A variety of well devices are actuated at downhole locations. For example, packers, release subs, shock absorbers, and many other types of well tools are actuated while positioned in the wellbore. The actuation is accomplished by generating a force that acts on the well tool in a predetermined manner to transition the well tool from one state to another. The actuation force can be generated mechanically, hydraulically, or by other suitable energy sources. However, insufficient control over the actuating force can cause the well tool to be transitioned at an undesirable rate or in an undesirable manner.
In general, the present invention provides a system and method for controlling actuation of well components. Control is achieved by providing a constant resistance during actuation of the well tool. A resistance device is deployed in a tool string and connected to the subject well tool. The resistance device comprises a deformable body coupled with a deforming member that moves relative to the deformable body during actuation of the well tool. Resultant deformation provides the constant resistance and the consequent control over component actuation.
Certain embodiments of the invention will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements, and:
In the following description, numerous details are set forth to provide an understanding of the present invention. However, it will be understood by those of ordinary skill in the art that the present invention may be practiced without these details and that numerous variations or modifications from the described embodiments may be possible.
The present invention relates to a system and methodology for facilitating the controlled actuation of a well component. The system and methodology enable the use of a resistance during actuation of a well component to improve transition of the well component from one state to another. Generally, a resistance device is connected within a well tool string and coupled to at least one well component able to undergo an actuation. The energy for actuation can be supplied mechanically, hydraulically, or by other suitable methods able to create a sufficient force to move a component or components of the well tool over a required distance for actuation. The resistance device is engaged to provide resistance to the actuating movement, thus controlling and improving component actuation in many applications. In a well application, the well tool string and resistance device are moved into a wellbore to a specific location as desired for carrying out the well operation.
Generally, the resistance device comprises a deformable body that is deformed in a controllable sequential manner. This localized deformation requires application of a constant force over a distance, thus requiring constant continuous work. Resistance devices can be designed, for example, to provide a constant crush resistance, an axial load, or impact energy absorption over a certain deformation length of the deformable body. This controlled resistance can be used with a variety of downhole well tools to improve tool functionality.
Referring generally to
In the embodiment illustrated, deployment system 28 extends downwardly from a wellhead 31 and is coupled to a connector 32 used to connect the deployment system to a variety of other components. For example, well tool string 20 comprises an actuatable well tool 34 that may be selectively actuated while at a downhole position in wellbore 22. Well tool 34 is coupled to an actuation control device, i.e. a resistance device, 36 in a manner that provides controlled resistance to actuation of well tool 34. Additionally, well tool string 20 may comprise various other well tools 30 selected as desired for a specific well operation, e.g. a production operation and/or a well servicing operation. Depending on the type of well operation, resistance device 36 can be used with many types of actuatable well tools 34. For example, well tool 34 may comprise an inflatable packer, a controlled release sub, an energy absorber, e.g. shock absorber, or other well tools designed for actuation from one state to another while downhole.
In many applications, resistance device 36 comprises a deformable body that cooperates with a deforming member. As well tool 34 is actuated, relative movement occurs between the deforming member and the deformable body to deform the deformable body and thereby provide resistance to the actuating movement. Also, resistance device 36 can be designed to provide a relatively constant resistance which can be achieved by pre-work hardening the deformable body.
One example of pre-work hardening the deformable body is explained with reference to
Following pre-work hardening, resistance device 36 is created by the combination of deformable body 42 and deforming member 40, as illustrated in
The resistance device 36 can be connected into well tool string 20 under preload and coupled to actuatable well tool 34 by a suitable attachment member 58, as illustrated in
Another embodiment of resistance device 36 is illustrated in
In other embodiments, resistance device 36 is designed to remain within the elastic limits of deformable body 42 during actuation of well tool 34. This allows resistance device 36 to be used repeatedly for multiple actuations of the well tool. One embodiment of a resistance device 36 that remains within the elastic limits of deformable body 42 is illustrated in
As illustrated, deformable body 42 comprises a sleeve 70 having a plurality of slots 72 separated by bars 74. The slots 72 and bars 74 facilitate or minimize the deformation of the sleeve. In other words, for the same amount of radial expansion, this design experiences less strain than one without slots 72. The design can be used in a manner that plastically deforms bars 74 during use, but the design is amenable to applications where it is desired to maintain deformable member 42 within its elastic limits. The embodiment of
In operation, deforming member 40 can be moved back and forth along deformable body 42 to provide a desired resistance multiple times, as illustrated by the different positions of resistance device 36 in
In another embodiment, deformable body 42 is again formed as a sleeve 70 with slots 72 arranged in a generally axial direction and closed at both ends, as illustrated in
Referring generally to
By way of example, ring 82 may be formed as a split ring. Additionally, ring 82 may be provided with a friction coating 86 or other friction inducing surface to further resist movement along deformable body 42. In the embodiment of
The components of resistance device 36 may be constructed in a variety of forms and with a variety of materials. For example, deformable body 42 can be formed from metals, polymers, composite materials, fiber and/or particle reinforced composites, nano tube and/or nano fiber and/or nano particle reinforced composites, or other materials. Additionally, deformable member 42 can be formed as a tubular or sleeve member, as a wall or parallel walls, or as a variety of other shapes designed to undergo deformation when moved relative to deforming member 40. Additionally, deforming member 40 may have a variety of shapes and forms that are able to cooperate with and deform a particular embodiment of deformable body 42. For example, deforming member 40 can be designed to move along an interior or an exterior of the deformable body.
In some embodiments, the material selection and/or the deformable body design can be used to establish a constant resistance. For example, a deformable body 42 as illustrated in
Accordingly, although only a few embodiments of the present invention have been described in detail above, those of ordinary skill in the art will readily appreciate that many modifications are possible without materially departing from the teachings of this invention. Accordingly, such modifications are intended to be included within the scope of this invention as defined in the claims.
Number | Name | Date | Kind |
---|---|---|---|
4796705 | Carmody et al. | Jan 1989 | A |
5351791 | Rosenzweig | Oct 1994 | A |
5718288 | Bertet et al. | Feb 1998 | A |
6371203 | Frank et al. | Apr 2002 | B2 |
6691777 | Murray et al. | Feb 2004 | B2 |
20050150660 | Cook et al. | Jul 2005 | A1 |
20050199401 | Patel et al. | Sep 2005 | A1 |
20080000646 | Thomson | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
2414496 | Nov 2005 | GB |
02059456 | Aug 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20080142223 A1 | Jun 2008 | US |