The invention generally relates to the drying of wood pieces, and more particularly to a system and a method for continuous drying and/or re-drying of wood pieces.
Different techniques may be used to dry wood. The most widespread one is that of conventional drying with air-conditioned warm air. Processes under vacuum are also industrially used. One of these consists in using high-frequency vacuum kilns. Batches of wood are disposed in kilns where a partial vacuum is produced to expel the oxygen and reduce the temperatures inside the wood.
The document “Design Considerations of a Commercial Q-Sift Installation for Re-Drying Hemlock Lumber”, Zwick et al., 52nd annual meeting of the Western dry Kiln Association, Reno, Nev., USA, pp. 58-64, May 2001, proposes a process for re-drying wood by means of an equipment made of a conventional industrial batch kiln, a moisture level measuring device, and a high-frequency vacuum kiln (HFV) for re-drying wet pieces. The less strict variability criteria of the final moisture content for the commodity softwoods, produced in very large volume, allow a better possibility of return on investment of a batch HFV kiln for a re-drying application. The sole quality criterion regarding the moisture content for lumber (NLGA standard—National Lumber Grades Authority) is that the moisture content of the dried pieces be under 19% of moisture. The re-drying principle consists in stopping the batch drying cycle before the mean value of the wood moisture content reaches the target value (a few % above this value), carrying the pieces below 19% of moisture to the planer (or other transformation equipment), and re-drying the pieces remaining moist (above 19%) with the high-frequency vacuum. An advantage in doing this additional manipulation is that there are less over-heated pieces. The over-heating causes a greater shrinkage and consequently a more important warping, resulting in a more important potential downgrading of the products. A more important shrinkage imposes a certain oversizing of the sawings at the green state and thus a material yield loss.
The document “The Demonstration of Increased Lumber Value Using Optimized Lumber Sorting and Radio Frequency Vacuum Drying”, Elustondo et al., Forest Prod. J. 55(1): 76-83, 2005, upholds that this technique would be economically advantageous.
However, the re-drying by high-frequency vacuum may prove to be less interesting on an economical point of view than the re-drying by conventional process. Moreover, currently, the industry does not seem convinced of the advantage of batch re-drying (by conventional method or other) since this process involves a lot of additional manipulations (as well as costs). Indeed, batch drying processes require human manipulations when stacking the pieces in the enclosure. Furthermore, the most difficult quality criterion to be obtained with the batch drying processes is a very low moisture variability around the desired target value (for example: it is easy to obtain a mean target of 15% but with some pieces at 7% and other ones at 25% of moisture). To achieve it, it is often necessary to take many additional processing hours inside the kilns.
U.S. Pat. No. 4,258,240 (Pless) proposes a continuous high-frequency process. But the process involves among other things a backward and forward moving of the wood stack, and periodic permutations of the electrode connexions to the generator and to the ground. Furthermore, the process applies to a stack of wood and does not satisfy the need of automatically selecting, controlling and ascertaining the moisture content of each one of the pieces and thus of limiting the necessity to have an operator to do it. The proposed process is rather akin to a semi-continuous application and is not adapted to purely continuous applications involving few or no manipulations.
An object of the present invention is to provide a system and a method for continuous drying of wood pieces that allow really continuous applications involving few or no manipulations.
Another object of the present invention is to provide a system and a method for continuous drying of wood pieces that allow reducing the monitoring of conventional kilns.
Another object of the present invention is to provide a system and a method for continuous drying of wood pieces that allow eliminating or else reducing the number of pieces likely to be overdried.
Another object of the present invention is to provide a system and a method for continuous drying of wood pieces that allow improving the material yield at the sawmill.
Another object of the present invention is to provide a system and a method for continuous drying of wood pieces that allow better controlling the drying of wood and reaching more accurate moisture contents.
Another object of the present invention is to provide a system and a method for continuous drying of wood pieces that reduce the energy consumption.
Another object of the present invention is to provide a system and a method for continuous drying of wood pieces that allow increasing the yield of conventional batch kilns or that of other types of kilns.
Another object of the present invention is to provide a system and a method for continuous drying of wood pieces advantageously using high-frequency drying equipment.
According to an aspect of the invention, there is provided a method for continuous drying of wood pieces, comprising the steps of:
a) loading the wood pieces in file onto a conveyor arrangement defining a course towards a destination;
b) measuring a moisture content of each wood piece moving on the conveyor arrangement during the course;
c) diverting each wood piece whose measured moisture content is above a target moisture content from the conveyor arrangement towards a drying equipment capable of processing the wood pieces diverted in file for removing a portion of their moisture, the wood pieces whose measured moisture contents are below the target content continuing the course on the conveyor arrangement towards the destination;
d) passing each diverted wood piece in the drying equipment for removing a moisture portion from the wood piece;
e) measuring a moisture content of each wood piece after a drying cycle in the drying equipment;
f) repeating the steps d) and e) for each diverted wood piece whose measured moisture content after a drying cycle is above the moisture content target; and
g) returning each diverted wood piece whose moisture content after a drying cycle is below the target moisture content onto the conveyor arrangement so that the wood piece resumes the course towards the destination.
According to another aspect of the invention, there is provided a system for continuous drying of wood pieces, comprising:
Preferably, the drying equipment is a high-frequency drying equipment.
A detailed description of preferred embodiments of the invention will be given herein below with reference to the following drawings, in which like numbers refer to like elements:
Referring to
In connection with the present disclosure, the expression “in file” means that the wood pieces 2 are loaded onto the conveyor arrangement 8 so as to form a line or row that may have a width of several pieces 2 disposed next to and after one another and that may also overlap.
In connection with the present disclosure, the expression “drying” may be substituted to the expression “re-drying” and vice-versa since a re-drying operation consists in performing an additional drying operation, while a drying operation is involved in a re-drying operation of a wood piece 2. The system and method according to the invention may be used to dry green wood pieces 2, i.e. which have not yet been subjected to any drying operation, as well as wood pieces 2 having already been subjected to a preliminary drying, for example when they come from kilns 6. The wood pieces 2 may be in the form of boards, panels, sheets, shingles, components, or other forms if desired.
The conveyor arrangement 8 may be formed of a conveyor or several successive conveyors arranged to carry the wood pieces 2 to the desired destination. The conveyor arrangement 8 may be arranged so that the transportation arrangement of the wood pieces 2 is longitudinal, crosswise or in any angle with respect to a transportation direction of the conveyor arrangement 8.
The system comprises a first measuring device 10 for measuring a moisture content of each wood piece 2 travelling on the conveyor arrangement 8 during the course. The measuring device 10 may be of a type that takes a moisture content measurement of each wood piece 2 that passes in or under a predetermined detection area. The measuring device 10 may take any other desired configuration allowing measuring the moisture content of the wood pieces 2, preferably without hindering their displacement on the conveyor arrangement 8.
The system also comprises a diverting device 40 allowing diverting from the conveyor arrangement 8 each wood piece 2 whose moisture content measured by the first measuring device 10 is above a target moisture content (>THMAX). The wood pieces 2 whose measured moisture contents are below the target content (<THMAX) continue their course on the conveyor arrangement 8 towards the destination. The diverting device may take different forms and configurations. For example, it may be formed of a trapdoor that opens inside the conveyor arrangement 8 to divert the wood pieces 2 having a moisture content too high towards another course under the conveyor arrangement 8. It may also be formed of a pivoting arm arranged to divert the wood pieces 2 moving on the conveyor arrangement 8 towards one of its sides.
The system also comprises a drying equipment 16 capable of receiving and processing in file the wood pieces 2 diverted by the diverting device 40 to remove a moisture portion from the wood pieces 2. The drying equipment 16 is preferably by high-frequency. But the drying equipment 16 may also be by hot air convection, by thermal conduction of heat, by infrared, by microwaves, or by another thermal treatment technology that can modify the moisture content of the product.
The moisture content of each wood piece processed by the drying equipment 16 is measured by a second measuring device that may be formed by the first measuring device 10 or another one as described hereinafter, depending on the configuration of the system that is provided for selectively routing the wood pieces 2 processed by the drying equipment 16 towards the conveyor arrangement 8 and again towards the drying equipment 16 for a re-drying depending on whether the processed wood pieces 2 have moisture contents measured by the second measuring device respectively below and above the target moisture content.
In a typical mode of operation, the wood pieces 2 are loaded in file onto the conveyor arrangement 8 and are routed so as to pass under the in-line moisture content measuring device 10. When the measured moisture content of a piece 2 is below the target content, the piece 2 continues its course on the conveyor arrangement 8 and is routed toward the destination for example for a post-drying treatment such as planing 12, edging, varnishing, etc., possibly followed by packing 36. Such a piece 2 is thus not subjected to a drying or re-drying. When the measured moisture content of a piece 2 is above the target content, the piece 2 is automatically diverted by means of the diverting device 40 (formed of a diverting trapdoor or any other equivalent mechanism allowing diverting a wood piece 2) towards another conveyor arrangement 18 where the drying equipment 16 processes the piece 2 in a continuous mode in order to remove a portion of the wood moisture. The moisture content of each one of the pieces 2 processed by the equipment 16 is reappraised (in continuous mode) and when the pieces 2 are in conformity (content below the target content), they are routed by the conveyor arrangement 18 towards the conveyor 8 to eventually be subjected to the post-treatment operations. Otherwise, the wood pieces 2 are reprocessed by the drying equipment 16. In this way, the quality control is automatically and continually made, without letting the pieces 2 having a moisture content too high pass.
Referring to
The generators 22 are the sources that provide the electromagnetic energy to the applicators 24 at a frequency comprised for example between 1 MHz and 30 MHz (the frequency may be higher or lower with respect to the aforesaid range if desired). The applicators 24 transmit the energy from the generators 22 to the wood pieces 2 and generally consist of metallic electrodes 46, 48 (shown in
The number and the power of the generators 22 used (to be installed) depend on the power required to perform the drying of the wood pieces 2, i.e. it is related to the production capacity of the plant and the amount of water to be evaporated. The applicators 24 are sized as a function of the chosen operating frequency, the available space, and their number is established as a function of the number of generators 22 and the number of lines 42, 44 (one, two, or more) chosen. The choice of the number of lines 42, 44 has an influence on the number of applicators 24 and on the number of components to be installed (line switches 26, moisture content detectors 28, conveyors 32, diverting trapdoors 30). The advantage of having multiple lines 42, 44 is to be capable of processing more wood pieces 2 but also to maintain a certain productivity for example during maintenance and repair operations on a line 42, 44.
The number of in-line moisture detectors 28 and diverting trapdoors 30 determines in part the moisture dispersion of the pieces 2 around the target value. The more there are trapdoors 30 and detectors 28, the closer the processed pieces 2 may be to the target moisture content. For equal conditions of moisture content, conveyor speed, power, etc., the dispersion (variation) of moisture will be higher for a drying line 42, 44 with only one detector 10 at the entry and one detector 28 at the exit than for a line 42, 44 that has detectors 28 and trapdoors 30 between each applicator 24. It is however possible to operate the lines 42, 44 with different dwell times (for example with different conveyor speeds) and/or at different powers in order to limit the number of in-line detectors 28 and trapdoors 30 while preserving a low dispersion. The wood pieces 2 to be subjected to the high-frequency drying are then separated and diverted towards either one of the lines 42, 44. For example, the fastest line 42, 44, i.e. having the shortest dwell time, may receive the wood pieces 2 that have a moisture content below a particular threshold, while the slowest one, i.e. with the longest dwell time, may receive the pieces 2 having a moisture content above the particular threshold.
The priority of the wood pieces 2 is preferably considered. A piece 2 that comes out at the end of the line 42, 44 and that has not yet reach the target moisture content will preferably have priority to be re-dried with respect to a new piece 2 that comes in for the first time in the drying equipment 16. The prioritization of the pieces 2 allows avoiding a too large temperature drop prior to the re-drying during a second pass through the equipment 16, which translates in an energy saving and a better yield of the installations. A simple way to achieve the prioritization is to use a trimbin 45 with a piece detector 50 that triggers the admission of the wood piece 2 on the line 44, 42 and that temporarily limits the access to the new wood pieces 2. Thus, the wood pieces 2 that have not yet reach the target moisture content are re-injected as fast as possible in the re-drying line 42, 44.
The control of the operations of the system may be centralized for example by means of a control unit 52 analyzing the measurements coming from the measuring devices 10, 28, controlling the diverting trapdoors 30, 40, and operating the conveyors 8, 14, 32 if necessary. The control of the operations may also be decentralized, for example, for each arrangement of measuring device 10, 28 and of diverting device 30, 40, possibly including the sections of the conveyor arrangements 8, 14, 32 close to these elements.
Referring to
Each one of the types of applicators 24 has advantages and drawbacks at the level of the design and the costs. The stray field applicators 24 (illustrated in
Referring to
Referring back to
In a simplified version, the portion of the conveyor arrangement 18 downstream from the drying equipment 16 may be diverted such as depicted by the dashed line 18′ to systematically bring the wood pieces 2 processed by the drying equipment 16 back onto the conveyor arrangement 8 upstream from the measuring device 10, so as to define a re-drying loop followed by the wood pieces as long as their moisture content measured by the measuring device 10 is not below the target content. Such a simplified version allows eliminating the measuring device(s) 28 (shown in
Referring to
The measuring devices 10, 28 for measuring the moisture content of the wood pieces 2 may be of different types, for example, capacitive, resistive, or others. The capacitive types of devices may in particular operate linearly or crosswise. The measuring principle consists in creating a high-frequency electrical field within the material (wood) and measuring the permittivity and/or measuring the variation of the oscillation frequency with respect to the circuit without material and/or the loss factor of the material (wood). The measured values are influenced by the moisture content of the wood and the relations are generally well mastered in a certain range of moisture content. The reading provided by such a type of device often corresponds to a moisture content expressed in %. The measurement is performed with or without contact and may easily be carried out in continuous mode. For resistive type devices, the measuring operation is generally performed crosswise. The measuring principle consists in passing a current between the electrodes and measuring the electrical resistance (or the conductance). The relation between the electrical resistance (or conductance) and the moisture content of the wood is well mastered. The reading provided by the device generally corresponds to a moisture content expressed in %.
Referring to
Tests have allowed establishing that the quality of spruce wood processed in a high-frequency drying system according to the invention was comparable or else better in terms of warp of pieces of 2 inches×4 inches (2×4) with respect to conventionally re-dried pieces. Furthermore, the tests have allowed establishing the processing time to less than one hour for this type of wood with an acceptable quality.
The operation proves to be extremely simple and the costs of an industrial equipment may be below the costs for the HFV technology (high-frequency vacuum batch kilns) currently available.
While embodiments of the invention have been illustrated in the accompanying drawings and described above, it will be evident to those skilled in the art that modifications may be made therein without departing from the invention.
Number | Date | Country | Kind |
---|---|---|---|
2593873 | Jul 2007 | CA | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA2008/001258 | 7/9/2008 | WO | 00 | 1/6/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/006737 | 1/15/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1328658 | Fish, Jr. | Jan 1920 | A |
2397897 | Wenger | Apr 1946 | A |
2679111 | Leischner | May 1954 | A |
3283412 | Farnsworth | Nov 1966 | A |
4194296 | Pagnozzi et al. | Mar 1980 | A |
4233752 | Kleinguenther | Nov 1980 | A |
4258240 | Pless | Mar 1981 | A |
6640462 | Choi et al. | Nov 2003 | B1 |
6865821 | Merschat | Mar 2005 | B2 |
7146747 | Studd et al. | Dec 2006 | B2 |
7676953 | Magill | Mar 2010 | B2 |
7963048 | Pollard | Jun 2011 | B2 |
8104190 | Magill | Jan 2012 | B2 |
8201501 | Tinsley et al. | Jun 2012 | B2 |
Number | Date | Country |
---|---|---|
10114773 | Oct 2001 | DE |
55155781 | Dec 1980 | JP |
56026993 | Mar 1981 | JP |
2002028902 | Jan 2002 | JP |
WO 02065040 | Aug 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20100146806 A1 | Jun 2010 | US |