The present invention relates generally to the field of ocular surgery, and more specifically to controlling a phacoemulsification surgical instrument system during ophthalmic procedures based on detected parameters such as vacuum.
Today's ocular surgery, such as phacoemulsification surgery, can involve medical instrument systems that provide for handpiece operation in a traditional longitudinal ‘cutting’ mode. Longitudinal cutting occurs by controlling movement of the phaco tip forward and backward along a single axis. Longitudinal cutting represents the foundation for many handpiece modes. Newer technology affords surgeons the choice of torsional or transversal cutting actions in the form of handpiece operational modes, in addition to traditional longitudinal tip action.
Traditional longitudinal cutting operation is effective at boring into the cataract, but can present issues with removing lenticular matter as the particle tends to be repelled from the tip. Torsional and transversal methods can offer improved surgical performance under certain conditions, but it is difficult for the tip found in torsional and transversal designs to bore into the particle. The inability of the tip to effectively cut the particle limits these designs when compared to traditional designs, thus potentially reducing the surgeon's overall cutting efficiency.
Today's state of instrument system design provides for switching between torsional and traditional, transversal and traditional, only transversal, only torsional, and only traditional (longitudinal) operation. During surgery, surgeons currently choose between handpiece operation modes to improve the efficacy of the surgical procedure, including reducing the amount of heat introduced into the patient's eye. Multiple mode operation available in today's instrument designs increases the medical instrument's operational flexibility while conducting the surgical procedure and helps surgeons perform the most effective, efficient and safest possible surgery. Combining cutting technologies can make phacoemulsification safer and maximizes surgical benefit by avoiding complications such as chatter while improving procedure efficiency, minimizing the incision size, and reducing the amount of heat introduced into the patient's eye.
Currently, switching between modes, such as between longitudinal, torsional, and transversal modes simply entails the surgeon selecting a combination of modes prior to the surgical procedure. In present designs, there is no provision beyond either a fixed arrangement or forced surgeon action to providing multiple mode operation, and as noted, efficient operation in more than one mode can be highly beneficial to the patient. Anything that can take the burden off the surgeon, i.e. the ability to minimize the need for the surgeon to manually switch modes during an operation, can enhance the surgery. Currently, no viable automated or partially automated procedure exists to switch between longitudinal and transversal modes, for example. Such functionality could relieve the surgeon of the need to stop what he is doing and switch between longitudinal and transversal modes, or operate a switching device while performing a delicate procedure at the same time. In short, the options for using modes are limited by the ability of the surgeon to manually switch between modes, and are therefore limited.
Based on the foregoing, it would be advantageous to provide for a system and method that enables a surgeon to quickly and accurately and either automatically or semiautomatically vary surgical instrument motions that overcomes the foregoing drawbacks present in previously known designs.
According to one aspect of the present design, there is provided a method for controlling an ultrasonically driven handpiece employable in an ocular surgical procedure. The method comprises operating the ultrasonically driven handpiece in a first tip displacement mode according to a first set of operational parameters; and altering operation of the ultrasonically driven handpiece to employ a second tip displacement mode using a second set of operational parameters. Altering comprises measuring an ocular surgical related parameter and dynamically selecting operational parameters based on the ocular surgical related parameter, wherein dynamically selecting comprises changing the first set of operational parameters for the first tip displacement mode relative to the second set of operational parameters for the second tip displacement mode.
According to a second aspect of the present design, there is provided an apparatus configured for use in an ocular surgical procedure, comprising a handpiece having an ultrasonically vibrating tip supporting a plurality of operating modes including a first operating mode, a sensing device, and a controller connected to the handpiece and sensing device configured to receive data from the sensing device and adjust at least one parameter associated with the first operating mode and relatively adjust at least one parameter associated with a second operating mode based on the data received from the sensing device.
According to a third aspect of the present design, there is provided an apparatus in which switching between modes is providing according to inputs from a system operator (e.g., a surgeon) or according to a condition of the system or component thereof. For example, the system senses may be configured to sense that an occlusion has been encountered by a phaco handpiece and accordingly switches between modes, such as between longitudinal, torsional, and/or transversal modes. Such switching control may be referred to as an “occlusion mode” of the system. In such embodiments, a predetermined switching between two or more modes may be based on vacuum pressure, or in other words, if a certain vacuum pressure was encountered, the mode would switch from longitudinal to torsional, for example. In other embodiments, activating some type of hardware or software switch is used to switch from one mode to the other, for example, by a user interface on the phacoemulsification machine or by engaging a device such as a footpedal.
These and other advantages of the present invention will become apparent to those skilled in the art from the following detailed description of the invention and the accompanying drawings.
In order to better appreciate how the above-recited and other advantages and objects of the inventions are obtained, a more particular description of the embodiments briefly described above will be rendered by reference to specific embodiments thereof, which are illustrated in the accompanying drawings. It should be noted that the components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. Moreover, in the figures, like reference numerals designate corresponding parts throughout the different views. However, like parts do not always have like reference numerals. Moreover, all illustrations are intended to convey concepts, where relative sizes, shapes and other detailed attributes may be illustrated schematically rather than literally or precisely.
A number of medically recognized techniques are utilized for cataractic lens removal based on, for example, phacoemulsification, mechanical cutting or destruction, laser treatments, water jet treatments, and so on.
The phacoemulsification method includes emulsifying, or liquefying, the cataractic lens with an ultrasonically driven needle before the lens is aspirated. A phacoemulsification system 5 known in the art is shown in
Turning to
Turning to
In preparation for operation, a sleeve 220 is typically added to the distal end of the handpiece 200, covering the proximal portion of the needle 210 (thus, exposing the distal tip of the needle), and the distal end of the irrigation pathway 295, thereby extending the pathway 295 and defining an irrigation port 222 just before the distal tip of the needle 210. The needle 210 and a portion of the sleeve 220 are then inserted through the cornea of the eye to reach the cataractic lens.
During operation, the irrigation path 295, the eye's chamber and the aspiration line 214 form a fluidic circuit, where irrigation fluid enters the eye's chamber via the irrigation path 295, and is then aspirated through the aspiration line 214 along with other materials that the surgeon desires to aspirate out, such as the cataractic lens. If, however, the materials, such as the cararactic lens, are too hard and massive to be aspirated through the aspiration line 214, then the distal end of the needle 210 is ultrasonically vibrated and applied to the material to be emulsified into a size and state that can be successfully aspirated.
The needle 210 is ultrasonically vibrated by applying electric power to the piezoelectric crystals 280, which in turn, cause the horn 250 to ultrasonically vibrate, which in turn, ultrasonically vibrates the needle 210. The electric power is defined by a number of parameters, such as signal frequency and amplitude, and if the power is applied in pulses, then the parameters can further include pulse width, shape, size, duty cycle, amplitude, and so on. These parameters are controlled by the control unit 102 and example control of these parameters is described in U.S. Pat. No. 7,169,123 to Kadziauskas et al.
In a traditional phacoemulsification system 100, the applied electric power has a signal frequency that causes the crystal 280, horn 250, and needle 210 assembly to vibrate at a mechanically resonant frequency. This causes the needle 210 to vibrate in the longitudinal direction with a maximum range of motion, which many consider to be the state where the needle's cutting efficacy is at its maximum. However, there are a couple of known drawbacks. First, at this frequency, maximum power is applied to the needle that results in maximum heat introduced into the eye, which can cause undesirable burning of eye tissue. Second, the longitudinal motion can cause the material being emulsified to repel away from the needle, which is undesirable when the goal is to keep the material close to the needle to be aspirated (a quality often referred to as the needle's or handpiece's “followability”).
Non-longitudinal operating modes currently include torsional and transversal modes. Torsional phacoemulsification designs involve operating the cutting tip in a rotational manner. The torsional mode produces a shearing action at the phaco tip and can be useful in breaking up the nucleus of the cataract. The resulting shearing action, when compared with longitudinal chiseling actions resulting from cyclical bursts, can reduce the amount of repulsion of nuclear material experienced at the phaco handpiece tip. In this way, torsional designs or modes may efficiently operate in an occluded or semi-occluded state by maintaining the position of lenticular material on or at the phaco handpiece tip during surgery.
Transversal or transverse ultrasound phacoemulsification technology enables operation of the cutting blade with traditional forward-and-back longitudinal stroke action in combination with side-to-side transversal movements. The tip motion realized from combining these two operating modes produces a cutting tip motion that follows an elliptical pattern at the phaco handpiece tip. The transversal mode integrates the forward cutting motion found in longitudinal designs with the shearing action in torsional designs at the phaco handpiece tip. Transversal operation mode can reduce the amount of ‘chatter’ resulting from the lens particle targeted for removal bouncing off of the phaco tip.
To address the heat issue, the power can be applied in pulses, where little or no power is applied in between the pulses, thus reducing the total amount of power and heat applied to the needle 210. To address the followability issue, the power can be applied to the handpiece 200 to cause the needle 210 to vibrate in the transverse direction. An example of this approach is described in U.S. patent application Ser. No. 10/916,675 to Boukhny (U.S. Pub. No. 2006/0036180), which describes causing the needle 210 to vibrate in a torsional or twisting motion, which is a type of transverse motion. This Boukhny application describes applying to the power to the needle 210 with a signal that alternates between two frequencies, one that causes longitudinal motion, and one that causes torsional motion with a particular type of horn having diagonal slits. This solution does provide for followability, but cutting efficacy leaves much for improvement.
Referring to
There are two aspects of a phacoemulsification system that can individually or collectively enable both transverse and longitudinal ultrasonic vibration, (1) the structure of the handpiece 200 including the needle 210 and the horn 250, and (2) the computer readable instructions within the control unit 102. With regard to the structure of the handpiece 200, there are two aspects to the structure that can individually or collectively facilitate the desired outcome. First is the handpiece 200 center of mass relative to its longitudinal axis, and second is the structure of the handpiece 200 at the nodes and anti-nodes of the handpiece 200.
Turning to
Turning to
Turning to
Turning to
As mentioned above, the control unit 102 can also contribute to providing transverse and longitudinal motion of the needle, e.g., 210, 1000, 2000, and 3000. The typical range of frequencies used for a phacoemulsification system 100 is between about 20 kHz and about 60 kHz. The frequency used often depends upon the structure of the handpiece 200 and many systems 100 are designed to apply a frequency corresponding to the resonant frequency of the handpiece 200, which, as explained above, causes the needle 210 to vibrate in a maximum longitudinal range of motion. When the frequency applied to the handpiece is significantly higher, or lower than resonancy, it responds electrically as a capacitor. The representation of this dynamic state is shown in
Turning to
Some conventional phacoemulsification systems 100 apply power to the handpiece 200 at Fr (point A) which generally causes the needle 210 to vibrate in the longitudinal direction. In one approach, particularly with the needles described above, 1000, 2000, and 3000, it may be desirable to move the signal frequency of the power applied to the handpiece 200 up to point C. The frequency applied at point C causes the needle, e.g., 210, 1000, 2000, and 3000, to effectively vibrate both in the z direction as well as the x and/or y direction (i.e., sustained and substantial vibration as opposed to transitional vibration, such as vibration that could occur when the power signal shifts from one frequency causing longitudinal movement to a second frequency causing transversal movement, or incidental vibration, such as any minimal transversal vibration when the needle is predominantly vibrating in the longitudinal direction). It was determined that the ratio of range of motion between the longitudinal and the transverse direction is approximately 1:1 with about 0.75 to 1 mil range of motion in both directions, which provides the operation of the needle with effective followability and cutting efficacy. However, power usage at this frequency is less than a Watt, so the longitudinal range of motion is effective but limited, and thus, so is the cutting efficacy. To increase the cutting efficacy, the impedance can be increased, which can be achieved by moving the operating frequency down to point B, where the longitudinal range of motion increases, thereby increasing cutting efficacy. Turning to
A surgeon can control these various types of vibrations by using a footswitch that is coupled with the control unit 102. With reference to
Support surfaces in the form of shrouds 29, 22 may be provided and disposed adjacently foot pedal 12 on opposite sides 26, 31 at a position enabling access thereto by a user's foot (not shown). The first and second foot activated ribbons switches 34, 36 to are disposed on the surfaces 29, 22 in a conventional manner, and have a length extending along the surfaces 29, 22 sufficient to enable actuation of the ribbon switches 34, 36 by a user's foot (not shown) without visual operation thereof by the user (not shown). More detail about this footswitch 80 can be found in U.S. Pat. No. 6,452,123 to Chen, which is hereby incorporated in its entirety.
As can be appreciated by one of ordinary skill in the art, the footswitch 80 can be configured to control the longitudinal vibration of the distal end of the needle 210, 1000, 2000, and 3000 with the pitch movement of the footpedal 52 via the control unit 102 by associating the pitch movement of the foot pedal 12 with the power level and transverse vibration of the distal end of the needle 210, 1000, 2000, and 3000 with either ribbon switches 36, 36 or vice versa.
Turning to
In addition to, or in the alternative to, the needle structure, e.g., 210, 1000, 2000, and 3000, transverse and simultaneous transverse/longitudinal vibrations can further be achieved through the structure of the horn 250 and piezocrystal stack 280 configuration. Generally, it may be desirable to configure the horn 250 to have an asymmetric mass or a center of mass off from the horn's 250 longitudinal axis. Turning to
In
A profile of this horn's 4000 characteristics along a frequency spectrum is shown in
Phacoemulsification handpieces 200 typically have multiple resonant frequencies. The impedance/phase profile shown in
The following are other horn configurations that can provide the profile discussed above and shown in
Accordingly, with a phacoemulsification handpiece 200 constructed with a horn 4000, 4500, 5500, 5700, the control unit 102 can be configured to provide three types of vibration for the ultrasonic needle, 210, 1000, 2000, or 3000, (1) longitudinal, (2) transversal, and (3) a hybrid with effective transversal and effective longitudinal motion. Furthermore, the control unit 102 can also apply variations of these modes in pulses, as described in U.S. Pat. No. 7,169,123, wherein a single pulse of energy with a single operating frequency applied to the needle can cause distal end of the needle 210, 1000, 2000 or 3000 to vibrate in either the longitudinal direction, transversal direction, or both, and further wherein different pulses causing different types of vibration can be juxtaposed and controlled by the surgeon, such as by the interface device 140, which may be a computer or the footswitch 26, 80, and further wherein operating multiple frequencies simultaneously gives hybrid motion. The pulses described above can further be shaped, as described in U.S. patent application Ser. No. 10/387,335 to Kadziauskas et al., which is hereby incorporated by reference in its entirety.
Footpedal Control of Ultrasonic Operation
The present design provides an ability to specifically control longitudinal transversal motions of the handpiece tip during ophthalmic procedures with a phacoemulsification surgical instrument using detected switch/footpedal position, beyond mere switching between the modes. The present design drives the handpiece tip from a footpedal during transversal mode operation by varying the ratio of longitudinal and transversal tip displacements in relation to the amount the surgeon or user depresses the footpedal.
As used herein, the term “switching apparatus,” “switching device,” “engageable switching apparatus,” “switch,” or similar terminology, is intended to broadly mean any device, hardware, software, or functionality that facilitates or enables changing or modulating between one parameter and another. Thus as used herein, these terms may include but are not limited to an actual physical switch, such as may be offered on the phaco instrument or handpiece or elsewhere in the operating theater, a user interface or computing device configured to operate as a switch via software, a footpedal or similar device, or any other device or arrangement configured to perform the aforementioned switching functionality.
Switching in the present design may be from longitudinal to non-longitudinal modes, such as transversal and/or torsional, switching from non-longitudinal modes to longitudinal mode, switching within modes, such as from one frequency of transversal operation to another frequency of transversal operation, or switching one mode while another mode is operating, such as a combined or superimposed longitudinal and non-longitudinal motion where switching increases frequency of longitudinal operation while decreasing frequency of non-longitudinal operation, or vice versa. Switching may occur based on achieving thresholds, operating within ranges, or based on nonlinear, unconventional, or combined factors or statistics.
The handpiece driving arrangement involves an interleaving of longitudinal tip displacement combined with transversal tip displacement in a control signal from the instrument system for directing the handpiece tip transversal cutting motions. Based on footpedal movement, the system adjusts the tip displacement control signal to vary the cutting mode tip displacement ratio based on footpedal deflection while the instrument switches back and forth between the two different cutting modes. The cutting mode tip displacement ratio can be likened to a ‘duty cycle’ representing the amount of time allocated to each cutting mode, where more deflection of the footpedal results in a higher percentage of one mode, such as longitudinal, and a lower percentage of another mode, such as transversal.
The present design enables superimposing of control signals rather than discrete times when each mode is operating. For example, the longitudinal mode may be operating and may combine with the transversal mode, where longitudinal operation is at a first frequency and transversal mode operating at a second frequency, different from or the same as the first frequency. Alternately, parameters for a single tip displacement mode may be relatively interleaved or superimposed, such as frequency and power in transversal operation. In an arrangement where longitudinal mode is combined with transversal mode, the user may request longitudinal mode operating at 38 kHz and transversal mode operating at 26 khz, where both modes operate simultaneously. These frequencies are examples only, and the frequencies may be higher or lower depending on circumstances.
For example, in one embodiment the present designs arrangement may enable the surgeon to choose an instrument setting via a graphical user interface or other input device, seeking to increase the amount of longitudinal motion or power as the footpedal is depressed. In this example, the instrument system may increase or decrease the amount of longitudinal power delivered to the handpiece tip during an ocular procedure in real-time in accordance with the footpedal position determined by the surgeon.
Note that in the foregoing example, the concept of duty cycle and relative power applied may be time based or power based, in that a 60/40 split represents, for example, 60 percent of the time in mode A and 40 percent of the time in mode B, which may be interleaved or in groups. As an example, when the footpedal indicates 60 percent mode A and 40 percent mode B, three mode A pulses may exist interleaved by two mode B pulses, or alternately, 60 mode A pulses may occur before four mode B pulses, or some other desired combination of pulses. Alternately, the power or speed of the individual modes may be increased, where 60 percent power is available for mode A and 40 percent for mode B, with a strict time interleaving. In this example, half the time may be spent in mode A and half spent in mode B, but mode A uses more power, i.e. drives the needle at a 60 percent power level, while mode B is driven at a 40 percent power level. Other hybrid combinations of tip or needle operation may be realized using the present design. Parameters beyond time and power may be controllable by a device such as a footpedal, including but not limited to frequency.
Thus in the present design, the apparatus may relate footpedal position to percent of maximum power supplied at the handpiece using the instrument system illustrated in
In another embodiment, the handpiece driving arrangement control signal may include a longitudinal component with a transversal component for each method of driving the tip cutting motion displacements. In this arrangement, the configuration may combine two frequencies, where one frequency is assigned to control the amount of longitudinal displacement and the second frequency is assigned to control the amount of transversal displacement. In this arrangement, the present design may vary the amount of each frequency relative to footpedal depression. For example, as the surgeon depresses the footpedal, the instrument may increase the amount of power or frequency of power delivered for longitudinal operation while concurrently decreasing the power or frequency delivered for transversal operation. In this manner, the present design may vary or change the ratio of longitudinal to transversal tip displacement.
In short, the apparatus may provide for real-time control of the medical instrument system and enable dynamic alterations to the duty cycle or ratio that indicates the amount of time the handpiece tip operates in the longitudinal versus the transversal cutting mode. During the course of the surgical procedure, the surgeon may change the duty cycle in response to observed surgical events. For example, if the surgeon determines the handpiece tip is not effectively boring into the lenticular matter, such as a lens particle, the surgeon may select a different duty cycle ratio favoring a longer longitudinal duration.
While certain operational parameters in the ultrasonic handpiece embodiment may be controlled using the present design, it is to be understood that those parameters controllable can include but are not limited to power, aspiration, frequency, vacuum, and so forth, controllable by user input in a device such as a footpedal or via a switch on the handpiece or some other implementation.
The present design is intended to provide a reliable, noninvasive, and efficient automatic control mechanism for a medical instrument system that can be readily altered. The present design may be used to dynamically control the phacoemulsification surgical instrument system in real-time while operating in a transversal cutting operational mode.
Automatic Longitudinal/Transversal Ultrasonic Operation Based on Sensed Values
The present design controls the handpiece tip during ophthalmic procedures based on detected or sensed values, such as vacuum, reported from an instrument sensor. An example of detecting vacuum reported from a sensor is illustrated in
The present design provides for driving the handpiece tip from instrument detected vacuum levels during transversal mode operation by varying the ratio for longitudinal and transversal tip displacements in relation to changes in detected vacuum. The present design may adjust the tip displacement control signal to vary the cutting mode tip displacement ratio as determined based on measurement of certain system parameters or values encountered during the operating procedure, such as based on measured vacuum received from the instrument sensor, wherein cutting mode tip displacement ratio may dynamically or automatically change between the two different cutting modes. The cutting mode tip displacement ratio may be considered as a ‘duty cycle’ representing the amount of interleaving time allocated to each cutting mode, or may represent frequencies or other operational parameters associated with the multiple modes. In other words, the tip displacement ratio may be operating in longitudinal mode at one frequency and concurrently in transversal mode at a different frequency.
Duty cycles are generally described above with respect to
For example, in one embodiment the present design may enable the surgeon to choose an instrument setting at the graphical user interface or other input device for increasing the frequency of longitudinal operation relative to transversal operation as a detected parameter, such as vacuum, changes during the surgical procedure. In this arrangement, the instrument system may increase or decrease the frequency of longitudinal operation relative to transversal operation during an ocular procedure in real-time in accordance with reported, sensed, or measured changes in, for this example, vacuum.
Another example varies power level based on sensed vacuum, similar to the variation of levels illustrated in
In another embodiment, the design may involve employing or interleaving modes operating at certain frequencies, where one frequency is assigned to control the amount of longitudinal displacement and the second frequency is assigned to control the amount of transversal displacement. In this arrangement, the design may vary the amount of each component relative to changes in values reported from a sensor, such as a vacuum sensor. For example, the surgeon may set the instrument to increase the frequency of longitudinal operation as the desired parameter increases, such as while vacuum increases, while concurrently decreasing the frequency of transversal operation. In this manner, the present design dynamically varies or changes the ratio of longitudinal to transversal tip displacement.
In short, the apparatus and method may provide for real-time control of the medical instrument system affording dynamic alterations to the duty cycle or ratio that indicates the amount of time the handpiece tip operates in the longitudinal cutting mode versus the transversal cutting mode. During the course of the surgical procedure, the surgeon may change the duty cycle in response to observed surgical events, such as using a user interface configured to change parameters and/or ratios between modes. For example, if the surgeon determines the handpiece tip is not effectively boring into the lenticular matter, such as a lens particle, the surgeon may select a different duty cycle ratio setting from the graphical user interface input device favoring a longer longitudinal duration.
While the present design has been described with particular emphasis on vacuum parameters, vacuum reading, and vacuum sensing, it is to be understood that other parameters may be measured and employed to vary ratios of operating mode times or frequencies. For example, parameters including but not limited to fluid pressure, ultrasonic power application, heat/temperature, or other parameters may be used as the control parameter monitored and employed to vary the operational mode ratio. In cases where aspiration flow rate is a measured value rather than vacuum, such as in the case of venturi pumps, aspiration or aspiration flow rate may be measured and control provided based on aspiration rate.
Also, while two modes have been described, more than two modes may be varied if desired, with certain values variable depending on certain conditions. For example, if vacuum sensing is employed and three operating modes offered, the surgeon may set the first and second operating modes to vary between zero and 100 percent in the lower half of the anticipated vacuum range, and between the second and third operating modes between 100 and zero percent in the upper half of the anticipated vacuum range. In this arrangement, thinking of the anticipated vacuum range going from zero percent (lowest vacuum) to 100 per cent (highest vacuum), the lowest vacuum point correlates to 100 percent of mode 1, and zero percent modes 2 and 3. The 50 percent point, half anticipated vacuum range, represents 100 percent mode 2, zero percent modes 1 and 3. The 100 percent point, highest anticipated vacuum range, represents zero percent modes 1 and 2 and 100 percent point 3. Other implementations may be achieved, in combination with or in place of switches, foot pedals, or other user interface devices or functionality, and may be offered to the user.
Thus the present design comprises a method for controlling an ultrasonically driven handpiece employable in an ocular surgical procedure. The method comprises operating the ultrasonically driven handpiece in a longitudinal motion according to a first set of operational parameters, such as time of operation, power of operation, frequency, etc., and altering operation of the ultrasonically driven handpiece to employ a non-longitudinal motion according to a second set of operational parameters. Altering comprises measuring a phacoemulsification surgical related parameter, such as vacuum, and dynamically selecting operational parameters based on the phacoemulsification surgical related parameter, and changing operational parameters for the longitudinal motion relative to operational parameters for the non-longitudinal motion.
One embodiment of an apparatus as discussed herein is a device configured for use in an ocular surgical procedure, including a handpiece having an ultrasonically vibrating tip operational within operating modes including a longitudinal operating mode, a sensing device, and a controller connected to the handpiece and sensing device configured to receive data from the sensing device and adjust at least one longitudinal parameter associated with the longitudinal operating mode and concurrently adjust at least one parameter associated with another operating mode according to the data received from the sensing device. The controller is further configured to balance between the two modes according to the data received from the sensing device.
Enhanced Operation
The present design may operate in the presence of non-standard readings or inputs. While previous embodiments have been described with respect to footpedal movements or other switching and vacuum or other parameter readings exceeding or meeting certain thresholds, it is to be understood that combinations of inputs may be monitored and trigger switching in the present design, or monitoring of inputs or parameters to determine whether desired performance is achieved may occur. As one example of this enhanced performance, the present design may monitor vacuum levels for certain conditions, such as occlusion conditions, and if those conditions are encountered, the system may engage different tip operation.
In the present system, rather than switching modes only when certain thresholds in
The design presented herein and the specific aspects illustrated are meant not to be limiting, but may include alternate components while still incorporating the teachings and benefits of the invention. While the invention has thus been described in connection with specific embodiments thereof, it will be understood that the invention is capable of further modifications. This application is intended to cover any variations, uses or adaptations of the invention following, in general, the principles of the invention, and including such departures from the present disclosure as come within known and customary practice within the art to which the invention pertains.
In the foregoing specification, the invention has been described with reference to specific embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention. For example, the reader is to understand that the specific ordering and combination of process actions described herein is merely illustrative, and the invention may appropriately be performed using different or additional process actions, or a different combination or ordering of process actions. For example, this invention is particularly suited for applications involving medical systems, but can be used beyond medical systems in general. As a further example, each feature of one embodiment can be mixed and matched with other features shown in other embodiments. Additionally and obviously, features may be added or subtracted as desired. Accordingly, the invention is not to be restricted except in light of the attached claims and their equivalents.
This application claims priority to and is a continuation of U.S. patent application Ser. No. 14/887,206, filed Oct. 19, 2015, which is a divisional and claims priority to U.S. patent application Ser. No. 12/185,024, filed Aug. 1, 2008, now U.S. Pat. No. 10,363,166, which is a continuation-in-part of U.S. patent application Ser. No. 11/753,554, entitled “Systems and Method for Transverse Phacoemulsification,” filed May 24, 2007, inventors Mark E. Steen, et al., now U.S. Pat. No. 10,485,699, all of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1399054 | Gewalt | Dec 1921 | A |
1848024 | Owen | Mar 1932 | A |
2123781 | Huber | Jul 1938 | A |
2990616 | Balamuth et al. | Jul 1961 | A |
3076904 | Claus et al. | Feb 1963 | A |
3116697 | Theodore | Jan 1964 | A |
3439680 | Thomas, Jr. | Apr 1969 | A |
3526219 | Lewis | Sep 1970 | A |
3781142 | Zweig | Dec 1973 | A |
3833782 | Bartel | Sep 1974 | A |
3857387 | Shock | Dec 1974 | A |
4017828 | Watanabe et al. | Apr 1977 | A |
4037491 | Newbold | Jul 1977 | A |
4189286 | Murry et al. | Feb 1980 | A |
4193004 | Lobdell et al. | Mar 1980 | A |
4276023 | Phillips et al. | Jun 1981 | A |
4537561 | Xanthopoulos | Aug 1985 | A |
4564342 | Weber et al. | Jan 1986 | A |
4590934 | Malis et al. | May 1986 | A |
4662829 | Nehring | May 1987 | A |
4665621 | Ackerman et al. | May 1987 | A |
4706687 | Rogers et al. | Nov 1987 | A |
4757814 | Wang et al. | Jul 1988 | A |
4758220 | Sundblom et al. | Jul 1988 | A |
4772263 | Dorman et al. | Sep 1988 | A |
4773897 | Scheller et al. | Sep 1988 | A |
4818186 | Pastrone et al. | Apr 1989 | A |
4837857 | Scheller et al. | Jun 1989 | A |
4920336 | Meijer | Apr 1990 | A |
4921477 | Davis | May 1990 | A |
4933843 | Scheller et al. | Jun 1990 | A |
4941518 | Williams et al. | Jul 1990 | A |
4954960 | Lo et al. | Sep 1990 | A |
4961424 | Kubota et al. | Oct 1990 | A |
4965417 | Massie | Oct 1990 | A |
4983901 | Lehmer | Jan 1991 | A |
4998972 | Chin et al. | Mar 1991 | A |
5006110 | Garrison et al. | Apr 1991 | A |
5020535 | Parker et al. | Jun 1991 | A |
5026387 | Thomas | Jun 1991 | A |
5032939 | Mihara et al. | Jul 1991 | A |
5039973 | Carballo | Aug 1991 | A |
5091656 | Gahn | Feb 1992 | A |
5108367 | Epstein et al. | Apr 1992 | A |
5110270 | Morrick | May 1992 | A |
5116343 | Ams et al. | May 1992 | A |
5125891 | Hossain et al. | Jun 1992 | A |
5157603 | Scheller et al. | Oct 1992 | A |
5160317 | Costin | Nov 1992 | A |
5195960 | Hossain et al. | Mar 1993 | A |
5195961 | Takahashi et al. | Mar 1993 | A |
5195971 | Sirhan | Mar 1993 | A |
5230614 | Zanger et al. | Jul 1993 | A |
5242404 | Conley et al. | Sep 1993 | A |
5249121 | Baum et al. | Sep 1993 | A |
5268624 | Zanger | Dec 1993 | A |
5271379 | Phan et al. | Dec 1993 | A |
5282787 | Wortrich | Feb 1994 | A |
5323543 | Steen et al. | Jun 1994 | A |
5342293 | Zanger | Aug 1994 | A |
5350357 | Kamen et al. | Sep 1994 | A |
5351676 | Putman | Oct 1994 | A |
5388569 | Kepley | Feb 1995 | A |
5406503 | Williams, Jr. et al. | Apr 1995 | A |
5454783 | Grieshaber et al. | Oct 1995 | A |
5464391 | Devale | Nov 1995 | A |
5470211 | Knott et al. | Nov 1995 | A |
5470312 | Zanger et al. | Nov 1995 | A |
5499969 | Beuchat et al. | Mar 1996 | A |
5520652 | Peterson | May 1996 | A |
5533976 | Zaleski et al. | Jul 1996 | A |
5549461 | Newland | Aug 1996 | A |
5554894 | Sepielli | Sep 1996 | A |
5561575 | Eways | Oct 1996 | A |
5569188 | Mackool | Oct 1996 | A |
5580347 | Reimels | Dec 1996 | A |
5591127 | Barwick, Jr. et al. | Jan 1997 | A |
5653887 | Wahl et al. | Aug 1997 | A |
5657000 | Ellingboe | Aug 1997 | A |
5676530 | Nazarifar | Oct 1997 | A |
5676649 | Boukhny et al. | Oct 1997 | A |
5676650 | Grieshaber et al. | Oct 1997 | A |
5693020 | Rauh | Dec 1997 | A |
5697898 | Devine | Dec 1997 | A |
5697910 | Cole et al. | Dec 1997 | A |
5700240 | Barwick, Jr. et al. | Dec 1997 | A |
5724264 | Rosenberg et al. | Mar 1998 | A |
5728130 | Ishikawa et al. | Mar 1998 | A |
5733256 | Costin | Mar 1998 | A |
5745647 | Krause | Apr 1998 | A |
5746713 | Hood et al. | May 1998 | A |
5747824 | Jung et al. | May 1998 | A |
5777602 | Schaller et al. | Jul 1998 | A |
5805998 | Kodama | Sep 1998 | A |
5807075 | Jacobsen et al. | Sep 1998 | A |
5808396 | Boukhny | Sep 1998 | A |
5810766 | Barnitz et al. | Sep 1998 | A |
5830176 | Mackool | Nov 1998 | A |
5843109 | Mehta et al. | Dec 1998 | A |
5852794 | Staggs | Dec 1998 | A |
5859642 | Jones | Jan 1999 | A |
5871492 | Sorensen | Feb 1999 | A |
5879298 | Drobnitzky et al. | Mar 1999 | A |
5883615 | Fago et al. | Mar 1999 | A |
5899674 | Jung et al. | May 1999 | A |
5928257 | Kablik et al. | Jul 1999 | A |
5938655 | Bisch et al. | Aug 1999 | A |
5983749 | Holtorf | Nov 1999 | A |
6002484 | Rozema et al. | Dec 1999 | A |
6024428 | Uchikata | Feb 2000 | A |
6028387 | Boukhny | Feb 2000 | A |
6062829 | Ognier | May 2000 | A |
6077285 | Boukhny | Jun 2000 | A |
6086598 | Appelbaum et al. | Jul 2000 | A |
6109895 | Ray et al. | Aug 2000 | A |
6117126 | Appelbaum et al. | Sep 2000 | A |
6138383 | Steinke et al. | Oct 2000 | A |
6139320 | Hahn | Oct 2000 | A |
6150623 | Chen | Nov 2000 | A |
6159175 | Strukel et al. | Dec 2000 | A |
6179829 | Bisch et al. | Jan 2001 | B1 |
6200287 | Keller et al. | Mar 2001 | B1 |
6219032 | Rosenberg et al. | Apr 2001 | B1 |
6251113 | Appelbaum et al. | Jun 2001 | B1 |
6260434 | Holtorf | Jul 2001 | B1 |
6360630 | Holtorf | Mar 2002 | B2 |
6368269 | Lane | Apr 2002 | B1 |
6411062 | Baranowski et al. | Jun 2002 | B1 |
6424124 | Ichihara et al. | Jul 2002 | B2 |
6436072 | Kullas et al. | Aug 2002 | B1 |
6452120 | Chen | Sep 2002 | B1 |
6452123 | Chen | Sep 2002 | B1 |
6491661 | Boukhny et al. | Dec 2002 | B1 |
6511454 | Nakao et al. | Jan 2003 | B1 |
6537445 | Muller | Mar 2003 | B2 |
6595948 | Suzuki et al. | Jul 2003 | B2 |
D478323 | Peterson | Aug 2003 | S |
6632214 | Morgan et al. | Oct 2003 | B2 |
6674030 | Chen et al. | Jan 2004 | B2 |
6689975 | Metzler et al. | Feb 2004 | B2 |
6830555 | Rockley et al. | Dec 2004 | B2 |
6852092 | Kadziauskas et al. | Feb 2005 | B2 |
6862951 | Peterson et al. | Mar 2005 | B2 |
6884252 | Urich et al. | Apr 2005 | B1 |
6908451 | Brody et al. | Jun 2005 | B2 |
6962488 | Davis et al. | Nov 2005 | B2 |
6962581 | Thoe | Nov 2005 | B2 |
6986753 | Bui | Jan 2006 | B2 |
7011761 | Muller | Mar 2006 | B2 |
7012203 | Hanson et al. | Mar 2006 | B2 |
7019234 | Mezhinsky et al. | Mar 2006 | B1 |
7070578 | Leukanech et al. | Jul 2006 | B2 |
7073083 | Litwin, Jr. et al. | Jul 2006 | B2 |
7087049 | Nowlin et al. | Aug 2006 | B2 |
7103344 | Menard | Sep 2006 | B2 |
7167723 | Zhang | Jan 2007 | B2 |
7169123 | Kadziauskas et al. | Jan 2007 | B2 |
7185555 | Peterson et al. | Mar 2007 | B2 |
7236766 | Freeburg | Jun 2007 | B2 |
7236809 | Fischedick et al. | Jun 2007 | B2 |
7242765 | Hairston | Jul 2007 | B2 |
7244240 | Nazarifar et al. | Jul 2007 | B2 |
7289825 | Fors et al. | Oct 2007 | B2 |
7300264 | Souza | Nov 2007 | B2 |
7316664 | Kadziauskas et al. | Jan 2008 | B2 |
7336976 | Ito | Feb 2008 | B2 |
7381917 | Dacquay et al. | Jun 2008 | B2 |
7439463 | Brenner et al. | Oct 2008 | B2 |
7465285 | Hutchinson et al. | Dec 2008 | B2 |
7470277 | Finlay et al. | Dec 2008 | B2 |
7526038 | McNamara | Apr 2009 | B2 |
7591639 | Kent | Sep 2009 | B2 |
7731484 | Yamamoto et al. | Jun 2010 | B2 |
7776006 | Childers et al. | Aug 2010 | B2 |
7811255 | Boukhny et al. | Oct 2010 | B2 |
7883521 | Rockley et al. | Feb 2011 | B2 |
7921017 | Claus et al. | Apr 2011 | B2 |
7967777 | Edwards et al. | Jun 2011 | B2 |
8003905 | Kuehner et al. | Aug 2011 | B2 |
8048094 | Finlay et al. | Nov 2011 | B2 |
8070712 | Muri et al. | Dec 2011 | B2 |
8075468 | Min et al. | Dec 2011 | B2 |
D669441 | Naef | Oct 2012 | S |
10857030 | Raney | Dec 2020 | B2 |
11504272 | Steen et al. | Nov 2022 | B2 |
20010011176 | Boukhny | Aug 2001 | A1 |
20010023331 | Kanda et al. | Sep 2001 | A1 |
20010047166 | Wuchinich | Nov 2001 | A1 |
20010051788 | Paukovits et al. | Dec 2001 | A1 |
20020019215 | Romans | Feb 2002 | A1 |
20020045887 | DeHoogh et al. | Apr 2002 | A1 |
20020070840 | Fischer et al. | Jun 2002 | A1 |
20020098859 | Murata | Jul 2002 | A1 |
20020099400 | Wolf et al. | Jul 2002 | A1 |
20020137007 | Beerstecher | Sep 2002 | A1 |
20020179462 | Silvers | Dec 2002 | A1 |
20020183693 | Peterson et al. | Dec 2002 | A1 |
20030028091 | Simon et al. | Feb 2003 | A1 |
20030045887 | Sakurai et al. | Mar 2003 | A1 |
20030050619 | Mooijman et al. | Mar 2003 | A1 |
20030083016 | Evans et al. | May 2003 | A1 |
20030108429 | Angelini et al. | Jun 2003 | A1 |
20030125717 | Whitman | Jul 2003 | A1 |
20030224729 | Arnold | Dec 2003 | A1 |
20030226091 | Platenberg et al. | Dec 2003 | A1 |
20040037724 | Haser et al. | Feb 2004 | A1 |
20040193182 | Yaguchi et al. | Sep 2004 | A1 |
20040212344 | Tamura et al. | Oct 2004 | A1 |
20040215127 | Kadziauskas et al. | Oct 2004 | A1 |
20040224641 | Sinn | Nov 2004 | A1 |
20040253129 | Sorensen et al. | Dec 2004 | A1 |
20050039567 | Peterson et al. | Feb 2005 | A1 |
20050054971 | Steen et al. | Mar 2005 | A1 |
20050069419 | Cull et al. | Mar 2005 | A1 |
20050070859 | Cull et al. | Mar 2005 | A1 |
20050070871 | Lawton et al. | Mar 2005 | A1 |
20050095153 | Demers et al. | May 2005 | A1 |
20050103607 | Mezhinsky | May 2005 | A1 |
20050109595 | Mezhinsky et al. | May 2005 | A1 |
20050118048 | Traxinger | Jun 2005 | A1 |
20050119679 | Rabiner et al. | Jun 2005 | A1 |
20050130098 | Warner | Jun 2005 | A1 |
20050187513 | Rabiner et al. | Aug 2005 | A1 |
20050197131 | Ikegami | Sep 2005 | A1 |
20050236936 | Shiv et al. | Oct 2005 | A1 |
20050245888 | Cull | Nov 2005 | A1 |
20050261628 | Boukhny et al. | Nov 2005 | A1 |
20050267504 | Boukhny et al. | Dec 2005 | A1 |
20060035585 | Washiro | Feb 2006 | A1 |
20060036180 | Boukhny et al. | Feb 2006 | A1 |
20060041220 | Boukhny et al. | Feb 2006 | A1 |
20060046659 | Haartsen et al. | Mar 2006 | A1 |
20060074405 | Malackowski et al. | Apr 2006 | A1 |
20060078448 | Holden | Apr 2006 | A1 |
20060114175 | Boukhny | Jun 2006 | A1 |
20060145540 | Mezhinsky | Jul 2006 | A1 |
20060219049 | Horvath et al. | Oct 2006 | A1 |
20060219962 | Dancs et al. | Oct 2006 | A1 |
20060224107 | Claus et al. | Oct 2006 | A1 |
20060236242 | Boukhny et al. | Oct 2006 | A1 |
20070016174 | Millman et al. | Jan 2007 | A1 |
20070049898 | Hopkins et al. | Mar 2007 | A1 |
20070060926 | Escaf | Mar 2007 | A1 |
20070066978 | Schafer et al. | Mar 2007 | A1 |
20070073214 | Dacquay et al. | Mar 2007 | A1 |
20070073309 | Kadziauskas et al. | Mar 2007 | A1 |
20070078379 | Boukhny et al. | Apr 2007 | A1 |
20070085611 | Gerry et al. | Apr 2007 | A1 |
20070107490 | Artsyukhovich et al. | May 2007 | A1 |
20070152508 | Mezhinsky | Jul 2007 | A1 |
20070231205 | Williams et al. | Oct 2007 | A1 |
20070249941 | Salehi et al. | Oct 2007 | A1 |
20070249942 | Salehi et al. | Oct 2007 | A1 |
20080033342 | Staggs | Feb 2008 | A1 |
20080066542 | Gao | Mar 2008 | A1 |
20080082040 | Kubler et al. | Apr 2008 | A1 |
20080112828 | Muri et al. | May 2008 | A1 |
20080114290 | King et al. | May 2008 | A1 |
20080114291 | Muri et al. | May 2008 | A1 |
20080114300 | Muri et al. | May 2008 | A1 |
20080114311 | Muri et al. | May 2008 | A1 |
20080114312 | Muri et al. | May 2008 | A1 |
20080114387 | Hertweck et al. | May 2008 | A1 |
20080125695 | Hopkins et al. | May 2008 | A1 |
20080125697 | Gao | May 2008 | A1 |
20080125698 | Gerg et al. | May 2008 | A1 |
20080129695 | Li | Jun 2008 | A1 |
20080146989 | Zacharias | Jun 2008 | A1 |
20080243105 | Horvath | Oct 2008 | A1 |
20080262476 | Krause et al. | Oct 2008 | A1 |
20080281253 | Injev et al. | Nov 2008 | A1 |
20080294087 | Steen et al. | Nov 2008 | A1 |
20080312594 | Urich et al. | Dec 2008 | A1 |
20090005712 | Raney | Jan 2009 | A1 |
20090005789 | Charles | Jan 2009 | A1 |
20090048607 | Rockley | Feb 2009 | A1 |
20090124974 | Crank et al. | May 2009 | A1 |
20090163853 | Cull et al. | Jun 2009 | A1 |
20100036256 | Boukhny et al. | Feb 2010 | A1 |
20100069825 | Raney | Mar 2010 | A1 |
20100069828 | Steen et al. | Mar 2010 | A1 |
20100185150 | Zacharias | Jul 2010 | A1 |
20100198200 | Horvath | Aug 2010 | A1 |
20100241115 | Benamou et al. | Sep 2010 | A1 |
20100249693 | Links | Sep 2010 | A1 |
20100280435 | Raney et al. | Nov 2010 | A1 |
20110092887 | Wong et al. | Apr 2011 | A1 |
20110092924 | Wong et al. | Apr 2011 | A1 |
20110092962 | Ma et al. | Apr 2011 | A1 |
20110098721 | Tran et al. | Apr 2011 | A1 |
20110160646 | Kadziauskas et al. | Jun 2011 | A1 |
20120065580 | Gerg et al. | Mar 2012 | A1 |
20120083800 | Andersohn et al. | Apr 2012 | A1 |
20130072853 | Wong et al. | Mar 2013 | A1 |
20130168212 | Tseng | Jul 2013 | A1 |
20130245543 | Gerg et al. | Sep 2013 | A1 |
20130289475 | Muri et al. | Oct 2013 | A1 |
20130303978 | Ross | Nov 2013 | A1 |
20200206032 | Raney | Jul 2020 | A1 |
Number | Date | Country |
---|---|---|
2006235983 | May 2007 | AU |
56019 | Jul 1982 | EP |
424687 | May 1991 | EP |
0619993 | Oct 1994 | EP |
1010437 | Jun 2000 | EP |
1072285 | Jan 2001 | EP |
1113562 | Jul 2001 | EP |
1464310 | Oct 2004 | EP |
1469440 | Oct 2004 | EP |
1550406 | Jul 2005 | EP |
1704839 | Sep 2006 | EP |
1779879 | May 2007 | EP |
1787606 | May 2007 | EP |
1849443 | Oct 2007 | EP |
1857128 | Nov 2007 | EP |
1310267 | Jan 2008 | EP |
1873501 | Jan 2008 | EP |
1900347 | Mar 2008 | EP |
1925274 | May 2008 | EP |
1867349 | Nov 2008 | EP |
2264369 | Dec 2006 | ES |
2230301 | Oct 1990 | GB |
2352887 | Feb 2001 | GB |
2438679 | Dec 2007 | GB |
S5724482 | Feb 1982 | JP |
S58167333 | Oct 1983 | JP |
2008188110 | Aug 2008 | JP |
9220310 | Nov 1992 | WO |
9315777 | Aug 1993 | WO |
9317729 | Sep 1993 | WO |
9324082 | Dec 1993 | WO |
9405346 | Mar 1994 | WO |
9632144 | Oct 1996 | WO |
9818507 | May 1998 | WO |
9917818 | Apr 1999 | WO |
0000096 | Jan 2000 | WO |
0070225 | Nov 2000 | WO |
0122696 | Mar 2001 | WO |
0228449 | Apr 2002 | WO |
0234314 | May 2002 | WO |
03102878 | Dec 2003 | WO |
04096360 | Nov 2004 | WO |
2004114180 | Dec 2004 | WO |
05084728 | Sep 2005 | WO |
05092023 | Oct 2005 | WO |
05092047 | Oct 2005 | WO |
06101908 | Sep 2006 | WO |
06125280 | Nov 2006 | WO |
2007121144 | Oct 2007 | WO |
2007143677 | Dec 2007 | WO |
2007143797 | Dec 2007 | WO |
2007149637 | Dec 2007 | WO |
2008030872 | Mar 2008 | WO |
2008060859 | May 2008 | WO |
2008060902 | May 2008 | WO |
2008060995 | May 2008 | WO |
2010054146 | May 2010 | WO |
2010054225 | May 2010 | WO |
2013142009 | Sep 2013 | WO |
Entry |
---|
Boyd, “Preparing for the Transition” in: The Art and the Science of Cataract Surgery, Chapter 7, 2001, pp. 93-133. |
Definition of “Parameter”, Retrieved from the Internet: URL: http://dictionary.reference.com/browse/parameter, Retrieved on Aug. 9, 2016. |
English Human Translation of JP57024482 from Feb. 9, 1982. |
Merritt R., et al., Wireless Nets Starting to link Medical Gear [online] 2004 [retrieved on Feb. 12, 2007]. Retrieved from the Internet: (http://www.embedded.com/news/embeddedindustry/17200577?_requestid=174370). |
Phacoemulsification, [online] [retrieved on Jul. 1, 2009]. Retrieved from the Internet: http://en.wikipedia.org/wiki/Phacoemulsification, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20210045918 A1 | Feb 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12185024 | Aug 2008 | US |
Child | 14887206 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14887206 | Oct 2015 | US |
Child | 17089708 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11753554 | May 2007 | US |
Child | 12185024 | US |