In a variety of well applications, actuators are used to control downhole components, such as downhole flow control valves. An actuator is selectively shifted to transition the corresponding downhole component between operational configurations. For example, an actuator can be used to shift a flow control valve between open and closed positions.
Control over the actuator is exercised according to a variety of techniques. In some applications, the actuator is a hydraulically motivated actuator that responds to application of pressurized hydraulic fluid. For example, pressurized hydraulic fluid can be applied through a control line to move the actuator in a desired direction. Hydraulic metering systems can be employed to meter hydraulic fluid delivered to the actuator based on pressure increases and/or decreases applied to one or more control lines.
In general, the present invention provides a system and method for utilizing a hydraulic fluid metering control module in cooperation with a downhole component, such as a flow control valve. The downhole component can be shifted via hydraulic fluid delivered through first and second control lines to an actuator of the downhole component. The hydraulic fluid metering control module works in cooperation with the actuator and the control lines to enable shifting of the actuator according to a controlled, incremental process.
Certain embodiments of the invention will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements, and:
In the following description, numerous details are set forth to provide an understanding of the present invention. However, it will be understood by those of ordinary skill in the art that the present invention may be practiced without these details and that numerous variations or modifications from the described embodiments may be possible.
The present invention generally relates to a system and method for controlling the activation of a downhole component. The downhole component may be part of well completion equipment and may comprise, for example, a flow control valve. A hydraulic fluid metering control system is used to incrementally move an actuator of the downhole component. In a flow control valve, for example, the hydraulic fluid metering control module may be used to incrementally displace an actuator coupled to an annular choke which controls the production or injection flow rates of reservoir fluids.
In one embodiment, the control module is used to meter hydraulic fluid displaced from an actuator through a hydraulic control line in a manner that controls the incremental displacement of the actuator. In a flow valve application, displacement of the actuator increases or decreases the injection or production flow rate of reservoir fluids into or out of the reservoir. The hydraulic fluid metering control module is controlled using two hydraulic control lines. For each pressure cycle input through a first hydraulic control line, a predetermined volume of fluid is metered from the actuator. Each pressure cycle increments the actuator position a predetermined distance. This process can be repeated until the actuator is moved in a first direction to a fully open and/or fully closed position. A second hydraulic control line is used to displace the actuator to its maximum displacement in a second direction, e.g. to a fully closed position, from any intermediate position.
Referring generally to
The movement of actuator 36 is controlled by a fluid metering control system 41 that may comprise a hydraulic fluid metering control module 42 designed to control the movement of actuator 36 in predetermined increments. For example, control module 42 can be used to control the flow of hydraulic fluid into and out of piston cavity 40. The flow of hydraulic fluid into and out of piston cavity 40 forces actuator 36 to move in one direction or the other which, in turn, moves valve element 34 and transitions well component 28 between open and closed configurations. If well component 28 comprises a flow valve, control module 42 enables controlled movement of actuator 36 and valve element 34 by predetermined increments to control the amount of flow through flow passage 32.
As illustrated, a first hydraulic control line 44 and a second hydraulic control line 46 are connected to hydraulic fluid metering control module 42. The hydraulic control lines 44, 46 are further coupled between control module 42 and actuator 36. For example, a portion of first hydraulic control line 44 may be routed from control module 42 to piston cavity 40 on a first side of piston 38. A portion of the second hydraulic control line 46 may be routed from control module 42 to piston cavity 40 on a second side of piston 38, as illustrated. Thus, fluid flow into piston cavity 40 through first hydraulic control line 44 and out of piston cavity 40 through second hydraulic control line 46 moves actuator 36 in a first direction. Similarly, fluid flow into piston cavity 40 through second hydraulic control line 46 and out of piston cavity 40 through first control line 44 moves actuator 36 in an opposite direction. Control module 42 limits the movement of actuator 36 to specific, predetermined increments in one or both directions.
One embodiment of hydraulic fluid metering control module 42 is illustrated in
In the embodiment illustrated, a piloted valve 60 also is located within housing 48. Piloted valve 60 works in cooperation with metering piston 54 to limit movement of actuator 36 to specific increments, as explained in greater detail below. The piloted valve 60 may be constructed in a variety of configurations. In the embodiment illustrated, for example, piloted valve 60 is a dual piloted, normally open valve having a piston 62 slidably sealed within a pilot valve piston chamber 64. The piston 62 is biased to a normally open position by springs 66 and 68 which are located in piston chamber 64 on opposite ends of piston 62.
Control line 44 is connected to piston chamber 64 on one side of pilot piston 62 by a branch passage 70. Similarly, control line 46 is connected to piston chamber 64 on an opposite side of pilot piston 62 by a branch passage 72. Branch passage 72 also is connected with spring chamber 50 and thus piston chamber 52 on the spring side of metering piston 54. Furthermore, control line 46 is connected to piston chamber 52 on an opposite side of metering piston 54 by a branch passage 74 which includes a check valve 76 oriented to prevent flow from piston chamber 52 to hydraulic control line 46. The hydraulic control module 42 also comprises a pressure relief valve 78 located in control line 46 between the junction of branch passage 72 with control line 46 and the junction of branch passage 74 with control line 46. When piloted valve 60 is in its normally open position, as illustrated, first control line 44 also is connected with branch passage 74, between piston chamber 52 and check valve 76, by a crossover branch 80. Pilot piston 62 has a lateral passage 82 that allows fluid flow along crossover branch 80 when piloted valve 60 is in the illustrated, open configuration.
The piloted valve 60 is normally open and allows hydraulic fluid communication along crossover branch 80, however hydraulic pressure applied to either control line 44 or control line 46 shifts piston 62 and stops fluid communication along crossover branch 80. Pilot valve springs 66, 68 are positioned to move piston 62 and bias piloted valve 60 to its normally open position. It should also be noted that pressure relief valve 78 allows fluid communication along control line 46 upon reaching a certain predetermined pressure, as explained in greater detail below.
In operation, control module 42 is used to control the flow of specific volumes of fluid out of and into actuator piston cavity 40 to precisely control the incremental movement of the actuator 36. With further reference to
As the pressure is further increased in first control line 44, the seal friction of actuator 36 is overcome and actuator 36 begins to move to the left. The hydraulic fluid in the portion of piston cavity 40 on the left/opposite side of piston 38 is forced into second control line 46 and into control module 42. Within control module 42, the discharged hydraulic fluid can only pass through check valve 76 and into piston chamber 52. As fluid flows into piston chamber 52, metering piston 54 is displaced until reaching hard stop 56. The volume of hydraulic fluid allowed to displace metering piston 54 controls the distance over which actuator 36 is incremented.
Subsequently, hydraulic pressure on control line 44 is bled, however metering piston 54 stays displaced to the left against stop 56 until piloted valve 60 is once again biased to the normally open position. At this point, spring 58 moves metering piston 54 back to its original position and exhausts the hydraulic fluid accumulated in piston chamber 52 through crossover branch 80 and back into control line 44. Additional pressure increases and decreases on control line 44 can be used to further increment actuator 36 until it reaches, for example, its fully displaced position, e.g. a fully open position.
The actuator 36 can be moved in an opposite direction to a fully closed position, for example, by applying sufficient hydraulic pressure through second control line 46. The application of hydraulic pressure in control line 46 again closes piloted valve 60 via pressure applied through branch passage 72. While the piloted valve 60 is closed, hydraulic pressure/fluid cannot be communicated from control line 46 to control line 44 and the opening side of actuator 36. The pressure relief valve 78 is designed to open at a pressure above the pressure at which piloted valve 60 is shifted to a closed position. The continued flow of fluid through control line 46 then enters piston cavity 40 on a closing side of piston 38 to forced actuator 36 to the right in the embodiment illustrated in
The design of hydraulic fluid metering control module 42 also enables the mechanical shifting of actuator 36. If there is no hydraulic pressure on either control line 44 or control line 46, the actuator 36 can be mechanically shifted. For example, if actuator 36 is mechanically shifted to the left in an opening direction, hydraulic fluid is forced by piston 38 into control module 42, through branch passage 74 and crossover branch 80 until being exhausted into control line 44. When the actuator 36 is mechanically shifted to the right in a closing direction, hydraulic fluid is forced by piston 38 directly into control line 44. Hydraulic fluid is supplied to piston chamber 40 on an opposite side of piston 38 through control line 46 and pressure relief valve 78.
Referring generally to
In
Using retention mechanism 84 to prevent the back flow of fluid from piston chamber 52 to piston cavity 40 eliminates the need for check valve 76 in the embodiment of
As illustrated in
Referring generally to
Referring generally to
In operation, hydraulic pressure is applied in control line 44 until the pressure is sufficient to close piloted valve 96 and block flow through crossover branch 80. As the hydraulic pressure in control line 44 is further increased, the seal friction force of actuator 36 is overcome and the actuator 36 is displaced to the left, as in the embodiments described above. Hydraulic fluid in piston cavity 40 on the left/opposite side of piston 38 is forced into second control line 46 and into control module 42 where it passes through check valve 76 and into piston chamber 52. As fluid flows into piston chamber 52, metering piston 54 is moved a specific distance until reaching hard stop 56. Again, the volume of hydraulic fluid that displaces metering piston 54 controls the distance over which actuator 36 is incremented.
When hydraulic pressure on control line 44 is bled, the metering piston 54 remains displaced to the left against stop 56 until piloted valve 96 is once again biased to the normally open position by a spring 100. At this stage, spring 58 moves metering piston 54 back to its original position and exhausts the hydraulic fluid accumulated in piston chamber 52 through crossover branch 80 and back into control line 44. Subsequent pressure increases and decreases on control line 44 can be used to further increment actuator 36 until it transitions the well component 28 to a desired configuration.
The actuator 36 can be moved in an opposite direction to a fully closed position, for example, by applying sufficient hydraulic pressure through second control line 46. The application of hydraulic pressure in control line 46 causes the second piloted valve 98 to close via pressure applied through a branch passage 102. While the piloted valve 98 is closed, hydraulic pressure/fluid cannot be communicated from control line 46 to control line 44 or to the opening side of actuator 36. As the actuator 36 is displaced to the right, hydraulic fluid is discharged from piston cavity 40 into control line 44. When the pressure in control line 46 is lowered, piloted valve 98 is biased back to an open position by a spring 104. The pair of single, piloted valves 96, 98 can be used to replace the individual, dual piloted, normally open valves in a variety of embodiments, such as those described above in
In the embodiments described with reference to
Referring to
As illustrated in
One embodiment of a fluid metering control system 41 has been described for controlling incremental movement of the actuator 36 in first and second directions. However, a variety of other fluid metering control systems also can be used to precisely control incremental movement in more than one direction. For example, pairs of the fluid metering control modules 42 described above with reference to
The fluid metering control system can be used in cooperation with a variety of downhole well components that benefit from incremental actuation. For example, many types of flow control devices and other shiftable devices can be incorporated into well completions and other downhole equipment in a manner that allows precisely controlled incremental actuation through the use of one or more hydraulic fluid metering control modules. The control modules also can be constructed with a variety of components and in a variety of positions relative to the controlled well component. For example, the control modules can be located within the shiftable component or adjacent the shiftable component. Additionally, the control modules can be used in cooperation with several types of actuators depending on the particular well tool and well application.
Accordingly, although only a few embodiments of the present invention have been described in detail above, those of ordinary skill in the art will readily appreciate that many modifications are possible without materially departing from the teachings of this invention. Such modifications are intended to be included within the scope of this invention as defined in the claims.
Number | Name | Date | Kind |
---|---|---|---|
3414059 | Nutter | Dec 1968 | A |
6173772 | Vaynshteyn | Jan 2001 | B1 |
6276458 | Malone | Aug 2001 | B1 |
6321842 | Pringle | Nov 2001 | B1 |
6433991 | Deaton | Aug 2002 | B1 |
6502640 | Rayssiguier | Jan 2003 | B2 |
6505684 | Rayssiguier | Jan 2003 | B2 |
6523613 | Rayssiguier | Feb 2003 | B2 |
6536530 | Schultz | Mar 2003 | B2 |
6585051 | Purkis et al. | Jul 2003 | B2 |
6668935 | McLoughlin | Dec 2003 | B1 |
6782952 | Garay et al. | Aug 2004 | B2 |
6892816 | Pringle | May 2005 | B2 |
6966380 | McLoughlin | Nov 2005 | B2 |
6973974 | McLoughlin | Dec 2005 | B2 |
7013980 | Purkis et al. | Mar 2006 | B2 |
20050034875 | McLoughlin | Feb 2005 | A1 |
20050279496 | Fontenot | Dec 2005 | A1 |
20060254763 | Tips | Nov 2006 | A1 |
Number | Date | Country |
---|---|---|
2376055 | Dec 2002 | GB |
2389405 | Dec 2003 | GB |
2389406 | Dec 2003 | GB |
2396200 | Jun 2004 | GB |
0121935 | Mar 2001 | WO |
0149969 | Jul 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20100038092 A1 | Feb 2010 | US |