Not applicable.
Field of the Invention
The present invention pertains generally to a marine shore power multi-adapter that utilizes three-phase electrical power service. More particularly, the invention relates to a marine shore power plug adapter system and method that enables the power system of a boat, yacht or marine vessel to connect to any variety of three-phase marine shore power electrical sources available to marine vessels at marina docking and berthing slips throughout the world.
Description of the Prior Art
Adapters for different types of electrical power supplies have been known in the prior art since the dawn of the modern power grid and improvements to the art are frequently provided. A relatively old example is provided by R. W. Rumble, entitled “Electrical Plug,” U.S. Pat. No. 3,079,475, which was awarded patent protection in 1960. According to Rumble, his invention relates to electrical fittings which can be adjusted by the user to fit any one of a multiplicity of electrical sockets, which may be made to receive plugs having either two or three pins.
Yet another relatively old example is provided by Jean-Daniel Hugly, entitled “Plug For Voltage Adaptation,” U.S. Pat. No. 3,996,546, which was awarded patent protection in 1976. According to Hugly, his invention relates to an electrical plug, more particularly a dual-voltage electrical plug which is adaptable to connect an appliance such as an electric shaver alternatively to sockets belonging to either one of two main supplies of differing voltage.
A relatively newer example is provided by Schneider et al., entitled “In-Line AC Adapter for Camping and Marine Electrical Service,” U.S. Pat. No. 6,929,515, which was awarded patent protection on Aug. 16, 2005. According to Schneider et al., their invention relates to interfacing differing electrical systems, more particularly, to an adapter for connecting electrical lines of dissimilar terminal configurations.
Yet one more example is provided by Walliser and Mazieres, entitled “Power Adapter With Interchangeable Heads,” U.S. Pat. No. 8,708,722, which was awarded patent protection on Apr. 29, 2014. According to Walliser and Mazieres, their invention relates to a power adapter with a cable port disposed on one side and a power conversion circuit to convert an input power from an alternating current (AC) power system to an output power used by a device coupled to the cable port. In addition, the power adapter allows for interchangeable heads, each with prongs suitable for different types of international AC power systems to allow the user to power electronic devices throughout the world with the use of only one power adapter.
Also known in the art are a variety of other related inventions purporting to allow electrical and electronic devices to be powered from a variety of differing types of electrical systems using adapters and/or power converters. Specific examples are too numerous to fully summarize herein.
In light of the above, there is an absence of prior art that pertain to plug adapter systems for providing high amperage three-phase electricity to a marine vessel, regardless of the type of plug configuration used on the shore power supply source. As is known in the art, many marinas throughout the world provide a shore power source at each or most of their docking and berthing slips. Each shore power source is connected to the local electrical supply grid. Typically, the shore power source at each docking and berthing slip is comprised of one or more electrical outlet or cables providing three-phase electrical power from the power grid. When docked or berthed within a slip equipped with a shore power source, the vessel's shore power cable can be connected to the electrical outlet or cable of the shore power source, providing electricity to the vessel's electrical power system.
Currently, a range of differently configured three-phase sockets are used in marinas throughout the world. IEC 60309, an international standard from the International Electrotechnical Commission for “plugs, socket-outlets and couplers for industrial purposes,” sets standards for many industrial three-phase power sockets and plugs One of the purposes of IEC 60309 is to prevent personal injury or death or damage to industrial equipment from improperly connecting industrial equipment or industrial power systems to an electrical power source to which the industrial equipment or industrial power system is not rated, specifically with regards to the voltage, frequency, and amperage of the electrical power source. To accomplish this goal, IEC 60309 provides that plugs differ in their configurations to denote compatible voltage, frequency and amperage ranges and are color coded as such. For example, the diameter of the circular plug housing will designate amperage and the location of the ground pin in relation to the clocking tab (the plastic tab on the outside of the plug housing) denotes voltage and frequency range. The ground pin can be in one of 12 locations in reference to the clocking tab with each location varying by 30 degrees or one hour if the face of the plug is thought of as a clock face with the clocking tab at the 12 o'clock location. Pins of different types of plugs can also differ in diameter and length. For example, a three-phase plug to be used with 50 Hz at 300-500 Volts has a color coded green housing with the ground pin located at the 2 o'clock location or 60 degrees with varying plug housing diameters depending on the amperage for which the plug is designed.
While some of the power sockets found at marinas internationally may follow the IEC 60309 standard, many countries may have their own standard. Generally speaking, though, most three-phase sockets found at marinas internationally will most likely be a four (4) or five (5) pin terminal variety, which have configurations that are similar to IEC 60309 sockets due to having a ground terminal typically larger in diameter than the other terminals, with the neutral terminal (in the case of a five (5) pin socket) being immediately counterclockwise to the ground terminal followed by the L3, L2, and L1 phase terminals. Four (4) pin terminal sockets will not have a neutral terminal, but the order of the phase wire terminals will be the same.
While in practice it would be ideal for sockets at a marina to follow the IEC 60309 standard or another standard based upon the voltage, frequency and amperage of the shore power source, many times the type of socket installed is based upon what was available to the installer at the time of installation. Therefore, one could easily find a 50 V, 300-500 Hz green color coded socket with a ground terminal at 60 degrees having a socket housing with a radius designating 32 amps installed on a shore power source that provides 240 V at 60 Hz with 100 amps. Therefore, prior to connecting the vessel's shore power cable to a shore power source, vessel engineers routinely check the voltage, amperage, and frequency of the shore power source to ensure compatibility with the vessel's electrical power system. While the inventor intends the invention to work primarily with vessels having power converters which have the ability to convert the voltage, frequency, and amperage of any available shore power source to the voltage, frequency, and amperage required by the vessel's electrical power system or systems, the invention could also be used for vessels without power converters as long as proper electrical standards and safety procedures are followed.
Though one may find one shore power socket configuration regularly used throughout a country or region, it is not uncommon for other socket configurations to also be used within that region. For example, there are known shore power source socket configurations that are used in each of the following regions: United States, Europe, Middle East, North Africa, the Caribbean, and South East Asia. One could easily find one of these regional configurations or others being used in a different region.
Typically, a yacht or marine vessel has a shore power cable with a plug having a configuration compatible to the socket configuration of the region where the vessel is manufactured or where the vessel is to be berthed or is currently berthed. When the vessel moves to a marina that uses a different socket configuration from the plug currently installed on the vessel, the typical operating procedure for connecting the vessel to a shore power source at a new marina is: (1) sourcing the correct plug to match the socket provided at that particular location; (2) testing the shore power source socket to determine the correct phase and wire locations; (3) cutting and stripping the vessel's shore power cable and enclosed wires; and (4) installing the sourced plug on the vessel's shore power cable by hard wiring the sourced plug to the vessel's shore power cable wires. There are a number of problems with this procedure. First, sourcing the correct power plug for the location is sometimes very difficult and may take up to a week or longer, requiring the vessel to rely upon its generators for power. Generators are typically loud and therefore frowned upon being used in marinas because no one, including the vessel's owner or its marina neighbors, wants to hear the annoying hum of generators. Second, installing the newly sourced plug can be dangerous if it is wired incorrectly. Third, having to strip the Vessel's expensive power cable every time a new plug is installed shortens the power cable meaning it will eventually need to be replaced when it gets too short. Finally, having to disassemble the vessel's power cable plug every time it docks in a marina having a shore power socket with a different plug configuration creates wear and tear on the power plugs and on the vessel's power cable eventually resulting in one or both needing to be replaced.
In addition, it is not uncommon for marinas to have shore power sources which require the vessel to be hardwired to either a power terminal on the dock or hardwired to the end of a shore power cable which instead of having a socket installed has only bare wires. In these instances, the standard operating procedure is to hard wire the vessel's shore power cable to the marine shore power source following a similar procedure as outlined above.
An alternative operating procedure would involve having multiple cable sets, each of which converts the type of plug configuration installed on the vessel to only one other configuration, thus requiring multiple sets of cables. Each cable set is very expensive and bulky, taking up prime storage space within the vessel. Even if a vessel is equipped with multiple sets of cables, sometimes a vessel will arrive at a marina that has a power plug configuration that is wholly different from any known configuration for which the vessel is equipped, thus requiring the installation of a new power plug following the procedure discussed above.
The present inventor herein has attempted to develop a third option that allows a vessel to be quickly and efficiently connected to a shore power source regardless of whether the configuration of the socket installed on the shore power source, if any, known or unknown.
An object of the present invention is to provide a system for connecting to marine shore power that addresses the needs of supplying a vessel with high amperage three-phase electricity from a shore power source regardless of the “configuration of the shore power source”or the configuration of a socket installed on the shore power source. It is further an object of the present invention to provide a system for connecting to marine shore power to a vessel without the need to use multiple bulky and expensive cable sets or the need to rewire a vessel's shore power cable with a different plug each time the vessel docks in a marina where a different shore power source socket configuration is used.
It is an additional object of the invention to provide a system for connecting to marine shore power that is easy to use, efficient and relatively inexpensive. Additionally still, it is an object of the present invention to provide a system for connecting to marine shore power which accepts a plurality of adapters to connect a vessel to a shore power source by simply plugging an adapter, which is compatible to the socket used on the shore power source, into the vessel's shore power cable plug. Moreover, it is an object of the present invention to provide a system for connecting a vessel's shore power cable to a marine shore power source, having a socket installed with a configuration presently unknown to the inventor, by plugging in an adapter to the vessel's shore power cable plug which is capable of connecting to the shore power source socket.
To achieve the above-mentioned objects, a system for connecting to marine shore power is provided having a vessel plug which accepts a plurality of adapters that each have a unique plug configuration. The vessel plug is intended to replace a vessel's shore power cable plug by installing the vessel plug directly on the vessel's shore power cable. The vessel plug has a male plug component. Each of the plurality of adapters has a female socket component and a male adapter component. The male plug component of the vessel plug is compatible with and plugs into the female socket component of each of the plurality of adapters of the invention. The male adapter components are each configured uniquely to enable vessel's shore power cable to be connected to the shore power source regardless of the configuration of the shore power source or the configuration of the socket, if any, installed on the shore power source.
The majority of the plurality of adapters have configurations matching known four and five pin shore poser socket configurations used internationally. The plurality of adapters and the vessel plug enable the vessel's, electrical system to be connected to the shore power source with a socket installed having one of these known configurations.
At least one or more of the plurality of adapters can connect directly to a three-phase shore power source cable by installing the wires contained within the shore power source cable directly to the male adapter component of the adapter. Instead of the male adapter component having pins which insert into sockets of known configurations, the pins are hollow and can receive and secure the bare wires from a shore power source cable. Being able to receive bare wires gives the adapter the versatility to attach to any shore power source regardless of the configuration of the shore power source or the configuration of a socket installed on the shore power source.
This versatility enables a vessel's electrical system, having a vessel plug of the invention installed on the vessel's shore power cable, to connect to the shore power source in a number of circumstances: (1) including when the shore power source has a cable with no socket installed; (2) when the shore power source has no cable, but rather a power terminal into which the vessel's shore power cable must be hardwired; and (3) when the shore power source has a socket with an unknown configuration, of which, none of the previously mentioned-adapters of the invention are compatible. In the first circumstance the bare wires of the shore power source cable can be installed into the adapter. In the second circumstance a length of shore power cable having a required length can be installed into the adapter with the other end hard wired to the shore power source terminal. In the latter circumstance, a vessel plug meeting the configuration of the unknown socket configuration can be sourced and installed on one end of a length of shore power cable and plugged into the shore power source socket, with the adapter being installed on the other end of the length of shore power cable. In each of these circumstances the vessel plug of the invention installed on the vessel's shore power cable will plug in to the adapter and thereby provide the vessel with electricity.
From this point forward, the adapter, newly sourced vessel plug setup or the adapter cable setup can be saved and used with the system just like any other adapter. It is the intention of the inventor to include two or more of these types of adapters, as a vessel may come across more than one marina having a previously unknown shore power source configuration or a shore power source socket with an unknown configuration.
The novel features of this invention, as well as the invention itself, both as to its structure and its operation, will be best understood from the accompanying drawings, taken in conjunction with the accompanying description, in which similar reference characters refer to similar parts, and in which:
Initially with regards to
With reference to
Further with regards to
Additionally with regards to
In other embodiments, vessel plug 10 may also incorporate additional features of electrical connectors known in the art. Also, in other embodiments vessel plug 10 could have plug configurations that vary with respect to: diameter and depth of circular plug housing 58, location of ground pin in reference to the alignment tab 26, pin size and length, number and location of pins, use of a pilot contact, and amperage, voltage, and frequency specifications to match and connect directly to the shore power source having a known or unknown configuration, without the use of an adapter.
Further with regards to
Adapter 30 is additionally comprised of an adapter ground pin 31, an adapter neutral pin 32, an adapter L1 phase pin 33, an adapter L2 phase pin 34, an adapter L3 phase pin 35 (hereinafter, simply “adapter pins 31, 32, 33, 34, and 35”), and an adapter pilot contact 74 (see
Further with regards to the embodiment shown in
Initially with regards to
Further with regards to
To insert vessel plug 10 into adapter 30, insert male plug component 93 into circular recess 94 of female socket component 40, while simultaneously aligning alignment tab 26 with alignment channel 46 and locking tabs 28 with notches 47. Doing so will result in pins 16 through 20 and pilot contact 78 inserting into adapter terminals 41 through 45 and 77 and therefore into the second end portions 61 through 65 and 92 of pins 31 through 35 and adapter pilot contact 74. To secure adapter 30 onto vessel plug 10, press adapter 30 onto vessel plug 10 and rotate lock ring 13 so that the bottom surface of each locking tab 28 slides along the top surface of each lock plate 48 from its first end to its second end until each locking tab 28 is stopped by the tab abutting the second end of each lock plate 48. Rotating lock ring 13 pulls adapter 30 towards vessel 10 fully seating adapter 30 onto vessel plug 10. Attaching adapter 30 to vessel plug 10 and locking with lock ring 13 creates electrical connections between pins 16 through 20 of vessel plug 10 and respective terminals 41 through 45 of adapter 30 and also between pilot contact 78 and adapter pilot contact 74. Other ways known in the art to attach and secure adapter 30 to vessel plug 10 could be used in other embodiments. Once adapter 30 is secured to vessel plug 10, the vessel's shore power cable can be connected to the shore power source by inserting male adapter component 79 into the shore power source socket, providing the vessel with electrical power.
In this embodiment, each of the plurality of adapters, vary with respect to: the diameter, thickness and depth of the adapter housing; diameter, length, location and number of adapter pins; use of a neutral adapter pin; location of ground pin in relation to clocking tab; use of a pilot contact; number of phases; and amperage, voltage, and frequency specifications resulting in each of the plurality of adapters having a unique configuration to be compatible with the shore power source socket having a known configuration. Each of the plurality of adapters have a unique configuration compatible with shore power source sockets having configurations regularly used in Europe, the Middle East, North Africa, the Caribbean, or South East Asia; shore power source sockets with configurations based upon national, regional, or international standards; and shore power source sockets with other configurations. The plurality of adapters allow the vessel's shore power cable to be connected to the shore power source regardless of the configuration of the shore power source of the shore power source socket, if any, installed thereon. See
Initially with regards to
Terminals 51 through 55 are each enclosed within a respective recess 21, 22, 23, 24, and 25 created by joining the bottom of receptacle 59 and the top of wiring cover 60. Terminal 29 is also enclosed within the joined receptacle 59 and wiring cover 60. When terminal block 12 is fully assembled, with pins 16 through 20 and pilot contact 78 enclosed therein, the hollow cavities of terminals 51 through 55 and terminal 29 are accessible through holes in the bottom of wiring cover 60, with the set screws of terminals 51 through 55 being accessible through recesses 21 through 25. The set screws of terminal 29 are accessible through the side of wiring cover 60 (not shown).
Further with regards to
FIG.4 is an internal view illustrating the bottom portion of terminal block 12 (receptacle 59 and wiring cover 60) inserted into opening 11A of housing 11, with the top portion of terminal block 12 (circular plug housing 58) secured to housing 11. More specifically
Initially with regards to
Adapters 80, 100, 140, 160, and 180, as shown in
In other embodiments, alternative adapters will be included having male adapter component configurations that vary with respect to: the diameter, thickness and depth of adapter housing; location, size, length, diameter and number of adapter pins; use or nonuse of an adapter neutral pin; and location of the adapter ground pin in relation to the clocking tab. These alternative adapters will also vary with respect to: whether an adapter pilot contact is used; number of phases; and amperage, voltage, and frequency specifications.
Further with regards to
Adapter 120 can be used in instances when the shore power source has a three-phase electrical cable with no shore power source socket installed. Simply install adapter 120 directly onto the bare wires of the three-phase electrical cable of the shore power source. Adapter 120 can additionally be used in instances where the shore power source socket has a configuration that isn't compatible with any of the adapters 30, 80, 100, 140, 160, or 180. In such an instance, a plug that is compatible with the shore power source socket configuration can be sourced and connected to the male adapter component of adapter 120 by connecting one end of a section of three-phase electrical cable to the male adapter component of adapter 120 as discussed above and installing the newly sourced plug onto the other end of the section of three-phase electrical cable. Lastly, adapter 120 can be connected to the shore power source in instances where the shore power source has no cable, but only a terminal that receives bare wires. In such an instance one end of the section of three-phase electrical cable can be connected to adapter 120, with the other end of the section of three-phase electrical cable connected to the shore power source terminal.
From this point forward: adapter 120 having the sourced plug installed thereon with the section of three-phase electrical cable; or adapter 120 with the three-phase electrical cable installed thereon can be used with the system just like any of the plurality of adapters. It is the intention of the inventor for the System and Method for Connecting to Marine Shore Power to include two or more of adapter 120 as the vessel may come across more than one marina where the shore power source or the shore power source socket installed thereon, if any, has an unknown configuration.
Once wires from the three-phase electrical cable are installed within adapter 120 and adapter 120 is fully assembled, electrical potting resin, silicone sealant or another similar material known in the art can be used to waterproof adapter 120.
While the particular System and method for Connecting go Marine Shore Power as herein shown and disclosed in detail is fully capable of obtaining the objects and providing the advantages herein before stated, it is to be understood that it is merely illustrative of the presently preferred embodiments of the invention and that no limitations are intended to the details of construction or design herein shown other than as described in the appended claims.
This application claims the benefit of U.S. Provisional Application No. 62/302,404, filed Mar. 2, 2016, the entire disclosures of which are incorporate herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3079475 | Rumble | Feb 1963 | A |
3885849 | Bailey | May 1975 | A |
3996546 | Hugly | Dec 1976 | A |
4053788 | Robie | Oct 1977 | A |
5514009 | Hughes | May 1996 | A |
5613863 | Klaus | Mar 1997 | A |
5616051 | Rogers | Apr 1997 | A |
5626495 | Drewnicki | May 1997 | A |
5836777 | Chen | Nov 1998 | A |
5885109 | Lee | Mar 1999 | A |
6010347 | Lee | Jan 2000 | A |
6109977 | Baxter | Aug 2000 | A |
6220880 | Lee | Apr 2001 | B1 |
6227883 | Lee | May 2001 | B1 |
6227892 | Kera | May 2001 | B1 |
6328581 | Lee | Dec 2001 | B1 |
6517380 | Deutsch | Feb 2003 | B1 |
6638113 | Kajiwara et al. | Aug 2003 | B2 |
6845023 | Philips et al. | Jan 2005 | B2 |
6894457 | Germagian | May 2005 | B2 |
6929515 | Schneider | Aug 2005 | B1 |
6991483 | Milan | Jan 2006 | B1 |
7168968 | Li | Jun 2007 | B1 |
7232322 | Yen et al. | Jun 2007 | B1 |
7422452 | Achtner | Sep 2008 | B2 |
7465901 | Yunk | Dec 2008 | B2 |
7614892 | Klant | Nov 2009 | B2 |
7817055 | Scanlon | Oct 2010 | B1 |
7993164 | Chatterjee | Aug 2011 | B2 |
8033847 | Chen | Oct 2011 | B1 |
8033867 | Kessler | Oct 2011 | B1 |
8197260 | Wadsworth | Jun 2012 | B2 |
8313350 | Lee | Nov 2012 | B2 |
8708722 | Walliser | Apr 2014 | B1 |
8821199 | Sandoval et al. | Sep 2014 | B2 |
8884773 | Wiesemann et al. | Nov 2014 | B2 |
8939781 | Johnson | Jan 2015 | B2 |
9083125 | Rogers | Jul 2015 | B2 |
9136658 | Chang | Sep 2015 | B2 |
20070032109 | Hung | Feb 2007 | A1 |
20090081895 | Lee | Mar 2009 | A1 |
20120045175 | Ordo et al. | Feb 2012 | A1 |
Entry |
---|
Hubbell Incorporated, Hubbell Marine Products, 2008, 56 pages, H5263, Hubbell Incorporated, 185 Plains Rd, Milford, CT 06461-2420, USA. |
Number | Date | Country | |
---|---|---|---|
20170256899 A1 | Sep 2017 | US |
Number | Date | Country | |
---|---|---|---|
62302404 | Mar 2016 | US |