1 |
20140366878 | Baron | Dec 2014 | A1 |
20150005935 | Bae et al. | Jan 2015 | A1 |
20150058044 | Butler et al. | Feb 2015 | A1 |
20150066531 | Jacobson et al. | Mar 2015 | A1 |
20150100038 | McCann et al. | Apr 2015 | A1 |
20150134265 | Kohlbrecher et al. | May 2015 | A1 |
20150141955 | Ruchti et al. | May 2015 | A1 |
20150151051 | Tsoukalis | Jun 2015 | A1 |
20150379237 | Mills et al. | Dec 2015 | A1 |
20160051749 | Istoc | Feb 2016 | A1 |
20160051751 | Silkaitis et al. | Feb 2016 | A1 |
20160103960 | Hume et al. | Apr 2016 | A1 |
20160228633 | Welsch et al. | Aug 2016 | A1 |
20160350513 | Jacobson et al. | Dec 2016 | A1 |
20170024534 | Arrizza et al. | Jan 2017 | A1 |
20170246388 | Kohlbrecher | Aug 2017 | A1 |
20170274140 | Howard et al. | Sep 2017 | A1 |
20170286637 | Arrizza et al. | Oct 2017 | A1 |
20170319780 | Belkin et al. | Nov 2017 | A1 |
20170331735 | Jha et al. | Nov 2017 | A1 |
20180028742 | Day et al. | Feb 2018 | A1 |
20180043094 | Day et al. | Feb 2018 | A1 |
20190096518 | Pace | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
2 060 151 | Aug 1997 | CA |
2 125 300 | Oct 1999 | CA |
31 12 762 | Jan 1983 | DE |
34 35 647 | Jul 1985 | DE |
198 44 252 | Mar 2000 | DE |
199 32 147 | Jan 2001 | DE |
103 52 456 | Jul 2005 | DE |
0 319 267 | Jun 1989 | EP |
0 380 061 | Aug 1990 | EP |
0 384 155 | Aug 1990 | EP |
0 460 533 | Dec 1991 | EP |
0 564 127 | Jun 1993 | EP |
0 633 035 | Jan 1995 | EP |
0 652 528 | May 1995 | EP |
0 672 427 | Sep 1995 | EP |
0 683 465 | Nov 1995 | EP |
0 880 936 | Dec 1998 | EP |
1 157 711 | Nov 2001 | EP |
1 174 817 | Jan 2002 | EP |
0 664 102 | Apr 2002 | EP |
1 197 178 | Apr 2002 | EP |
0 830 775 | Aug 2002 | EP |
1 500 025 | Apr 2003 | EP |
2 113 842 | Nov 2009 | EP |
2 228 004 | Sep 2010 | EP |
2 243 506 | Oct 2010 | EP |
2 410 448 | Jan 2012 | EP |
2 742 961 | Jun 2014 | EP |
2 717 919 | Sep 1995 | FR |
2 285 135 | Jun 1995 | GB |
04-161139 | Jun 1992 | JP |
07-502678 | Mar 1995 | JP |
11-500643 | Jan 1999 | JP |
2000-316820 | Nov 2000 | JP |
2002-531154 | Sep 2002 | JP |
2003-016183 | Jan 2003 | JP |
2003-296173 | Oct 2003 | JP |
2005-021463 | Jan 2005 | JP |
2005-527284 | Sep 2005 | JP |
2005-284846 | Oct 2005 | JP |
2006-047319 | Feb 2006 | JP |
2006-520949 | Sep 2006 | JP |
2007-518479 | Jul 2007 | JP |
2008-516303 | May 2008 | JP |
2008-158622 | Jul 2008 | JP |
2008-529675 | Aug 2008 | JP |
2009-163534 | Jul 2009 | JP |
2010-502361 | Jan 2010 | JP |
2012-070991 | Apr 2012 | JP |
WO 84001719 | May 1984 | WO |
WO 91016416 | Oct 1991 | WO |
WO 92010985 | Jul 1992 | WO |
WO 92013322 | Aug 1992 | WO |
WO 94005355 | Mar 1994 | WO |
WO 96008755 | Mar 1996 | WO |
WO 96025186 | Aug 1996 | WO |
WO 98012670 | Mar 1998 | WO |
WO 98019263 | May 1998 | WO |
WO 99051003 | Oct 1999 | WO |
WO 00013580 | Mar 2000 | WO |
WO 00053243 | Sep 2000 | WO |
WO 01014974 | Mar 2001 | WO |
WO 01033484 | May 2001 | WO |
WO 01045014 | Jun 2001 | WO |
WO 02005702 | Jan 2002 | WO |
WO 02036044 | May 2002 | WO |
WO 02049153 | Jun 2002 | WO |
WO 02049279 | Jun 2002 | WO |
WO 02069099 | Sep 2002 | WO |
WO 02081015 | Oct 2002 | WO |
WO 02088875 | Nov 2002 | WO |
WO 03006091 | Jan 2003 | WO |
WO 03050917 | Jun 2003 | WO |
WO 03091836 | Nov 2003 | WO |
WO 03094092 | Nov 2003 | WO |
WO 2004060455 | Jul 2004 | WO |
WO 2004070557 | Aug 2004 | WO |
WO 2004070562 | Aug 2004 | WO |
WO 2004072828 | Aug 2004 | WO |
WO 2005036447 | Apr 2005 | WO |
WO 2005050526 | Jun 2005 | WO |
WO 2005057175 | Jun 2005 | WO |
WO 2005066872 | Jul 2005 | WO |
WO 2007087443 | Aug 2007 | WO |
WO 2007117705 | Oct 2007 | WO |
WO 2007127879 | Nov 2007 | WO |
WO 2007127880 | Nov 2007 | WO |
WO 2008057729 | May 2008 | WO |
WO 2008067245 | Jun 2008 | WO |
WO 2008082854 | Jul 2008 | WO |
WO 2008088490 | Jul 2008 | WO |
WO 2008097316 | Aug 2008 | WO |
WO 2008103915 | Aug 2008 | WO |
WO 2008124478 | Oct 2008 | WO |
WO 2008134146 | Nov 2008 | WO |
WO 2009016504 | Feb 2009 | WO |
WO 2009023406 | Feb 2009 | WO |
WO 2009023407 | Feb 2009 | WO |
WO 2009023634 | Feb 2009 | WO |
WO 2009036327 | Mar 2009 | WO |
WO 2009049252 | Apr 2009 | WO |
WO 2010017279 | Feb 2010 | WO |
WO 2010033919 | Mar 2010 | WO |
WO 2010053703 | May 2010 | WO |
WO 2010075371 | Jul 2010 | WO |
WO 2010099313 | Sep 2010 | WO |
WO 2010114929 | Oct 2010 | WO |
WO 2010119409 | Oct 2010 | WO |
WO 2010124127 | Oct 2010 | WO |
WO 2010130992 | Nov 2010 | WO |
WO 2010135646 | Nov 2010 | WO |
WO 2010135654 | Nov 2010 | WO |
WO 2010135686 | Nov 2010 | WO |
WO 2011005633 | Jan 2011 | WO |
WO 2011022549 | Feb 2011 | WO |
WO 2012048833 | Apr 2012 | WO |
WO 2012049214 | Apr 2012 | WO |
WO 2012049218 | Apr 2012 | WO |
WO 2012120078 | Sep 2012 | WO |
WO 2012140547 | Oct 2012 | WO |
WO 2012164556 | Dec 2012 | WO |
WO 2012170942 | Dec 2012 | WO |
WO 2013045506 | Apr 2013 | WO |
WO 2014100736 | Jun 2014 | WO |
WO 2014131729 | Sep 2014 | WO |
WO 2014131730 | Sep 2014 | WO |
WO 2017176928 | Oct 2017 | WO |
Entry |
---|
Akridge, Jeannie, “New Pumps Outsmart User Error”, Healthcare Purchasing News, Apr. 2011, pp. 10, http://web.archive.org/web/20110426122450/http://www.hpnonline.com/inside/2011-04/1104-OR-Pumps.html. |
Alur et al., “Formal Specifications and Analysis of the Computer-Assisted Resuscitation Algorithm (CARA) Infusion Pump Control System”, International Journal on Software Tools for Technology Transfer, Feb. 2004, vol. 5, No. 4, pp. 308-319. |
Aragon, Daleen RN, Ph.D., CCRN, “Evaluation of Nursing Work Effort and Perceptions About Blood Glucose Testing in Tight Glycemic Control”, American Journal of Critical Care, Jul. 2006, vol. 15, No. 4, pp. 370-377. |
ASHP Advantage, “Improving Medication Safety in Health Systems Through Innovations in Automation Technology”, Proceedings of Educational Symposium and Educational Sessions during the 39th ASHP Midyear Clinical Meeting, Dec. 5-9, 2004, Orlando, FL, pp. 28. |
Beard et al., “Total Quality Pain Management: History, Background, Resources”, Abbott Laboratories, TQPM Survey History, available Feb. 2015 or earlier, pp. 1-3. |
Bektas et al., “Bluetooth Communication Employing Antenna Diversity”, Proceedings of Eight IEEE International Symposium on Computers and Communication, Jul. 2003, pp. 6. |
Bequette, Ph.D., “A Critical Assessment of Algorithms and Challenges in the Development of a Closed-Loop Artificial Pancreas”, Diabetes Technology & Therapeutics, Feb. 28, 2005, vol. 7, No. 1, pp. 28-47. |
Bequette, B. Wayne, Ph.D., “Analysis of Algorithms for Intensive Care Unit Blood Glucose Control”, Journal of Diabetes Science and Technology, Nov. 2007, vol. 1, No. 6, pp. 813-824. |
Braun, “Infusomat® Space and Accessories”, Instructions for Use, Nov. 2010, pp. 68. http://corp.bbraun.ee/Extranet/Infusionipumbad/Kasutusiuhendid/Vanad/Kasutusiuhend-Infusomat_Space(vers688J.inglise_k).pdf. |
Brownlee, Seth, “Product Spotlight: The Plum A+ with Hospira MedNet Infusion System”, PP&P Magazine, Dec. 2005, vol. 2, No. 7, pp. 2. |
Cannon, MD et al., “Automated Heparin-Delivery System to Control Activated Partial Thromboplastin Time”, Circulation, Feb. 16, 1999, vol. 99, pp. 751-756. |
Cardinal Health, “Alaris® Syringe Pumps” Technical Service Manual, Copyright 2002-2006, Issue 9, pp. 1- 88, http://www.frankshospitalworkshop.com/equipment/documents/infusion_pumps/service_manuals/Cardinal_Alaris - Service_Manual.pdf. |
“CareAware® Infusion Management”, Cerner Store, as printed May 12, 2011, pp. 3, https://store.cerner.com/items/7. |
Chen et al., “Enabling Location-Based Services on Wireless LANs”, The 11th IEEE International Conference on Networks, ICON 2003, Sep. 28-Oct. 1, 2003, pp. 567-572. |
“Computer Dictionary”, Microsoft Press, Third Edition, Microsoft Press, 1997, pp. 430 & 506. |
Crawford, Anne J., MSN, RNC, “Building a Successful Quality Pain Service: Using Patient Satisfaction Data and the Clinical Practice Guideline”, USA, 1995, pp. 1-6. |
Crocker et al., “Augmented BNF for Syntax Specifications: ABNF”, Network Working Group, Standards Track, Jan. 2008, pp. 16. |
Davidson et al., “A Computer-Directed Intravenous Insulin System Shown to be Safe, Simple, and Effective in 120,618 h of Operation”, Diabetes Care, Oct. 2005, vol. 28, No. 10, pp. 2418-2423. |
Davies, T., “Cordless Data Acquisition in a Hospital Environment”, IEE Colloquium on Cordless Computing—Systems and User Experience, 1993, pp. 4. |
Dayhoff et al., “Medical Data Capture and Display: The Importance of Clinicians' Workstation Design”, AMIA, Inc., 1994, pp. 541-545. |
Diabetes Close Up, Close Concerns AACE Inpatient Management Conference Report, Consensus Development Conference on Inpatient Diabetes and Metabolic Control, Washington, D.C., Dec. 14-16, 2003, pp. 1-32. |
East PhD et al., “Digital Electronic Communication Between ICU Ventilators and Computers and Printers”, Respiratory Care, Sep. 1992, vol. 37, No. 9, pp. 1113-1122. |
Einhorn, George W., “Total Quality Pain Management: A Computerized Quality Assessment Tool for Postoperative Pain Management”, Abbott Laboratories, Chicago, IL, Mar. 2, 2000, pp. 1-4. |
Eskew et al., “Using Innovative Technologies to Set New Safety Standards for the Infusion of Intravenous Medications” Hospital Pharmacy, 2002, vol. 37, No. 11, pp. 1179-1189. |
Philips, “IntelliSpace Event Management and IntelliVue Patient Monitoring”, Release 10, 2011, http://incenter.medical.philps.com/doclib/enc/tetch/200/4504/577242/577243/577247/582646/583147/8359175/Philips_Patient_Monitoring_and_IntelliSpace_Event_Management_Interoperability.pdf%3nodeid%3d8508574%26vernum%3d-s, pp. 2. |
Felleiter et al., “Data Processing in Prehospital Emergency Medicine”, International journal of Clinical Monitoring and Computing, Feb. 1995, vol. 12, No. 1, pp. 37-41. |
Fogt et al., Development and Evaluation of a Glucose Analyzer for a Glucose-Controlled Insulin Infusion System (Biostator®), Clinical Chemistry, 1978, vol. 24, No. 8, pp. 1366-1372. |
Gabel et al., “Camp: A Common API for Measuring Performance”, 21st Large Installations System Administration Conference (LISA '07), 2007, pp. 49-61. |
Gage et al., “Automated Anesthesia Surgery Medical Record System”, International Journal of Clinical Monitoring and Computing, Dec. 1990, vol. 7, No. 4, pp. 259-263. |
Galt et al., “Personal Digital Assistant-Based Drug Information Sources: Potential to Improve Medication Safety”, Journal of Medical Library Association, Apr. 2005, vol. 93, No. 2, pp. 229-236. |
Gardner, Ph.D. et al., “Real Time Data Acquisition: Recommendations for the Medical Information Bus (MIB)”, 1992, pp. 813-817. |
“General-Purpose Infusion Pumps”, Health Devices, EXRI Institute, Oct. 1, 2002, vol. 31, No. 10, pp. 353-387. |
Givens et al., “Exploring the Internal State of User Interfaces by Combining Computer Vision Techniques with Grammatical Inference”, Proceedings of the 2013 International Conference on Software Engineering, San Francisco, CA, May 18-26, 2013, pp. 1165-1168. |
Glaeser, “A Hierarchical Minicomputer System for Continuous Post-Surgical Monitoring”, Computers and Biomedical Research, Aug. 31, 1975, pp. 336-361. |
Goldberg et al., “Clinical Results of an Updated Insulin Infusion Protocol in Critically Ill Patients”, Diabetes Spectrum, 2005, vol. 18, No. 3, pp. 188-191. |
Gomez et al., “CLAM: Connection-Less, Lightweight, and Multiway Communication Support for Distributed Computing”, Computer Science, 1997, vol. 1199, pp. 227-240. |
“GPS Tracker for Medical Equipment”, http://www.trackingsystem.com/forbusinesses/corporate-trackingsystem/1098-gps-tracker-formedicalequipment.html, Mar. 15, 2015, pp. 2. |
Graseby, “Model 3000/500 and Micro 3100/505: Volumetric Infusion Pump”, Technical Service Manual, Graseby Medical Ltd., Apr. 2002, Issue A, pp. 160. |
Graseby, “Model 3000/500 and Micro 3100/505: Volumetric Infusion Pump: Illustrated Parts List for Pump Serial Nos. from 3000 to 59,999”, Technical Service Manual, Graseby Medical Ltd., Apr. 2002, Issue A, pp. 71. |
Halpern et al., “Changes in Critical Care Beds and Occupancy in the United States 1985-2000: Differences Attributable to Hospital Size”, Critical Care Medical, Aug. 2006, vol. 34, No. 8, pp. 2105-2112. |
Hamann et al., “PUMPSIM: A Software Package for Simulating Computer-Controlled Drug Infusion Pumps”, Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1990, vol. 12, No. 5, pp. 2019-2020. |
Hasegawa et al., “On a Portable Memory Device for Physical Activities and Informations of Maternal Perception”, Journal of Perinatal Medicine, 1988, vol. 16, No. 4, pp. 349-356. |
Hawley et al., “Clinical Implementation of an Automated Medical Information Bus in an Intensive Care Unit”, Proceedings of the Annual Symposium on Computer Application in Medical Care, Nov. 9, 1988, pp. 621-624. |
Hayes-Roth et al., “Guardian: A Prototype Intelligent Agent for Intensive-Care Monitoring”, Artificial Intelligence in Medicine, vol. 4, Dec. 31, 1992, pp. 165-185. |
Hospira, GemStar® Pain Management Infusion System 9-084-PR1-2-2, www.hospira.com/products/gemstar_painmanagement.aspx, Jan. 28, 2010, pp. 1-2. |
Introducing Abbott TQPM (Total Quality Pain Management), Abbott Laboratories, Abbott Park, IL, May 2000, pp. 1-4. |
“Infusion Pump”, Wikipedia.org, https://web.archive.org/web/20140703024932/https://en.wikipedia.org/wiki/Infusion_pump, as last modified Mar. 27, 2014, pp. 3. |
Isaka et al., “Control Strategies for Arterial Blood Pressure Regulation”, IEEE Transactions on Biomedical Engineering, Apr. 1993, vol. 40, No. 4, pp. 353-363. |
Johnson et al., “Using BCMA Software to Improve Patient Safety in Veterans Administration Medical Centers”, Journal of Healthcare Information Management, Dec. 6, 2004, vol. 16, No. 1, pp. 46-51. |
Kent Displays, “Reflex™ Electronic Skins”, Product Brief 25127B, 2009, pp. 2. |
Kent Displays, “Reflex Electronic Skins Engineering Evaluation Kit”, 25136A, Mar. 10, 2009. |
Lefkowitz et al., “A Trial of the Use of Bar Code Technology to Restructure a Drug Distribution and Administration System”, Hospital Pharmacy, Mar. 31, 1991, vol. 26, No. 3, pp. 239-242. |
Lenssen et al., “Bright Color Electronic Paper Technology and Applications”, IDS '09 Publication EP1-2 (Phillips Research), 2009, pp. 529-532. |
Leveson, Nancy, “Medical Devices: The Therac-25”, Appendix A, University of Washington, 1995, pp. 49. |
Linkens, D.A. “Computer Control for Patient Care”, Computer Control of Real-Time Processes, IEE Control Engineering Series 41, 1990, Ch. 13, pp. 216-238. |
Mako Hill et al., “The Official Ubuntu Book”, Shoeisha Co., Ltd., 1st Edition, Jun. 11, 2007, pp. 115 to 125. |
Marshall, et al., “New Microprocessor-Based Insulin Controller”, IEEE Transactions on Biomedical Engineering, Nov. 1983, vol. BME-30, No. 11, pp. 689-695. |
Martino et al., “Automation of a Medical Intensive Care Environment with a Flexible Configuration of Computer Systems”, Proceedings of the Annual Symposium on Computer Application in Medical Care, Nov. 5, 1980, vol. 3, pp. 1562-1568. |
Matsunaga et al., “On the Use of Machine Learning to Predict the Time and Resources Consumed by Applications”, 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid), May 17-20, 2010, pp. 495-504. |
Mauseth et al., “Proposed Clinical Application for Tuning Fuzzy Logic Controller of Artificial Pancreas Utilizing a Personalization Factor”, Journal of Diabetes Science and Technology, Jul. 2010, vol. 4, No. 4, pp. 913-922. |
Medfusion™, “Medfusion Syringe Infusion Pump Model 4000”, Operator's Manual, Software Version V1.1, Sep. 2011, pp. 154. http://www.medfusionpup.com/assets/literature/manuals/Operations_Manual_4000_40-5760-51A.pdf. |
Metnitz et al., “Computer Assisted Data Analysis in Intensive Care: the ICDEV Project-Development of a Scientific Database System for Intensive Care”, International Journal of Clinical Monitoring and Computing, Aug. 1995, vol. 12, No. 3, pp. 147-159. |
Micrel Medical Devices, “Mp Daily +” http://web.archive.org/web/20130803235715/http://www.micrelmed.com/index.aspx?productid=9 as archived Aug. 3, 2013 in 1 page. |
Moghissi, Etie, MD, FACP, FACE, “Hyperglycemia in Hospitalized Patients”, A Supplement to ACP Hospitalist, Jun. 15, 2008, pp. 32. |
Murray, Jr. et al., “Automated Drug Identification System (during surgery)”, IEEE Proceedings of Southeastcon '91, Apr. 7-10, 1991, pp. 265. |
Nicholson et al., “‘Smart’ Infusion Apparatus for Computation and Automated Delivery of Loading, Tapering, and Maintenance Infusion Regimens of Lidocaine, Procainamide, and Theophylline”, Proceedings of the Seventh Annual Symposium on Computer Applications in Medical Care, Oct. 1983, pp. 212-213. |
Nolan et al., “The P1073 Medical Information Bus Standard: Overview and Benefits for Clinical Users”, 1990, pp. 216-219. |
Omnilink Systems, Inc., “Portable Medical Equipment Tracking”, http://www.omnilink.com/portablemedicalequipmenttracking/, Mar. 15, 2015, pp. 2. |
O'Shea, Kristen L., “Infusion Management: Working Smarter, Not Harder”, Hospital Pharmacy, Apr. 2013, vol. 48, No. 3, pp. S1-S14. |
Package Management in Debian GNU/Linux, Debian GNU/Linux Expert Desktop Use Special, Giutsu-Hyohron Co., Ltd., First Edition, Sep. 25, 2004, pp. 183-185. |
Passos et al., “Distributed Software Platform for Automation and Control of General Anaesthesia”, Eighth International Symposium on Parallel and Distributed Computing, ISPDC '09, Jun. 30-Jul. 4, 2009, pp. 8. |
Pretty et al., “Hypoglycemia Detection in Critical Care Using Continuous Glucose Monitors: An in Silico Proof of Concept Analysis”, Journal of Diabetes Science and Technology, Jan. 2010, vol. 4, No. 1, pp. 15-24. |
Rappoport, Arthur E., “A Hospital Patient and Laboratory machine-Readable Identification System (MRIS) Revisited”, Journal of Medical Systems, Apr. 1984, vol. 8, Nos. 1/2, pp. 133-156. |
Ritchie et al., “A Microcomputer Based Controller for Neuromuscular Block During Surgery”, Annals of Biomedical Engineering, Jan. 1985, vol. 13, No. 1, pp. 3-15. |
Saager et al., “Computer-Guided Versus Standard Protocol for Insulin Administration in Diabetic Patients Undergoing Cardiac Surgery”, Annual Meeting of the American Society of Critical Care Anesthesiologists, Oct. 13, 2006. |
Sanders et al., “The Computer in a Programmable Implantable Medication System (PIMS)”, Proceedings of the Annual Symposium on Computer Application in Medical Care, Nov. 2, 1982, pp. 682-685. |
Schilling et al., “Optimizing Outcomes! Error Prevention and Evidence-Based Practice with IV Medications”, A Pro-Ce Publication, Hospira, Inc., Feb. 6, 2012, pp. 56. |
Schulze et al., “Advanced Sensors Technology Survey”, Final Report, Feb. 10, 1992, pp. 161. |
Scott, et al., “Using Bar-Code Technology to Capture Clinical Intervention Data in a Hospital with a Stand-Alone Pharmacy Computer System”, Mar. 15, 1996, American Journal of Health-System Pharmacy, vol. 53, No. 6, pp. 651-654. |
Sebald et al., “Numerical Analysis of a Comprehensive in Silico Subcutaneous Insulin Absorption Compartmental Model”, 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Sep. 2-6, 2009, pp. 3901-3904. |
Shabot, M. Michael, “Standardized Acquisition of Bedside Data: The IEEE P1073 Medical Information Bus”, International Journal of Clinical Monitoring and Computing, vol. 6, Sep. 27, 1989, pp. 197-204. |
Sheppard, Louis, Ph.D., “Automation of the Infusion of Drugs Using Feedback Control”, Journal of Cardiothoracic and Vascular Anesthesia, Feb. 28, 1989, vol. 3, No. 1, pp. 1-3. |
Sheppard, Louis, Ph.D., “Computer Control of the Infusion of Vasoactive Drugs”, Annals of Biomedical Engineering, Jul. 1980, vol. 8, No. 4-6, pp. 431-444. |
Sheppard, Louis, Ph.D., “The Application of Computers to the Measurement, Analysis, and Treatment of Patients Following Cardiac Surgical Procedures”, The University of Alabama in Birmingham, Oct. 31, 1977, pp. 297-300. |
Sheppard, Louis, Ph.D., “The Computer in the Care of Critically Ill Patients”, Proceedings of the IEEE, Sep. 1979, vol. 67, No. 9, pp. 1300-1306. |
“Sigma Spectrum: Operator's Manual”, Oct. 2009, pp. 72. http://static.medonecapital.com/manuals/userManuals/Sigma-Spectrum-Operator-Manual-October-2009.pdf. |
Simonsen, Michael Ph.D., POC Testing, New Monitoring Strategies on Fast Growth Paths in European Healthcare Arenas, Biomedical Business & Technology, Jan. 2007, vol. 30, No. 1, pp. 1-36. |
Siv-Lee et al., “Implementation of Wireless ‘Intelligent’ Pump IV Infusion Technology in a Not-for-Profit Academic Hospital Setting”, Hospital Pharmacy, Sep. 2007, vol. 42, No. 9, pp. 832-840. http://www.thomasland.com/hpl4209-832.pdf. |
Slack, W.V., “Information Technologies for Transforming Health Care”, https://www.andrew.cmu.edu/course/90-853/medis.dir/otadocs.dir/03ch2.pdf, Ch. 2, 1995, pp. 29-78. |
Smith, Joe, “Infusion Pump Informatics”, CatalyzeCare: Transforming Healthcare, as printed May 12, 2011, pp. 2. |
Sodder, Lisa, “A Center Keeps Medicine in Right Hands”, Dec. 4, 1999, pp. 1-2. |
Stitt, F.W., “The Problem-Oriented Medical Synopsis: a Patient-Centered Clinical Information System”, Proceedings of the Annual Symposium on Computer Application in Medical Care, 1994, pp. 88-92. |
Stokowski, Laura A. RN, MS, “Using Technology to Improve Medication Safety in the Newborn Intensive Care Unit”, Advances in Neonatal Care, Dec. 2001, vol. 1, No. 2, pp. 70-83. |
Sutton et al., “The Syntax and Semantics of the PROforma Guideline Modeling Language”, Journal of the American Medical Informatics Association, Sep./Oct. 2003, vol. 10, No. 5, pp. 433-443. |
Szeinbach et al., “Automated Dispensing Technologies: Effect on Managed Care”, Journal of Managed Care Pharmacy (JMCP), Sep./Oct. 1995, vol. 1, No. 2, pp. 121-127. |
Szolovits et al., “Guardian Angel: Patient-Centered Health Information Systems”, Technical Report MIT/LCS/TR-604, Massachusetts Institute of Technology Laboratory for Computer Science, May 1994, pp. 39. |
Van Den Berghe, M.D., Ph.D., et al., “Intensive Insulin Therapy in Critically Ill Patients”, The New England Journal of Medicine, Nov. 8, 2001, vol. 345, No. 19, pp. 1359-1367. |
Van Den Berghe, M.D., Ph.D., et al., “Intensive Insulin Therapy in the Medical ICU”, The New England Journal of Medicine, Feb. 2, 2006, vol. 354, No. 5, pp. 449-461. |
Van Der Maas et al., “Requirements for Medical Modeling Languages”, Journal of the American Medical Informatics Association, Mar./Apr. 2001, vol. 8, No. 2, pp. 146-162. |
Villalobos et al., “Computerized System in Intensive Care medicine”, Medical Informatics, vol. 11, No. 3, 1986, pp. 269-275. |
Wilkins et al., “A Regular Language: The Annotated Case Report Form”, PPD Inc., PharmaSUG2011—Paper CD18, 2011, pp. 1-9. |
Ying et al., “Regulating Mean Arterial Pressure in Postsurgical Cardiac Patients. A Fuzzy Logic System to Control Administration of Sodium Nitroprusside”, IEEE Engineering in Medicine and Biology Magazine, vol. 13, No. 5, Nov.-Dec. 1994, pp. 671-677. |
Yue, Ying Kwan, “A Healthcare Failure Mode and Effect Analysis on the Safety of Secondary Infusions”, Thesis, Institute of Biomaterials and Biomedical Engineering, University of Toronto, 2012, pp. 168. |
Yurkonis et al., “Computer Simulation of Adaptive Drug Infusion”, IEEE Transactions on Biomedical Engineering, vol. BME-34, No. 8, Aug. 1987, pp. 633-635. |
Zakariah et al., “Combination of Biphasic Transmittance Waveform with Blood Procalcitonin Levels for Diagnosis of Sepsis in Acutely Ill Patients”, Critical Care Medicine, 2008, vol. 36, No. 5, pp. 1507-1512. |
International Search Report and Written Opinion received in PCT Application No. PCT/US2010/031351, dated Jun. 28, 2010 in 9 pages. |
International Preliminary Report on Patentability and Written Opinion received in PCT Application No. PCT/US2010/031351, dated Oct. 27, 2011 in 8 pages. |
Number | Date | Country | |
---|---|---|---|
20190240405 A1 | Aug 2019 | US |
Number | Date | Country | |
---|---|---|---|
61170205 | Apr 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12761107 | Apr 2010 | US |
Child | 13586615 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15467903 | Mar 2017 | US |
Child | 16266622 | US | |
Parent | 13586615 | Aug 2012 | US |
Child | 15467903 | US |