The present disclosure relates generally to a system and method for controlling a machine, and more particularly, to a system and method for controlling a hydraulic pump for a machine.
Machines having one or more hydraulically controlled implements in addition to a powertrain must balance available engine power between the powertrain and the hydraulics. Backhoe loaders, for example, typically have a loader at one end of the machine and a digging implement or backhoe at the other end. Hydraulic cylinders actuate these implements. The engine powers a hydraulic pump that supplies hydraulic pressure to the hydraulic cylinders. In order to increase available pump torque, an operator may increase the engine speed by moving a throttle, such as a hand controller or a foot pedal, from a throttle setting corresponding with a low idle engine speed to a throttle setting corresponding with an increased engine speed. When operating the backhoe while the work machine is stationary, almost all of the engine power is available in order to power the hydraulic pump. In contrast, because an operator will also drive while operating the loader, engine power must be balanced between the hydraulic pump and the powertrain.
Techniques have been developed that seek to optimize engine power, machine speed, sensitivity, and fuel economy. For example, backhoe loaders have been developed that have a manually actuated button that switches a pump from a power mode for increased power and speed to an economy mode for fine control and increased fuel efficiency. This manually selectable, dual-range pump allows an operator some degree of control; however, manually switching between the economy mode and the power mode optimally may be problematic. While operating the machine, an operator must simultaneously monitor multiple variables such as the current pump mode, the engine speed, the transmission status, and the active implement. Novice operators may have difficulty efficiently switching between modes. Efficiently switching between modes when the machine is moving, for example while operating the loader, may prove even more problematic.
The present disclosure is directed to overcome one or more of the problems as set forth above.
In one aspect of the present disclosure, a machine is provided. The machine includes an engine, an engine speed sensor, a transmission, a transmission status sensor, a pump, and a controller. The engine speed sensor is configured to sense the speed of the engine. The transmission is coupled to the engine. The transmission status sensor is configured to sense the status of the transmission. The pump is coupled to the engine and has a first torque mode and a second torque mode. The controller is in communication with the engine speed sensor and the transmission status sensor and is operable to automatically switch the pump from the first torque mode to the second torque mode based on the engine speed and the transmission status.
In another aspect of the present disclosure, a method of controlling a machine is provided. The machine includes an engine coupled to a pump and a transmission, with the pump having a first torque mode and a second torque mode. The method includes the step of measuring the engine speed. The method also includes the step of sensing the transmission status. The method also includes the step of switching the pump from the first torque mode to the second torque mode based on the engine speed and the transmission status.
A third aspect of the present disclosure includes a method of controlling a backhoe loader. The backhoe loader has an engine coupled to a pump and a transmission, with the pump having a first torque mode and a second torque mode. The method includes the steps of sensing the transmission status and setting a controller to one of a backhoe mode or a loader mode based on the transmission status. The method also includes the step of measuring the engine speed. The method also includes the step of switching the pump from the first torque mode to the second torque mode when the engine speed exceeds a first set point and when the controller is in the loader mode. The method also includes the step of switching the pump from the first torque mode to the second torque mode when the engine speed exceeds a second set point and when the controller is in the backhoe mode.
Hydraulic actuators 40 drive the boom 24, the stick 26, and the bucket 28. Similarly, hydraulic actuators 42 drive the pair of arms 34 and the loader bucket 38. The actuators 40, 42 may be hydraulic cylinders each having a head end and a rod end. Directing hydraulic fluid to the head end extends the actuator 40, 42, while directing fluid to the rod end retracts the actuator 40, 42. An operator may use a plurality of levers 44 within the operator station 15 of the machine 10 to command the actuators 40, 42 through a controller 46.
An engine 50, attached to the body 14, is coupled to a transmission 60 in order to provide power for translational movement of the backhoe loader 12, and is also coupled to at least one pump 70 in order to provide power for operation of the backhoe 22 and the loader 32. The engine 50 may be any power source such as, for example, a diesel engine, a gasoline engine, a gaseous fuel driven engine, or any other engine known in the art. It is contemplated that the engine 50 may alternately include another source of power such as a fuel cell, a power storage device, an electric or hydraulic motor, and/or another source of power known in the art. It is also contemplated that the engine 50 may be operatively connected to the transmission 60 and the pump 70 by any suitable manner known in the art, such as, for example, gearing, a countershaft, and/or a belt. The transmission 60 may be a mechanical or electrical variable-speed drive, a gear-type transmission, a hydrostatic transmission, or any other transmission known in the art. A transmission controller 62, illustrated as a lever attached to the body 14 of the machine 10 in the cab 15, operatively shifts the transmission 60 between forward, neutral, and reverse gears.
Although it should be appreciated that there could be only one throttle controller,
As shown in
As illustrated in
The machine 10 may also include a ground speed sensor 49 that may measure the ground speed of the machine 10 and communicate that information to the controller 46. The ground speed sensor 49 may operate by measuring the revolutions made by the wheels to calculate the ground speed. The ground speed sensor 49 may also be used to sense the transmission status, as the ground speed sensor 49 would sense whether the wheels were rotating in a forward or reverse direction, or stopped altogether.
The hydraulic system 100 includes the pump 70, a solenoid valve 102, a tank 180, and the hydraulic load 200, which includes the actuators 40, 42 and the load on the machine 10. The pump 70 includes a hydraulic pump 72, a set point orifice 108, a torque limiter 130, a torque control valve 110, a flow control valve 120, an actuating piston 140, a biasing piston 150, and a plurality of orifices 160. The hydraulic pump 72 is depicted as a unidirectional variable displacement axial piston pump, available from Bosch Rexroth Corporation, although other types of pumps may also be used. The hydraulic pump 72 may be configured to produce a variable output of pressurized fluid and may include a swash plate pump and/or any type of variable displacement pump. The biasing piston 150 is coupled to the swash plate of the hydraulic pump 72 and serves to keep the hydraulic pump 72 at a maximum swash plate angle. The swash plate of the hydraulic pump 72 is also coupled to both the actuating piston 140 and the torque limiter 130. When hydraulic fluid is sent to the actuating piston 140, the actuating piston destrokes the hydraulic pump 72 by reducing the swash plate angle. The output of the hydraulic pump 72 is fluidically connected to the hydraulic load 200. A pilot pressure line from the output of the hydraulic pump 72 is also fluidically connected to the solenoid valve 102, the set point orifice 108, the torque control valve 110, and the torque limiter 130. The input of the hydraulic pump 72 is also hydraulically connected to the tank 180, which serves as a reservoir of fluid.
The solenoid valve 102 is shown as having an electrically actuated two-position spool in
The torque control valve 110 is shown as a proportional directional control valve having a spool. The spool may be a closed-center, spring, centered, operated control valve, but alternately could be a solenoid type, pressure compensated valve, or any like valve. Similarly, the flow control valve 120 is also shown as a proportional directional control valve having a two-position spool. As differential pressure across the torque control valve 110 overcomes the spring, the spool moves and sends pump pressure from the line through torque control valve 110 and into the flow control valve 120. From the flow control valve 120, the pump pressure is sent into the actuating piston 140, destroking the hydraulic pump 72.
The torque limiter 130 is shown as a variable relief valve. The torque limiter limits hydraulic torque demand from the engine because, as mentioned above, the swash plate of the hydraulic pump 72 is coupled to the torque limiter 130. This causes the torque limiter 130 to limit the torque of the hydraulic system 100, with a low displacement at high pump pressure, and a high displacement at low pump pressure. The torque limiter 130 causes a transfer of the control of the hydraulic pump 72 from the flow control valve 120 to the torque control valve 110.
The hydraulic system 100 also includes several orifices, including the gap orifice 106, the set point orifice 108, and a plurality of orifices 160. The gap orifice 106 is positioned downstream of the solenoid valve 102 and hydraulically coupled to the set point orifice 108, the torque control valve 110, and the torque limiter 130. The gap orifice 106 is sized to set the gap or difference between the first torque range and the second torque range. The set point orifice 108 is also hydraulically coupled to the torque control valve 110. The gap of the set point orifice 108 is sized depending on the spring setting of the torque control valve 110. For example, a gap size of 0.8 mm may be selected for a 200 psi spring setting for the torque control valve 110, although other sizes may be used as well. The gap of the set point orifice 108 also determines the low set point of the solenoid valve 102, such that a smaller orifice will result in a lower set point and a larger orifice will result in a larger set point. The plurality of orifices 160 affects the damping and stability of the hydraulic system 100, determining how fast or slow the hydraulic system 100 responds.
In operation and as illustrated in the flowchart of
However, if the hydraulic torque demand is greater than the torque limiter 130 setting, then the torque control valve 110 controls the hydraulic pump 72 (Step 240). When the torque limiter 130 opens, it creates a flow across the orifice 108. As the flow increases, a pressure drop is created across the orifice 108 and the torque control valve 110. When a sufficient pressure drop is generated across the torque control valve 110, the torque control valve 110 shifts and overcomes its biasing spring. This shifting of the torque control valve 110 causes the pump pressure to be connected to the actuating piston 140, which destrokes the hydraulic pump 72. The torque control valve 110 overrides the flow control valve 120.
If the solenoid valve 102 is off (Step 250), the hydraulic system 100 operates in a low torque mode (Step 260) and the torque control valve 110 has a low pressure setting (Step 280). However, if the solenoid valve 102 is actuated, the hydraulic system 100 operates in a high torque mode (Step 270) and the torque control valve has a high pressure setting (Step 290). The pilot pressure from the hydraulic pump 72 is connected through the orifice 106 to the torque control valve 110 by the solenoid valve 102. This pressure increases the setting of the torque control valve 110 and hence increases the pump torque setting from the low pressure setting to the high pressure setting.
As illustrated in the flowchart of
While in the backhoe mode, if the engine speed is greater than the set point, a second time delay elapses (Step 355) and the hydraulic system 100 operates in a high torque mode (Step 380). In the high torque mode, the controller 46 actuates the solenoid valve 102, which switches the pump from the first low torque range to the second high torque range.
In the loader mode, an optional step of measuring the ground speed of the machine (Step 385) may be performed if the engine speed is greater than the set point. The controller next determines if the machine ground speed is greater than a predetermined set point (Step 390). If the ground speed is below the set point, the hydraulic system 100 operates in a low torque mode (Step 370) after a time delay (Step 350), where the solenoid valve 102 is de-energized. However, if the ground speed is above the set point, the hydraulic system 100 operates in a high torque mode (Step 380) after a time delay (Step 360). In one preferred embodiment, the set point is 10 miles per hour, although other ground speed set points may be used depending on the machine, model, or application.
The time delays (Steps 345, 350, 355, 360) may vary depending on several conditions, such as whether the machine 10 is in loader or backhoe mode, or whether the hydraulic system 100 is changing from a low torque to a high torque mode or a high torque to a low torque mode. In one exemplary embodiment, the time delays (Steps 345, 355) in backhoe mode are both set to 2 seconds, the time delay (Step 360) in loader mode going from a low torque mode to a high torque mode is set to 1.5 seconds, and the time delay (Step 350) going from a high torque mode to a low torque mode is 0.5 seconds. The addition of the time delay may prevent the hydraulic system from hunting when the engine 50 is operating at an engine speed near the set point and may also smooth the transition between modes. However, one or more of the time delays may be eliminated. It is contemplated that the time delays may also be set to other values, and may also be optimized for a given machine and model specific, or may be customized according to a user's preferences or skill level.
In addition, the engine speed set point at which the machine 10 changes from low torque to high torque modes may differ depending on whether the machine is in loader mode (Step 330) or backhoe mode (Step 320). In one exemplary embodiment, when the machine is in backhoe mode, the engine speed set point is at 1200 rpm. When the machine is in loader mode, the engine speed set point is raised to 1600 rpm. This difference in set point allows engine power to be diverted to the transmission and to accelerate the machine at low speeds while in loader mode. However, once the machine is moving, it does not need as much torque, allowing the hydraulics to accelerate.
In addition, whenever the transmission controller 62 is shifted, such as between forward and reverse, from forward to neutral, or from neutral to reverse, the hydraulic system 100 may automatically switch back to low torque mode, with a timer reset to zero. This may ensure a consistent change to high torque mode and may also provide an operator with transmission power to accelerate the machine.
Several advantages over the prior art may be associated with the hydraulic system 100 of the machine 10. For example, the disclosed system may provide a method for automatically optimizing the performance of a machine, including the engine power, machine speed, sensitivity, and fuel economy. The disclosed system reduces the need for a machine operator to simultaneously monitor multiple variables such as the current pump mode, the engine speed, the transmission status, and the active implement. This need is only amplified when novice operators operate the machine, as they may have difficulty efficiently switching between modes. In addition, the disclosed system allows for an operator to efficiently switch between modes when the machine is moving, for example while operating the loader.
Other aspects, objects and advantages of this invention can be obtained from a study of the drawings, the disclosure, and the appended claims.
The present application claims priority from U.S. Provisional Application Ser. No. 60/876,728, filed Dec. 21, 2006, which is fully incorporated herein.
Number | Name | Date | Kind |
---|---|---|---|
4704922 | Suketomo et al. | Nov 1987 | A |
4951462 | Graf | Aug 1990 | A |
5553517 | Yesel et al. | Sep 1996 | A |
5564507 | Matsushita et al. | Oct 1996 | A |
5844800 | Brandt et al. | Dec 1998 | A |
6010309 | Takamura et al. | Jan 2000 | A |
6321866 | Prohaska | Nov 2001 | B1 |
6385519 | Rocke | May 2002 | B2 |
6427107 | Chiu et al. | Jul 2002 | B1 |
6595885 | Lutgen | Jul 2003 | B1 |
6609368 | Dvorak et al. | Aug 2003 | B2 |
6675577 | Evans | Jan 2004 | B2 |
6694240 | Swick et al. | Feb 2004 | B1 |
7114433 | Shenoy et al. | Oct 2006 | B2 |
20050071068 | Funato et al. | Mar 2005 | A1 |
20060042241 | Bright et al. | Mar 2006 | A1 |
20060069484 | Thomson et al. | Mar 2006 | A1 |
20070119161 | Du et al. | May 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20080154466 A1 | Jun 2008 | US |
Number | Date | Country | |
---|---|---|---|
60876728 | Dec 2006 | US |