The present inventions generally relate to cryo-ablation devices and, more particularly, to systems and methods for delivering liquid coolant to a cryo-ablation device.
Atrial fibrillation is a condition in which upper chambers of the heart beat rapidly and irregularly. One known manner of treating atrial fibrillation is to administer drugs in order to maintain normal sinus rhythm and/or to decrease ventricular rhythm. Known drug treatments, however, may not be sufficiently effective, and additional measures such as cardiac tissue ablation must often be taken to control the arrhythmia.
Known ablation procedures for treating atrial fibrillation include performing transmural ablation of the heart wall or adjacent tissue walls using radio frequency (RF) energy. One known ablation procedure is referred to as transmural ablation and involves burning or ablating cardiac tissue and forming lesions to break up circuits believed to drive atrial fibrillation. Transmural ablation may be grouped into two main categories of procedures: endocardial ablation and epicardial ablation. Endocardial procedures are performed from inside the wall (typically the myocardium) that is to be ablated. Endocardial ablation is generally carried out by delivering one or more ablation devices into the chambers of the heart by catheter delivery, typically through the arteries and/or veins of the patient. In contrast, epicardial procedures are performed from the outside wall (typically the myocardium) of the tissue that is to be ablated. Epicardial procedures are often performed using devices that are introduced through the chest and between the pericardium and the tissue to be ablated.
While RF transmural ablation has been used effectively in the past, cryogenic ablation has received increased attention for treatment of atrial fibrillation in view of the effectiveness of cryo-ablation procedures with fewer side effects. One known endocardial cryo-ablation procedure involves inserting a catheter into the heart, e.g., through the leg of a patient. Once properly positioned, a portion of the catheter, typically the tip of the catheter, is cooled to a sufficiently low temperature by use of a liquid coolant or refrigerant such as nitrous oxide, e.g., to sub-zero temperatures of about −75° C., in order to freeze tissue believed to conduct signals that cause atrial fibrillation. The frozen tissue eventually dies so that the ablated tissue no longer conducts electrical impulses that are believed to cause or conduct atrial fibrillation signals.
One known catheter-based cryo-ablation system includes a refrigerant source such as a compressed gas bottle or tank containing nitrous oxide, the intended use of which is to release or draw gaseous nitrous oxide. The nitrous oxide in the tank may be saturated such that the tank includes nitrous oxide in gaseous form as well as nitrous oxide in liquid form. Certain known systems are configured to extract the liquid portion of saturated nitrous oxide from the tank, e.g., by inverting the tank such that liquid nitrous oxide flows within a portion of the tank to allow the liquid nitrous oxide to be withdrawn from the tank. The extracted liquid nitrous oxide is then injected directly into the catheter by the tank pressure. Other known devices attempt to address the difficulties and inconvenience associated with inverting a refrigerant tank by utilizing a siphon tube. Known systems also use a cooling element that condenses gaseous nitrous oxide released from the tank into a liquid, and liquid nitrous oxide is delivered to or injected directly into a catheter.
Known systems, however, have a number of shortcomings. For example, it is inconvenient to have to invert gas tanks in order to extract liquid nitrous oxide from a supply tank, which is intended to deliver gaseous refrigerant rather than liquid refrigerant. Further, known systems provide only limited control over the delivery of liquid nitrous oxide that is extracted from a supply tank generated by a cooling element and delivered to the catheter due to their reliance on the pressure of the supply tank to deliver liquid nitrous oxide to the cryo-ablation catheter. Consequently, low supply tank pressures may reduce the performance and effectiveness of the cryo-ablation device, and these negative effects may be more noticeable as the nitrous oxide in supply tank is depleted and the tank pressure is reduced over time. Further, if the supply tank valve is closed, nitrous oxide liquid remains within the supply line downstream of the supply tank. Consequently, remaining pressure in the supply line continues to push nitrous oxide liquid through the system to the cryo-ablation catheter despite the desire of the clinician to stop the flow of flow of coolant. Additionally, the pressure of the liquid nitrous oxide at the cryo-ablation catheter is governed and limited by the pressure of the tank, which pushes the extracted liquid nitrous oxide to the cryo-ablation catheter. Such pressures may be difficult to control and may be insufficient due to limitations associated with the internal tank pressure. Thus, if reduced liquid pressure at the catheter is desired, the pressure of the supply tank or bottle can be reduced, but it may not be able to increase the liquid pressure at the catheter above the pressure of the supply tank in known systems. These issues limit the capabilities and effectiveness of a cryo-ablation system in various ways.
For example, there may be instances when higher liquid nitrous oxide pressures are required to overcome the pressure of a cryo-ablation catheter such that liquid nitrous oxide can be injected or forced into the cryo-ablation catheter. Certain high resistance catheters, therefore, may not be compatible with systems that rely on tank pressures, which may not be high enough to overcome catheter pressure or resistance. As a further example, the temperature of the liquid nitrous oxide may increase as it flows through system supply lines and the catheter, thereby causing the liquid nitrous oxide to vaporize, resulting in less effective cryo-ablation. One method to maintain the nitrous oxide in liquid form at elevated temperatures is to increase the pressure of the liquid. However, with known systems that rely on the pressure of the tank, the ability to increase the pressure of the nitrous oxide liquid may be limited or not possible. Further, having to heat the supply tank to increase pressure is inconvenient, requires additional components, adds one more parameters to monitor and control, and increases the temperature of the nitrous oxide, which is generally not desirable for purposes of cryo-ablation.
In accordance with one embodiment, a system for delivering a liquid coolant to a cryo-ablation device that is used for cryogenically ablating tissue includes a coolant supply, a cooling element such as a heat exchanger and an actuator. The cooling element is configured to liquefy gaseous coolant that is released from the coolant supply. The actuator is in fluid communication with the cooling element and the cryo-ablation device and defines a chamber. The actuator is configured to controllably draw liquid coolant into the chamber and controllably expel liquid coolant from the chamber for delivery to the cryo-ablation device.
In accordance with another embodiment, a system for delivering liquid nitrous oxide to a cryo-ablation device that is used to cryogenically ablate tissue includes a tank for storing gaseous nitrous oxide, a cooling element, a container or reservoir and an actuator. The cooling element is configured to liquefy gaseous nitrous oxide that is released from the tank. Liquefied nitrous oxide is stored in the container. The actuator is in fluid communication with the container and the cryo-ablation device and defines a chamber. The actuator is configured to controllably draw liquid nitrous oxide from the container and into the chamber, and to controllably expel liquid nitrous oxide from the chamber for delivery to the cryo-ablation device.
Another embodiment is directed to a method of delivering a liquid coolant to a cryo-ablation device that is used to cryogenically ablate tissue. The method includes releasing gaseous coolant from a coolant supply and liquefying gaseous coolant with a cooling element. The method further includes controllably drawing liquid coolant into an actuator chamber in fluid communication with the cooling element and the cryo-ablation device, controllably expelling liquid coolant from the chamber and delivering expelled liquid coolant to the cryo-ablation device.
Another alternative embodiment is directed to a method of delivering liquid nitrous oxide to a cryo-ablation device. The method includes releasing gaseous nitrous oxide from a tank, liquefying gaseous nitrous oxide with a cooling element and collecting or storing liquid nitrous oxide in a container. The method further includes controllably drawing liquid nitrous oxide from the container and into a chamber of an actuator that is in fluid communication with the container and the cryo-ablation device, controllably expelling liquid nitrous oxide from the chamber and delivering expelled liquid nitrous oxide to the cryo-ablation device.
A further embodiment is directed to a method of cryogenically ablating tissue. The method includes positioning a cryo-ablation device adjacent to tissue to be ablated and releasing gaseous coolant from a coolant supply. Gaseous coolant is liquefied by a cooling element. The method further includes controllably drawing liquid coolant into a chamber of an actuator, controllably expelling liquid coolant from the chamber, delivering expelled liquid coolant to the ablation device and cryogenically ablating tissue using the ablation device and delivered liquid coolant.
In one or more embodiments, the actuator is configured to controllably draw cooling liquid, such as liquid nitrous oxide, indirectly from the cooling element, e.g., from a container that collects or stores liquid coolant. In other embodiments, the actuator is configured to controllably draw liquid coolant into the chamber directly from the cooling element without an intermediate container.
Further, in one or more embodiments, one-way valves may be associated with an input and an output of the actuator so that liquid coolant flows in one direction and enters the chamber of the actuator, and also flows in one direction when the liquid coolant is expelled or forced out of the chamber.
The actuator can be a syringe, a piston or a pump that is operable to change the size of the chamber and draw cooling fluid in and push or expel cooling fluid out from the chamber. For example, a syringe actuator may include a hollow barrel that defines the chamber, a gasket and a plunger. The plunger is controllably movable to displace the gasket and to expand the chamber to controllably draw liquid coolant into the chamber, and to contract the chamber to controllably expel liquid coolant from the chamber. The actuator can be configured so that a pressure of liquid coolant within the chamber is greater than a pressure of gaseous coolant within the coolant supply. For example, the pressure of the liquid coolant within the chamber is about 100 psi to about 1,500 psi, and is greater than the pressure of the gaseous coolant within the coolant supply. In this manner, liquid coolant can advantageously be controllably delivered to a cryo-ablation device and at higher pressures than supplies or tanks that store a coolant in gaseous form.
In one embodiment, the cooling element and the actuator are contained within a common cooling environment and, if necessary, the cooling element can be contained within a separate cooling environment within the common cooling environment to provide cooled environments with desired or different temperature profiles.
In one or more embodiments, the cryo-ablation device can be a cryo-ablation catheter and may be utilized for cryogenically ablating various types of tissue including endocardial tissue.
Embodiments will be described and explained with additional specificity and detail with reference to the accompanying drawings in which:
Embodiments provide liquid coolant or refrigerant delivery systems that provide one or more intermediate components including a controllable actuator configured to control liquid coolant that is delivered to a cryo-ablation device. With embodiments, liquid coolant is not provided directly from a cooling element to a cryo-ablation device. Instead, embodiments utilize an indirect system that includes an intermediate actuator, which allows a clinician to control the timing, quantity and/or pressure of liquid coolant that is delivered to the cryo-ablation device.
With this indirect or intermediate configuration, embodiments can provide liquid coolant to cryo-ablation devices in a controlled and precise manner at various pressures independent of the pressure of a supply tank. For example, with embodiments, the pressure of the liquid coolant delivered to the cryo-ablation device may be less than, the same as, or greater than the pressure of a supply tank that provides coolant in gaseous form, thereby providing flexibility and control over liquid coolant pressures and delivery. These capabilities are particularly useful when utilizing higher pressure catheters and when it is necessary to maintain coolant in liquid form when the coolant is at elevated temperatures. Embodiments achieve these capabilities without having to heat coolant supply tanks, invert coolant supply tanks or use siphon tubes, which are used in certain known systems. Further aspects of embodiments are described with reference to
Referring to
In the illustrated embodiment, the control system 120 includes a cooling element 140 having an inlet 141 and an outlet 143. The cooling element inlet 141 is in fluid communication with the supply tank 110 through a suitable gas line 114 and one or more valves 116 that are controlled to release gaseous coolant 112 from the supply tank 110 to the cooling element 140 at stage 205. Gaseous coolant 112 released from the supply tank 110 enters the cooling element 140 through a cooling element inlet 141, cools the gaseous coolant 112 at stage 205, and condenses the gaseous coolant 112 into a liquid at stage 210. In the illustrated embodiment, liquid coolant 142 exits the cooling element 140 through the outlet 143 and enters an inlet 151 of a container, reservoir or storage vessel 150 (generally referred to as “container”), which stores or collects liquid coolant 142 generated by the cooling element 140 at stage 215.
It should be understood that embodiments can be implemented using various gaseous and liquid refrigerants or coolants 112, 142, and that embodiments may be utilized in connection with various types of cryo-ablation devices 130 for use in various cryo-ablation surgical procedures and treatments. For example, the supply tank 110 may store N20, C02, N2 gaseous coolants 112, and the resulting liquid coolant 142 delivered to the cryo-ablation device 130 may also be N20, C02, N2 and other liquid coolants 142 that are suitable for use in cryo-ablation procedures. Embodiments may be utilized to controllably deliver liquid coolant 142 to cryo-ablation devices 130 including cryo-ablation catheters (e.g., balloon or point type catheters) and other suitable cryo-ablation devices 130 for purposes of cryogenically ablating cardiac tissue including endocardial tissue, e.g., for treatment of atrial fibrillation, flutter and other cardiac conditions. Further, embodiments may be used with cryo-ablation devices 130 that are used in other procedures and treatments including, but not limited to, cryo-ablation of cancerous tissue and treatment of skin disorders that are typically treated using other sources of ablation energy such as a laser. For ease of explanation, reference is made to a supply tank 110 that stores a gaseous N20 or nitrous oxide 112, and a control system 120 that controllably delivers liquid nitrous oxide 142 to a cryo-ablation catheter 130 for use in ablating endocardial tissue to treat atrial fibrillation. Thus, it should be understood that embodiments may be used with various gaseous and liquid coolants 112, 142, various cryo-ablation devices 130, and in various cryo-ablation procedures and treatments.
An outlet 153 of the container 150 is in fluid communication with the cooling element 140 through a supply line 144 and, if necessary, one or more valves (not shown in
The actuator 160 defines an internal chamber, cavity or reservoir 162 (generally referred to as “chamber”). Liquid coolant 142 provided or released by the container 150 at stage 220 is controllably drawn into the chamber 162 through an inlet 161 at stage 225, and controllably pushed, forced or expelled from the chamber 162 through an outlet 163 at stage 230. Liquid coolant 142 that is controllably expelled from the chamber 162 may be provided to a console or interface 170 of the cryo-ablation catheter 130 through suitable connectors or supply lines 172 for use in a cryo-ablation procedure at stage 235.
According to one embodiment, the actuator 160 is in the form of a pump, piston, syringe or similar device. For example, a syringe actuator may include a hollow barrel that defines an internal chamber 162, a gasket disposed inside the hollow barrel within the hollow barrel and that engages an inner surface of the barrel and that forms a seal with the inner surface of the barrel, and a plunger. The plunger is controllably movable to displace the gasket, thereby expanding the size of the chamber 162 to controllably draw liquid coolant 142 into the chamber 162, and to controllably contract or reduce the size of the chamber 162 to controllably expel or force liquid coolant 142 from the chamber 162.
In the illustrated embodiment, the cooling element 140, the container 150 and the actuator 160 are located in a common, cooled environment 180, which may be maintained at temperatures of about −75° C. to about 15° C. Other system 120 configurations may be utilized as necessary and depending on the temperatures at which certain components must be maintained. For example, the container 150 may be located within the common environment 180 or within a separate external cooled environment (not shown), which is maintained at a temperature of about −75° C. to about 15° C. As a further example, the cooling element 140 may be contained within a separate cooled environment 182 within the common cooled environment 180 (as shown in
With further reference to
The actuator 160 is configured to controllably draw liquid coolant 142 liquid into the chamber 162, and to controllably expel or force liquid coolant 142 out of the chamber 162 for delivery to the cryo-ablation catheter 130. For this purpose, the input valve 321 may be a one-way valve such as a check valve so that the liquid coolant 142 can be drawn from the container 140 and into the chamber 162, but cannot flow in the opposite direction from the chamber 162 and back into the container 140. Similarly, the output valve 322 may be a one-way valve such as a check valve so that liquid coolant 142 can be forced out of the chamber 162 through the output valve 322, but not back through the input valve 321.
According to one embodiment, liquid coolant 142 is permitted to flow through the one-way inlet valve 321 if a sufficiently high pressure difference or cracking pressure exists between the supply line 154 and/or container 140 and the chamber 162. Similarly, according to one embodiment, liquid coolant 142 is permitted to flow through the one-way outlet valve 322 if a sufficient high pressure difference or cracking pressure exists between the chamber 162 and the supply line 164 and/or cryo-ablation catheter 130.
Referring to
Referring to
Thus, embodiments are configured to provide a storage container 140 and an actuator 160 that are positioned between the output 142 of the cooling element 140 and a cryo-ablation catheter 130 or interface 170 thereto. In this manner, embodiments provide “indirect” injection of liquid coolant 142 to the cryo-ablation catheter 130 and advantageously allow liquid coolant 142 to be selectively and controllably delivered to a cryo-ablation catheter as needed and at desired pressures.
For example, liquid coolant 142 can be stored in the container 150, and when a user needs the liquid coolant 142, the liquid coolant 142 can be controllably loaded into the chamber 162. The user can then decide when to deliver the liquid coolant 142 from the chamber 162 to the cryo-ablation catheter 130. Embodiments, therefore, advantageously allow a user or another component of the control system 120 (such as a processor, computer, motor or other actuator) to determine and control the timing of when liquid coolant 142 is delivered to the cryo-ablation catheter 130. Additionally, embodiments advantageously allow a user or another component of the control system 120 to deliver liquid coolant 132 continuously, periodically, intermittently, or not at all.
For example, after liquid coolant 142 is loaded into the chamber 162, the movable component 140 can be pulled back to expand the chamber 162 and controllably load or draw in liquid coolant 142 from the container and into the chamber 162, and then be pushed so that all or a substantial portion of the liquid coolant 142 is forced out of the chamber 162, e.g., in a continuous manner, to continuously deliver liquid coolant 142 to the cryo-ablation catheter 130. The movable component 140 may be moved at a constant rate of speed so that liquid coolant 142 is delivered to the cryo-ablation catheter 130 at a constant flow rate. In an alternative embodiment, the movable component 140 can be pushed at different speeds if it is desirable to deliver more liquid coolant 142 at certain times and less liquid coolant 142 at other times. As a further alternative embodiment, pushing or movement of the component 140 can be interrupted to stop or reduce the flow of liquid coolant 142 to the cryo-ablation catheter 130. Thus, embodiments advantageously allow a user or other component of the control system 120 to control and adjust the quantity, timing and rate at which liquid coolant 142 is delivered to the cryo-ablation catheter 130.
In addition to these enhanced controls, embodiments also advantageously allow the liquid coolant 142 to be delivered at various pressures including pressures that exceed the pressure inside the supply tank 110. More specifically, since the actuator 160 is independent of the supply tank 110, the pressure of the liquid coolant 142 in the chamber 162 is also independent of the pressure of the gaseous coolant 112 and the pressure of the liquid coolant 142 output by the cooling element 140. In this manner, the pressure of the liquid coolant 142 can be set or selected to be at a desired pressure that may be less than or greater than the pressure of the gaseous coolant 112 inside the supply tank 110 and the pressure of the liquid coolant 142 output by the cooling element 140.
Liquid coolant 142 pressures that are greater than pressures achieved based on the supply tank 110 are advantageous to ensure that the liquid coolant 142 that is delivered to the cryo-ablation catheter 130 remains a liquid at acceptable pressures and temperatures. More specifically, after the liquid coolant 142 is pushed out of the chamber 162 and flows through the supply line 164, the temperature of the liquid coolant 142 may increase (e.g., due to heat generated by friction or the surrounding environment while the liquid coolant 142 flows through the supply line 164). Depending on the type of liquid coolant 142 that is utilized, temperature differences may cause the liquid coolant to change form, e.g., to become vapor or a gas, in which case the cryo-ablation catheter 130 that is configured for use with a liquid will not function properly or will be less effective. In known systems, liquid coolant 142 pressures that are based on or limited by the pressure of the supply tank 110 may not be sufficient to maintain the liquid coolant 142 as a liquid as the liquid passes through the supply line 164 and/or 172 and is heated. However, embodiments advantageously allow liquid coolant 142 to flow through the supply lines 164 and/or 172 to the cryo-ablation catheter 130 at pressure levels that are higher than pressures levels of the supply tank 110, thereby allowing the liquid coolant 142 to be maintained as a liquid even if the temperature of the liquid coolant 142 is increased. Referring again to
The liquid nitrous oxide 142 is then stored in the container 150 at similar pressures P3, e.g., about 700-800 psi, and similar temperatures T3, e.g., about −30° C. to about −40° C. The cracking pressure of the input valve 321 may be about 10 psi to about 50 psi. The pressure P4 of the liquid nitrous oxide 142 within the chamber 162 (e.g., as shown in
Since embodiments are able to achieve higher pressures compared to known “direct injection” systems, embodiments are advantageously capable of maintaining nitrous oxide in liquid form even at elevated temperatures that would normally result in nitrous oxide gas or vapor. Additionally, as higher pressures are needed, the actuator 160 can be configured to increase the pressure to even higher levels, e.g., by moving the component 140 more quickly. Further, if additional liquid nitrous oxide 142 is needed, the component 140 can be pulled back to load additional liquid, and then be pushed to force the additional liquid out of the chamber 162 and into the supply line 142 to the cryo-ablation catheter 130. This process can be repeated as necessary to deliver desired quantities of liquid nitrous oxide 142 to the cryo-ablation catheter 130.
Referring to
Referring to
With the system 1000 configuration shown in
Since embodiments are able to achieve higher pressures compared to known “direct injection” systems, embodiments are advantageously capable of maintaining nitrous oxide in liquid form even at higher temperatures that would normally result in nitrous oxide gas or vapor. Additionally, if higher pressures are needed, the actuator 160 can be so configured to increase the pressure to even higher levels, e.g., by moving the component 140 more quickly. Further, if additional liquid nitrous oxide is needed, the component 140 can be pulled back to load additional liquid nitrous oxide, and then be pushed to force the additional liquid nitrous oxide out of the chamber 162 and into the supply line 142 to the cryo-ablation catheter 130. This process can be repeated as necessary to deliver the necessary quantities of liquid nitrous oxide 142 for the cryo-ablation procedure.
Although particular embodiments have been shown and described, it should be understood that the above description is not intended to limit the scope of embodiments since various changes and modifications may be made without departing from the scope of the claims. For example, although embodiments are described with reference to a cooling element generating a liquid coolant, the cooling element may be deactivated so that gaseous coolant passes through the cooling element and can be processed by or delivered to other downstream components. Further, certain indirect injection systems may include a storage container, whereas others do not. Moreover, although examples of temperatures and pressures have been provided, it should be understood that other temperatures and pressures can be utilized, and the particular operating parameters can depend on the particular system configuration and type of gaseous and liquid coolants that are utilized.
Thus, embodiments are intended to cover alternatives, modifications, and equivalents that fall within the scope of the claims.
The present application claims priority under U.S.C. §119 of U.S. Provisional Application No. 61/017,131, filed Dec. 27, 2007, the contents of which are incorporated herein by reference as though set forth in full.
Number | Date | Country | |
---|---|---|---|
61017131 | Dec 2007 | US |