The present invention relates to vehicles that reside on a fixed path. More specifically, the present invention relates to a control system and method for vehicles that reside on a fixed path.
Since the early twentieth century, controlling vehicles that reside on a fixed path such as trains, intrafactory cargo vehicles, and amusement park rides has lead to important industrial growth and consumer satisfaction. In the case of amusement parks, guests have demanded bigger, better, and more elaborate rides, they also require and expect a positive park experience, which entails progressively shorter waits to enter a ride. This requires Park management to balance two very important interests—guest satisfaction and safety.
Integrated control systems for a number of rides, from rollercoasters to log flumes, is known. In the past, human operators along the ride path would control breaking mechanisms to maintain vehicle spacing. More recently, path-mounted sensors have been used to control breaking and vehicle spacing. Other attractions use a plurality of platen drives, having a wheel or other path-mounted drive element that contacts a platen of each ride vehicle, to drive and control speed of the ride vehicles at all locations along the path. These control systems are generally limited to controlling ride vehicles at the operator control console, typically located at the boarding station. From the operator control console, the operators also have the ability to control not only breaking, but dispatch, reentry and tuning as well.
Recently, an onboard control system was disclosed by Baxter, et al., EP 0 667 798 B1. Baxter discloses an onboard control system that controls actions of the particular vehicle in the form of one of steering, velocity and articulation of a motion base relative to a passenger supporting structure, according to a programmably defined motion pattern defined by sequenced program instructions of a ride program, the motion pattern providing a defined spatial interaction with a dimensional set element.
The above types of control systems are insufficient because in many cases, two operators are required for dispatching a car. For example, in the case of rollercoasters, one operator must support the operator control console while another operator checks the safety feature of the car such as shoulder bars and seat belts. This, in effect, doubles the cost of labor for each ride.
Accordingly, to date, no suitable system or method for controlling vehicles on a fixed path is available.
The present disclosure describes a system and method for confirming authorization of an operator for controlling a vehicle on a fixed path.
In one embodiment, the invention describes a system for confirming authorization of a ride operator for controlling a vehicle on a fixed path, the system comprising at least one ride vehicle comprising an onboard control system being configured to confirm operator authorization prior to allowing operator control thereof and an electronic device dimensioned and configured to be supported by an operator, the electronic device being further configured to remotely authorize operator control of the onboard control system.
In another embodiment, the invention describes a method for confirming authorization of a ride operator for controlling an amusement park ride, the method comprising confirming operator authorization via an onboard vehicle control system wherein if an electronic device configured to communicate with vehicle system is proximate thereto, the operator is authorized to control the system.
Other features and advantages of the disclosure will become apparent by reference to the following description taken in connection with the accompanying drawings.
Reference is now made briefly to the accompanying drawings, in which:
Like reference characters designate identical or corresponding components and units throughout the several views, which are not to scale unless otherwise indicated.
One embodiment of the present invention involves a system for confirming authorization of a ride operator for controlling an amusement park ride and/or requesting a destination of a ride vehicle, the system comprising at least one ride vehicle having an onboard control system being configured to confirm operator authorization prior to allowing operator control thereof, and an electronic device dimensioned and configured to be supported by an operator, the electronic device being further configured to remotely authorize operator control of the onboard control system. One particular advantage afforded by this invention is the ability of an operator to interact directly with an onboard system thus obviating the need for more than one operator to grant authorization for operator control of a vehicle.
Specific configurations and arrangements of the claimed invention discussed below with reference to the accompanying drawings are for illustrative purposes only. Other configurations and arrangements that are within the purview of a skilled artisan can be made, used, or sold without departing from the spirit and scope of the appended claims.
As used herein, an element or function recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural said elements or functions, unless such exclusion is explicitly recited. Furthermore, references to “one embodiment” of the claimed invention should not be interpreted as excluding the existence of additional embodiments that also incorporate the recited features.
Although specific features of various embodiments of the invention may be shown in some drawings and not in others, this is for convenience only. In accordance with the principles of the invention, the feature(s) of one drawing may be combined with any or all of the features in any of the other drawings. Moreover, any embodiments disclosed herein are not to be interpreted as the only possible embodiments. Rather, modifications and other embodiments are intended to be included within the scope of the appended claims.
As used herein the term “proximate” is intended to comprise touching or in close range, e.g., within approximately 12 inches. As used herein, the term “fixed path” is intended to comprise any vehicle whose movements or destinations is controlled by external forces e.g., tracks.
Referring now to
As shown, the control panel 104 may be disposed at the rear of a vehicle. However, in other embodiments, it may be advantageous to place the control panel 104 on a hood or another portion of a vehicle depending upon the position of the guest or the operator in relation to structure of the ride. While in this exemplary embodiment the vehicle is a vehicle such as in part of a rollercoaster or driving simulator, it is to be appreciated that the present invention may be applicable to rides such as log-flumes, ferris wheels, scrambler-type rides, freefall/mega-drop rides and the like.
In an embodiment of the present invention, for operator input, the control panel 104 may comprise a touch-based screen that may also be mechanically based, i.e., comprise traditional buttons and levers. The control panel, via a processor disposed therein, may incorporate wireless signals, e.g., radio-frequency identification, magnetic signature or other wireless communication for operator input. The control panel 104 provides an interface for an onboard control system 105 that through the use of a processor (not shown) may control such ride attributes as dispatch, ride speed, stopping, loading, unloading, seat tuning, safety harness tuning, operator identification, maintenance status (e.g., inspection complete) or destination request. Accordingly, the processor of the onboard control system 105 may be in circuit with speed sensors (not shown) interconnected with wheels 120, brake controllers (not shown) for brakes 122, a plurality of onboard sensors 124, fixed path controllers (not shown) and an operator identifier 106.
The sensors 124, electrically connected with the onboard control system 105 via lines 128 may be configured to sense the proper functioning of safety features such as lap-brace position or sister-vehicle proximity, e.g., a second vehicle being too close to a first vehicle. In turn, the sensors may be further configured to send a signal to the onboard control system 105 which may then, for example, signal the brake controllers to apply/lock brake 122. Furthermore, the onboard sensors may be placed in the seating cavity 126 to provide automatic seat-tuning to ensure better comfort to guest 108. Optionally, the seat-cavity sensors may send seat-tuning information to the onboard control system 105 which may display it on the control panel 104, which may then allow the operator to tune the seat to the guests liking.
The onboard system may be in further communication with off-board fixed path controllers (not shown). In this particular embodiment, the operator, via use of the onboard system, may input vehicle routing commands. The onboard system may communicate with the off-board fixed path controllers to control and switch fixed path elements, thereby providing the operator with the ability to route the vehicle to a desired destination. For example, the operator may input an “exit” command into a vehicles onboard system. The onboard system, via the onboard processor may communicate with the off-board fixed path controllers to switch the fixed path, allowing the vehicle to exit at a predetermined location.
Operator authorization and identification device (also known as “operator identifier”) 106, which will be discussed in greater detail with reference to
Referring now to
The system may further provide for security layer functions within particular classes of park employees. Because each employee may have a unique identification device, only an employee that is permitted to execute a particular function will be able to execute that function. For example, maintenance employees may be the only employees permitted to update the inspection status of vehicles, and add and remove vehicles from the fixed path. The onboard system may be configured to block anyone except those maintenance employees allowed to execute these functions, thus providing an extra layer of security.
The system may further provide for the control of other park elements (e.g., show elements, guest interactive elements and quality control elements). For example, an operator may input a command to a control panel for the operation of onboard equipment such as a water cannon, communicating to the functional parameters. Also, an operator may input a command to the control panel for a picture to be taken at a certain point during the ride. The control panel may further allow for integrated quality control, e.g., by alerting an operator a vehicle is not operating to specification, needs to cleaned, maintained, etc. In this particular example, an operator may input data into the onboard system that a vehicle or a set of vehicles needs to be cleaned, and the system may guide the vehicle or set of vehicles to the appropriate venue for cleaning.
With further reference to
Now referring to
In this exemplary embodiment, the panel may comprise a keypad 321 with keys 322, and a mechanical lever 324. Disposed in or under the casing of the panel there may be an RFID reader, which may act as the operator identification and authorization device 304. The reader may comprise an energizer 326, demodulator 328, and decoder circuitry 330. The tuned antenna capacitor circuit 332 may emit a low frequency radio-wave field and may be used to power up the tag 302. As is known in the art, the reader may use the demodulator 328 to demodulate the signal sent by the tag 302. The information may then be decoded via an onboard microcontroller 305 and sent to the processor (not shown) of an onboard control system such as the on board control system 105 of
The electronic device configured to communicate with the operator identification and authorization device is shown as an RFID tag 302 attached to a glove 340, which may be worn by an operator. The tag 302 may include a transponder 306 and antenna coil 308. When in proximity to the reader, the tag may become powered up and transmit data wirelessly via radio frequency waves 342. After successful transmission, authorization of the operator may occur via the processor of the vehicle control system, and again if applicable, allowing an operator use of the control panel 320.
While any of low, mid or ultra-high frequency RFIDs may be used, low frequency e.g., 125/134 KHz, may be most advantageous in an amusement park setting because only operators in the closest proximity to the ride vehicle become authorized. Furthermore, the each operator may have his or her own RFID tag so that the processor, via preloaded data, may recognize which authorized operator is controlling the ride at a particular time. This may provide a further advantage in that theme park management may then be capable of monitoring which operators are operating each ride at which time.
Now with reference to
With further reference to
The combination of the electronic authorization device 406, e.g., the reader of an RFID disposed in a ride vehicle, and a device configured to communicate with the authorization device, e.g., an RFID tag 414 attached to an operator's glove 412, belt, ring or other local garment, or a wand may allow the operator to be freely movable around the ride platform 424. This aspect of the present invention allows for increased interaction with guests, increased efficiency, and obviates the need for an off-board console that typically requires an operator to be positioned in one place at all times. Furthermore, the mobility aspect of the invention allows one operator to perform safety procedures and control ride features, obviating the need for a second operator on the ride platform if desirable.
In another embodiment, the invention provides a method for controlling an amusement park ride comprising confirming operator authorization via an onboard vehicle control system wherein if an electronic device configured to communicate with vehicle system is proximate thereto, the operator is authorized to control the system.
In this particular embodiment controlling an amusement park ride occurs at the onboard control system disposed in at least one of the ride vehicles. The onboard control system may be configured to control dispatch, ride speed, stopping, loading, unloading, seat tuning, safety harness tuning, and vehicle maintenance via a processor, in circuit with onboard sensor, an operator authorization and identification device, and an onboard control panel. The control panel may comprise a touch screen, mechanically based buttons and levers or a combination thereof.
To ensure the safety and efficacy of the present invention, the method may provide for electronic authorization of the ride operator. This protective step helps to ensure that guests are unable to operate the control panel themselves, as they may be in vicinity of it. For example, electronic authorization may comprise the use of an RFID tag being attached to the clothing of the ride operator. The ride operator also may wear a glove that has an RFID tag attached to it. When the RFID tag is proximate to the RFID reader which may be disposed in the ride vehicle, the system may then become enabled for use, allowing only the operator wearing the proper tag to use the control panel.
The method may further provide for security layer functions within particular classes of park employees. Because each employee may have a unique identification device, only an employee that is permitted to execute a particular function will be able to execute that function. For example, maintenance employees may be the only employees permitted to update the inspection status of vehicles, and add and remove vehicles from the fixed path. The onboard system may be configured to block anyone except those maintenance employees allowed to execute these functions, thus providing an extra layer of security.
The method may further provide for the control of other park elements (e.g., show elements, guest interactive elements and quality control elements). For example, an operator may input a command to a control panel for the operation of water cannon, where it may squirt a performer in a comedy show at a particular point in the show. Also, an operator may input a command to the control panel for a picture to be taken at a certain point during the ride. The control panel may further allow for integrated quality control, e.g., by alerting an operator a vehicle is not operating to specification, needs to cleaned, maintained, etc.
Although specific features of various embodiments of the invention may be shown in some drawings and not in others, this is for convenience only. In accordance with the principles of the invention, the feature(s) of one drawing may be combined with any or all of the features in any of the other drawings. The words “including”, “comprising”, “having”, and “with” as used herein are to be interpreted broadly and comprehensively and are not limited to any physical interconnection. Moreover, any embodiments disclosed herein are not to be interpreted as the only possible embodiments. Rather, modifications and other embodiments are intended to be included within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5583844 | Wolf et al. | Dec 1996 | A |
20020179703 | Allen | Dec 2002 | A1 |
20030106455 | Weston | Jun 2003 | A1 |
20040017281 | Dix | Jan 2004 | A1 |
20060157563 | Marshall | Jul 2006 | A1 |
20070121957 | Trowbridge et al. | May 2007 | A1 |
20090108989 | Sinclair | Apr 2009 | A1 |
Number | Date | Country |
---|---|---|
0667798 | Feb 1994 | EP |
07178252 | Jul 1995 | JP |
2007000568 | Jan 2007 | KR |
2006084330 | Aug 2006 | WO |
2006107926 | Oct 2006 | WO |
Entry |
---|
Office Action for Japanese Patent Application No. 2011521151 issued Jun. 30, 2014. |
Office Action for European Patent Application No. 09789985.0 mailed Nov. 26, 2014. |
Notice of Preliminary Rejection for Korean Application No. 2011-7002288 mailed Aug. 5, 2015. |
Number | Date | Country | |
---|---|---|---|
20100026484 A1 | Feb 2010 | US |