The present invention relates generally to protecting electronic devices in electronic systems that have a run power mode and a standby power mode.
This section is intended to introduce the reader to various aspects of art, which may be related to various aspects of the present invention that are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present invention. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.
Many modern electronic devices, including television sets, have more than one power mode. For example, a television may have a “run” power mode in which all circuits in the system are powered up and a “standby” power mode in which some circuits are unpowered to conserve energy. In standby mode, some circuits remain powered as long as the television set is plugged into AC power. Electrical characteristics of the input/output (“I/O”) pins of the unpowered circuits may cause undesirable effects on the circuits that remain powered in standby mode. For example, electrostatic discharge (“ESD”) protection diodes in standard logic gates can change the sequencing of a run and a standby power supply if the sequencing of the supplies is uncontrolled. A system and method for protecting powered devices from effects attributable to the electrical characteristics of I/O pins of unpowered devices is desirable.
Certain aspects commensurate in scope with the disclosed embodiments are set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of certain forms the invention might take and that these aspects are not intended to limit the scope of the invention. Indeed, the invention may encompass a variety of aspects that may not be set forth below.
An exemplary embodiment of the present invention relates to a power control circuit that comprises a run mode controller configured to operate the power control circuit in a run power mode and a standby mode controller configured to operate the power control circuit in a standby power mode. The power control circuit also comprises a delay circuit adapted to control a transistor, the transistor being coupled between the run mode controller and the standby mode controller, wherein the transistor is configured to isolate the run mode controller from the standby mode controller until the run mode controller is initialized.
Advantages of the invention may become apparent upon reading the following detailed description and upon reference to the drawings in which:
One or more specific embodiments of the present invention will be described below. In an effort to provide a concise description of these embodiments, not all features of an actual implementation are described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
The run mode controller 102, which may comprise an integrated circuit device, includes an I/O initialization circuit 106. The I/O initialization circuit 106 is adapted to perform initialization on other system components when the power control circuit 100 is placed in a run power mode. The run mode controller further includes a transistor 108 (Q2) connected to a run power supply (for example, 3.3 volts). A transistor 110 (Q1) is connected in series to the transistor 108. The transistor 110 is additionally connected to system ground. An ESD protection diode 112 (D1) is connected between the run power supply and a PSI_CONFIG/ signal 114.
The standby mode controller 104, which may comprise a field programmable gate array (FPGA) circuit, includes a diode 118 (D2) connected to one or more standby power supplies (for example, 3.3 volts and/or 1.2 volts). The diode 118 is connected to a transistor 120 (Q3) as shown in
In the power control circuit 100, a potential problem may occur when the run power supply is off and the standby power supply remains on. In that situation, the ESD protection diode 112 may undesirably pull a control line such as the RECONFIG/ signal 116 into an unexpected state, which may have an adverse impact on system operation and/or performance. For example, the ESD protection diode 112 would be clamped at about 0.7 volts when the run power supply is turned off. Under some conditions, the clamping of the ESD protection diode 112 may pull the RECONFIG/ signal 116 into a low state. Because the RECONFIG/ signal 116 controls the programming of the SRAM 224, the contents of the SRAM 124 may be altered or destroyed. The alteration or destruction of data stored in the SRAM 124 may degrade performance of the power control circuit 100 or render the system in which the power control circuit 100 is disposed completely inoperable.
The exemplary embodiment shown in
In the exemplary embodiment shown in
The run mode controller 202, which may comprise an integrated circuit device, includes an I/O initialization circuit 206. The I/O initialization circuit 206 is adapted to perform initialization on other system components when the power control circuit 200 is placed in a run power mode. The run mode controller further includes a transistor 208 (Q2) connected to a run power supply 168 (for example, 3.3 volts). A transistor 210 (Q1) is connected in series to the transistor 208. The transistor 210 is additionally connected to system ground. An ESD protection diode 212 (D1) is connected between the run power supply 168 and a PSI_CONFIG/ signal 214.
The standby mode controller 204, which may comprise an FPGA circuit, is powered by one or more standby power supplies 170 (for example, 3.3 volts and/or 1.2 volts). A transistor 218 (Q3) is connected to receive the RECONFIG/ signal 216 as an input, as shown in
An exemplary embodiment of the present invention comprises a delay circuit 225 (shown in dashed lines) that is adapted to prevent the transistor 210 from enabling the RECONFIG/ signal 216 until the transistor 210 is properly configured. This is a result of the fact that the run mode controller 202 takes a finite amount of time to set up the PSI_CONFIG/ signal 214 after coming out of reset.
The delay circuit 225 comprises a resistor 226, which is connected through a pull-up resistor to the run power supply. Also included in the delay circuit 225 is a resistor 228, which is connected to form a voltage divider circuit with the resistor 226. The final component of the exemplary delay circuit 225 is a capacitor 230, which is connected in parallel to the resistor 228. The combination of the resistor 226, the resistor 228 and the capacitor 230 provide a time delay to a reset circuit 232. The values shown for the resistor 226, the resistor 228 and the capacitor 230 in
The combination of a transistor 234, which is connected between the PSI_CONFIG/ signal 214 and the RECONFIG/ signal 216 as shown in
In this manner, the delay circuit 225 operates to enable the transistor 234, which isolates the PSI_CONFIG/ signal 214 from the RECONFIG/ signal 216 when the run power supply is off. The connection of the PSI_CONFIG/ signal 214 to any other circuitry is disabled during a period of time after the run mode controller 206 is first initialized. Additionally, an exemplary embodiment of the present invention may facilitate compliance with low power specifications such as the Energy Star specification for HDTV systems, which has a power consumption requirement of less than 1 watt during standby mode.
When the power control circuit 200 (
As shown in
While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.
This application is a National Phase 371 Application of PCT Application No. PCT/U.S.07/00646, filed Jan. 10, 2007, entitled “SYSTEM AND METHOD FOR CONTROL LINE ISOLATION.”
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US07/00646 | 1/10/2007 | WO | 00 | 6/17/2009 |