1. Field of Invention
The present invention relates generally to audio processing and more particularly to controlling adaptivity of signal modification using phantom coefficients.
2. Description of Related Art
Currently, there are many methods for modifying signals, such as reducing background noise in an adverse audio environment. One such method is to use a stationary noise suppression system. The stationary noise suppression system will always provide an output noise that is a fixed amount lower than the input noise. Typically, the stationary noise suppression is in the range of 12-13 decibels (dB). The noise suppression is fixed to this conservative level in order to avoid producing speech distortion, which will be apparent with higher noise suppression.
In order to provide higher noise suppression, dynamic noise suppression systems based on signal-to-noise ratios (SNR) have been utilized. This SNR may then be used to determine a suppression value. Unfortunately, SNR, by itself, is not a very good predictor of speech distortion due to existence of different noise types in the audio environment. SNR is a ratio of how much louder speech is than noise. However, speech may be a non-stationary signal which may constantly change and contain pauses. Typically, speech energy, over a period of time, will comprise a word, a pause, a word, a pause, and so forth. Additionally, stationary and dynamic noises may be present in the audio environment. The SNR averages all of these stationary and non-stationary speech and noise. There is no consideration as to the statistics of the noise signal; only what the overall level of noise is.
As these various noise suppression schemes become more advanced, the computations required for satisfactory implementation also increases. The number of computations may be directly related to energy use. This becomes especially important in mobile device applications of noise suppression, since increasing computations may have an adverse effect on battery time.
Embodiments of the present invention overcome or substantially alleviate prior problems associated with signal modification, such as noise suppression and speech enhancement. In exemplary embodiments, the process for controlling adaptivity comprises receiving a signal, such as by one or more microphones. According to some embodiments, a microphone array may receive the signal, wherein the microphone array may comprise a close microphone array or a spread microphone array.
Determinations may be made of whether an adaptation coefficient satisfies an adaptation constraint. Further determinations may be made of whether a phantom coefficient satisfies the adaptation constraint. The phantom coefficient may be updated, for example, toward a current observation. On the other hand, the adaptation coefficient may be updated, for example, toward the phantom coefficient, based on whether the phantom coefficient satisfies an adaptation constraint of the signal. Updating the adaptation coefficient may comprise an iterative process, in accordance with exemplary embodiments.
A modified signal may be generated by applying the adaptation coefficient to the signal based on whether the adaptation coefficient satisfies the adaptation constraint. In exemplary embodiments, the modified signal may be a noise suppressed signal. In other embodiments, however, the modified signal may be a noise subtracted signal. Accordingly, the modified signal may be outputted, for example, to a multiplicative noise suppression system.
a is a block diagram of an exemplary noise subtraction engine.
b is a schematic illustrating the operations of the noise subtraction engine.
The present invention provides exemplary systems and methods for controlling adaptivity of signal modification using a phantom coefficient. In exemplary embodiments, the signal modification relates to adaptive suppression of noise in an audio signal. Embodiments attempt to balance noise suppression with minimal or no speech degradation (i.e., speech loss distortion). According to various embodiments, noise suppression is based on an audio source location and applies a subtractive noise suppression process as opposed to a purely multiplicative noise suppression process.
Embodiments of the present invention may be practiced on any audio device that is configured to receive sound such as, but not limited to, cellular phones, phone handsets, headsets, and conferencing systems. Advantageously, exemplary embodiments are configured to provide improved noise suppression while minimizing speech distortion. While some embodiments of the present invention will be described in reference to operation on a cellular phone, the present invention may be practiced on any audio device.
Referring to
In exemplary embodiments, the microphone array may comprise a primary microphone 106 relative to the audio source 102 and a secondary microphone 108 located a distance away from the primary microphone 106. While embodiments of the present invention will be discussed with regards to having two microphones 106 and 108, alternative embodiments may contemplate any number of microphones or acoustic sensors within the microphone array. In some embodiments, the microphones 106 and 108 may comprise omni-directional microphones.
While the microphones 106 and 108 receive sound (i.e., acoustic signals) from the audio source 102, the microphones 106 and 108 also pick up noise 110. Although the noise 110 is shown coming from a single location in
Referring now to
In exemplary embodiments, the primary and secondary microphones 106 and 108 are spaced a distance apart in order to allow for an energy level difference between them. Upon reception by the microphones 106 and 108, the acoustic signals may be converted into electric signals (i.e., a primary electric signal and a secondary electric signal). The electric signals may, themselves, be converted by an analog-to-digital converter (not shown) into digital signals for processing in accordance with some embodiments. In order to differentiate the acoustic signals, the acoustic signal received by the primary microphone 106 is herein referred to as the primary acoustic signal, while the acoustic signal received by the secondary microphone 108 is herein referred to as the secondary acoustic signal.
The output device 206 is any device which provides an audio output to the user. For example, the output device 206 may comprise an earpiece of a headset or handset, or a speaker on a conferencing device. In further embodiments, the output device 206 may transmit the audio output to a receiving audio device.
In operation, the acoustic signals received from the primary and secondary microphones 106 and 108 are converted to electric signals and processed through a frequency analysis module 302. In one embodiment, the frequency analysis module 302 takes the acoustic signals and mimics the frequency analysis of the cochlea (i.e., cochlear domain) simulated by a filter bank. In one example, the frequency analysis module 302 separates the acoustic signals into frequency sub-bands. A sub-band is the result of a filtering operation on an input signal where the bandwidth of the filter is narrower than the bandwidth of the signal received by the frequency analysis module 302. Alternatively, other filters such as short-time Fourier transform (STFT), sub-band filter banks, modulated complex lapped transforms, cochlear models, wavelets, etc., can be used for the frequency analysis and synthesis. Because most sounds (e.g., acoustic signals) are complex and comprise more than one frequency, a sub-band analysis on the acoustic signal determines what individual frequencies are present in the complex acoustic signal during a frame (e.g., a predetermined period of time). According to one embodiment, the frame is 8 ms long. Alternative embodiments may utilize other frame lengths or no frame at all. The results may comprise sub-band signals in a fast cochlea transform (FCT) domain.
Once the sub-band signals are determined, the sub-band signals are forwarded to a noise subtraction engine 304. The exemplary noise subtraction engine 304 is configured to adaptively subtract out a noise component from the primary acoustic signal for each sub-band. As such, output of the noise subtraction engine 304 is a noise subtracted signal comprised of noise subtracted sub-band signals. The noise subtraction engine 304 will be discussed in more detail in connection with
The noise subtracted sub-band signals along with the sub-band signals of the secondary acoustic signal are then provided to the noise suppression engine 306a. According to exemplary embodiments, the noise suppression engine 306a generates a gain mask to be applied to the noise subtracted sub-band signals in order to further reduce noise components that remain in the noise subtracted speech signal. The noise suppression engine 306a is discussed in further detail in U.S. patent application Ser. No. 12/215,980, entitled “System and Method for Providing Noise Suppression Utilizing Null Processing Noise Subtraction,” which has been incorporated by reference.
The gain mask determined by the noise suppression engine 306a may then be applied to the noise subtracted signal in a masking module 308. Accordingly, each gain mask may be applied to an associated noise subtracted frequency sub-band to generate masked frequency sub-bands. As depicted in
Next, the masked frequency sub-bands are converted back into time domain from the cochlea domain. The conversion may comprise taking the masked frequency sub-bands and adding together phase shifted signals of the cochlea channels in a frequency synthesis module 310. Alternatively, the conversion may comprise taking the masked frequency sub-bands and multiplying these with an inverse frequency of the cochlea channels in the frequency synthesis module 310. Once conversion is completed, the synthesized acoustic signal may be output to the user.
Referring now to
The sub-band signals determined by the frequency analysis module 302 may be forwarded to the noise subtraction engine 304 and an array processing engine 402. The exemplary noise subtraction engine 304 is configured to adaptively subtract out a noise component from the primary acoustic signal for each sub-band. As such, output of the noise subtraction engine 304 is a noise subtracted signal comprised of noise subtracted sub-band signals. In the present embodiment, the noise subtraction engine 304 also provides a null processing (NP) gain to the noise suppression engine 306a. The NP gain comprises an energy ratio indicating how much of the primary signal has been cancelled out of the noise subtracted signal. If the primary signal is dominated by noise, then NP gain will be large. In contrast, if the primary signal is dominated by speech, NP gain will be close to zero. The noise subtraction engine 304 will be discussed in more detail in connection with
In exemplary embodiments, the array processing engine 402 is configured to adaptively process the sub-band signals of the primary and secondary signals to create directional patterns (i.e., synthetic directional microphone responses) for the close microphone array (e.g., the primary and secondary microphones 106 and 108). The directional patterns may comprise a forward-facing cardioid pattern based on the primary acoustic (sub-band) signals and a backward-facing cardioid pattern based on the secondary (sub-band) acoustic signal. In one embodiment, the sub-band signals may be adapted such that a null of the backward-facing cardioid pattern is directed towards the audio source 102. More details regarding the implementation and functions of the array processing engine 402 may be found (referred to as the adaptive array processing engine) in U.S. patent application Ser. No. 12/080,115 entitled “System and Method for Providing Close-Microphone Adaptive Array Processing,” which has been incorporated herein by reference. The cardioid signals (i.e., a signal implementing the forward-facing cardioid pattern and a signal implementing the backward-facing cardioid pattern) are then provided to the noise suppression engine 306b by the array processing engine 402.
The noise suppression engine 306b receives the NP gain along with the cardioid signals. According to exemplary embodiments, the noise suppression engine 306b generates a gain mask to be applied to the noise subtracted sub-band signals from the noise subtraction engine 304 in order to further reduce any noise components that may remain in the noise subtracted speech signal. The noise suppression engine 306b is discussed in further detail in U.S. patent application Ser. No. 12/215,980, entitled “System and Method for Providing Noise Suppression Utilizing Null Processing Noise Subtraction,” which has been incorporated herein by reference.
The gain mask determined by the noise suppression engine 306b may then be applied to the noise subtracted signal in the masking module 308. Accordingly, each gain mask may be applied to an associated noise subtracted frequency sub-band to generate masked frequency sub-bands. Subsequently, the masked frequency sub-bands are converted back into time domain from the cochlea domain by the frequency synthesis module 310. Once conversion is completed, the synthesized acoustic signal may be output to the user. As depicted in
a is a block diagram of an exemplary noise subtraction engine 304. The exemplary noise subtraction engine 304 is configured to suppress noise using a subtractive process. The noise subtraction engine 304 may determine a noise subtracted signal by initially subtracting out a desired component (e.g., the desired speech component) from the primary signal in a first branch, thus resulting in a noise component. Adaptation may then be performed in a second branch to cancel out the noise component from the primary signal. In exemplary embodiments, the noise subtraction engine 304 comprises a gain module 502, an analysis module 504, an adaptation module 506, and at least one summing module 508 configured to perform signal subtraction. The functions of the various modules 502-508 will be discussed in connection with
Referring to
The exemplary analysis module 504 is configured to perform the analysis in the first branch of the noise subtraction engine 304, while the exemplary adaptation module 506 is configured to control adaptivity in the second branch of the noise subtraction engine 304.
Referring to
In exemplary embodiments, σ is a fixed coefficient that represents a location of the speech (e.g., an audio source location). In accordance with exemplary embodiments, σ may be determined through calibration. Tolerances may be included in the calibration by calibrating based on more than one position. For a close microphone, a magnitude of σ may be close to one. For spread microphones, the magnitude of σ may be dependent on where the audio device 104 is positioned relative to the speaker's mouth. The magnitude and phase of the σ may represent an inter-channel cross-spectrum for a speaker's mouth position at a frequency represented by the respective sub-band (e.g., Cochlea tap). Because the noise subtraction engine 304 may have knowledge of what σ is, the analysis module 504 may apply a to the primary signal (i.e., as(k)+n(k)) and subtract the result from the secondary signal (i.e., σs(k)+ν(k)) in order to cancel out the speech component σs(k) (i.e., the desired component) from the secondary signal resulting in a noise component out of the summing module 508 after the first branch.
If the speaker's mouth position is adequately represented by σ, then f(k)−σc(k)=(ν−σ)n(k). This equation indicates that signal at the output of the summing module 508 being fed into the adaptation module 506 (which, in turn, may apply an adaptation coefficient, α(k), as described further herein) may be devoid of a signal originating from a position represented by σ (e.g., the desired speech signal). In exemplary embodiments, the analysis module 504 applies σ to the secondary signal f(k) and subtracts the result from c(k). A remaining signal (referred to herein as “noise component signal”) from the summing module 508 may be canceled out in the second branch. The adaptation module 506, in accordance with exemplary embodiments, is described further in connection with
In an embodiment where n(k) is white noise and a cross-correlation between s(k) and n(k) is zero within a frame, adaptation may happen every frame with the noise n(k) being perfectly cancelled and the speech s(k) being perfectly unaffected. However, it is unlikely that these conditions may be met in reality, especially if the frame size is short. As such, it is desirable to apply constraints on adaptation. In exemplary embodiments, the adaptation coefficient, α(k), may be updated on a per-tap/per-frame basis provided that an adaptation constraint is satisfied.
According to exemplary embodiments, the adaptation constraint is satisfied when the reference energy ratio g1 and the prediction energy ratio g2 satisfy the follow condition:
g2·γ>g1/γ
where γ>0. Assuming, for example, that {circumflex over (σ)}(k)=σ, α(k)=1/(ν−σ), and s(k) and n(k) are uncorrelated, the following may be obtained:
and
where E{ . . . } is an expected value, S is a signal energy, and N is a noise energy. From the previous three equations, the following may be obtained:
where SNR=S/N. Put in terms of the adaptation coefficient, α(k), the adaptation constraint can be written as:
α4<γ2/SNR2+SNR).
Although the aforementioned adaptation constraint is described herein, any constraint may be used in accordance with various embodiments.
The coefficient γ may be chosen to define a boundary between adaptation and non-adaptation of α. For example, in a case where a far-field source at 90 degrees angle relative to a straight line between the microphones 106 and 108, the signal may have equal power and zero phase shift between both microphones 106 and 108 (e.g., ν=1). As such, if the SNR=1, then γ2|ν−σ|4=2, which is equivalent to γ=sqrt(2)/|1−σ|4.
Lowering γ relative to this value may improve protection of the near-end source from cancellation at the expense of increased noise leakage; raising γ has an opposite effect. It should be noted that in the microphones 106 and 108, ν=1 may not be a good enough approximation of the far-field/90 degrees situation, and may have to be substituted by a value obtained from calibration measurements.
In some instances, such as when the noise is in the same location as the target speech (i.e., σ=ν), the adaptation constraint, g2·γ>g1/γ, may not be met regardless of the SNR, resulting in adaptation never occurring. In order to overcome this, the adaptation module 506 may invoke a “phantom coefficient,” represented herein as β(k). The phantom coefficient, β(k), is unconstrained, meaning that the phantom coefficient, β(k), is always updated with the same time constant as the adaptation coefficient, α(k), regardless of whether the adaptation coefficient, α(k), is updated. In contrast to the adaptation coefficient, α(k), however, the phantom coefficient, β(k), is never applied to any signal. Instead, the phantom coefficient, β(k), is used to refine the update criteria for the adaptation coefficient, α(k), in an event that the adaptation coefficient, α(k), is frozen as non-adaptive (i.e., the adaptation constraint is not satisfied). The updates of both the adaptation coefficient, α(k), and the phantom coefficient, β(k), are described further in connection with
In
The constraint module 602 may be configured to determine whether the adaptation coefficient, α(k), satisfies an adaptation constraint (e.g., g2·γ>g1/γ). Accordingly, the constraint module 602 may also be configured to determine whether a phantom coefficient, β(k), satisfies the adaptation constraint, as described in connection with
According to various embodiments, the update module 604 is configured to update the adaptation coefficient, α(k), and phantom coefficient, β(k), based on certain criteria. One criterion may be whether or not the adaptation coefficient, α(k), satisfies the adaptation constraint. Another criterion may be whether or not the phantom coefficient, β(k) satisfies the adaptation constraint. In some embodiments, the update module 604 is configured to update the adaptation coefficient, α(k), if the adaptation coefficient, α(k), does not satisfy the adaptation constraint but the phantom coefficient, β(k), does satisfy the adaptation constraint, and to update the phantom coefficient, β(k), regardless of any criteria.
The modifier module 606 is configured to apply the adaptation coefficient, α(k), to the signal in the second branch. In exemplary embodiments, the adaptation module 506 may adapt using one of a common least-squares method in order to cancel the noise component n(k) from the signal c(k). The adaptation coefficient, α(k), may be applied at a frame rate (e.g., 5 frames per second) according to one embodiment.
In step 704, a determination is made as to whether the adaptation coefficient, α(k), satisfies the adaptation constraint (e.g., g2·γ>g1/γ). According to various embodiments, the constraint module 602 may carry out this determination. If the adaptation coefficient, α(k), does satisfy the adaptation constraint, the adaptation coefficient, α(k), is updated in step 706, which may be carried out by the modifier module 606 in exemplary embodiments. If the adaptation coefficient, α(k), does not satisfy the adaption constraint, however, the method depicted in the flowchart 700 proceeds to step 708.
In step 708, it is determined whether the phantom coefficient, β(k), satisfies the adaptation constraint (e.g., g2·γ>g1/γ). The constraint module 602 may carry out this determination, in accordance with various embodiments. If the phantom coefficient, β(k), does not satisfy the adaptation constraint, the method depicted in the flowchart 700 proceeds directly to step 710. On the other hand, if the phantom coefficient, β(k), does satisfy the adaptation constraint, the method depicted in the flowchart 700 proceeds to step 712.
In step 710, the phantom coefficient, β(k), is updated by one adaptive step towards a current observation, for example, by the update module 604. According to exemplary embodiments, the update of the phantom coefficient may be expressed as:
β(k+1)=β(k)+λ(Oc−β(k)),
where λ is an adaptive step size expressed as a fraction of the distance from the current state of the phantom coefficient, β(k), to the current observation, Oc, such that 0<λ≦1. The updating of the phantom coefficient, β(k), as well as the adaptation coefficient, α(k), is described further in connection with
In step 712, the adaptation coefficient, α(k), is updated to approach the phantom coefficient, β(k). As mentioned, the adaptation coefficient, α(k), may be updated by the update module 604. In exemplary embodiments, the update of the adaptation coefficient, α(k), will follow an update path defined by previous updates of the phantom coefficient, β(k). The update path merely describes the update history of the phantom coefficient, β(k), as illustrated in
As depicted in the flowchart 700, some combination of steps 702, 704, 708, 710, and 712 will repeat until the determination in step 704 affirms that the adaptation coefficient, α(k), satisfies the adaptation constraint.
Referring now to
To avoid clutter in
In Frame 1, the current estimate 804 and the current observation 806 are on opposite sides of the threshold 812. In accordance with the exemplary method represented by the flowchart 700, the phantom coefficient 810 is updated towards the current observation 806, but the adaptation coefficient 808 is not, since the adaptation coefficient 808 does not satisfy the adaptation constraint represented by threshold 812 (see, e.g., steps 704, 708, and 710). Accordingly, in Frame 2 and Frame 3, the phantom coefficient 810 is further updated towards the current observation 806, still without updating the adaptation coefficient 808. Although update step lengths are depicted in
In Frame 4, the phantom coefficient 810 satisfies the threshold 812, while the adaptation coefficient 808 still does not. In accordance with step 708, and subsequently step 712 and step 710, both the phantom coefficient 810 and the adaptation coefficient 808 are updated towards the current observation 806 and towards the phantom coefficient 810, respectively, as reflected in Frame 5. In Frame 5 and Frame 6, the phantom coefficient 810 continues to satisfy the threshold 812 resulting in the phantom coefficient 810 being updated towards the current observation 806 and the adaptation coefficient 808 being updated towards the phantom coefficient 810.
In Frame 7, the adaptation coefficient 808 satisfies the threshold 812. Therefore, the adaptation coefficient 808 is applied in the second branch by the adaptation module 506, such as described in connection with
The above-described modules may be comprised of instructions that are stored in storage media such as a machine readable medium (e.g., a computer readable medium). The instructions may be retrieved and executed by the processor 202. Some examples of instructions include software, program code, and firmware. Some examples of storage media comprise memory devices and integrated circuits. The instructions are operational when executed by the processor 202 to direct the processor 202 to operate in accordance with embodiments of the present invention. Those skilled in the art are familiar with instructions, processors, and storage media.
The present invention is described above with reference to exemplary embodiments. It will be apparent to those skilled in the art that various modifications may be made and other embodiments may be used without departing from the broader scope of the present invention. For example, the microphone array discussed herein comprises a primary and secondary microphone 106 and 108. However, alternative embodiments may contemplate utilizing more microphones in the microphone array. Therefore, there and other variations upon the exemplary embodiments are intended to be covered by the present invention.
The present application is continuation-in-part of U.S. patent application Ser. No. 12/215,980, filed Jun. 30, 2008 and entitled “System and Method for Providing Noise Suppression Utilizing Null Processing Noise Subtraction,” which is incorporated herein by reference. Additionally, the present application is related to U.S. patent application Ser. No. 12/286,909, filed Oct. 2, 2008, entitled “Self Calibration of Audio Device,” and to U.S. patent application Ser. No. 12/080,115, filed Mar. 31, 2008, entitled “System and Method for Providing Close-Microphone Adaptive Array Processing,” both of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3976863 | Engel | Aug 1976 | A |
3978287 | Fletcher et al. | Aug 1976 | A |
4137510 | Iwahara | Jan 1979 | A |
4433604 | Ott | Feb 1984 | A |
4516259 | Yato et al. | May 1985 | A |
4536844 | Lyon | Aug 1985 | A |
4581758 | Coker et al. | Apr 1986 | A |
4628529 | Borth et al. | Dec 1986 | A |
4630304 | Borth et al. | Dec 1986 | A |
4649505 | Zinser, Jr. et al. | Mar 1987 | A |
4658426 | Chabries et al. | Apr 1987 | A |
4674125 | Carlson et al. | Jun 1987 | A |
4718104 | Anderson | Jan 1988 | A |
4811404 | Vilmur et al. | Mar 1989 | A |
4812996 | Stubbs | Mar 1989 | A |
4864620 | Bialick | Sep 1989 | A |
4920508 | Yassaie et al. | Apr 1990 | A |
5027410 | Williamson et al. | Jun 1991 | A |
5054085 | Meisel et al. | Oct 1991 | A |
5058419 | Nordstrom et al. | Oct 1991 | A |
5099738 | Hotz | Mar 1992 | A |
5119711 | Bell et al. | Jun 1992 | A |
5142961 | Paroutaud | Sep 1992 | A |
5150413 | Nakatani et al. | Sep 1992 | A |
5175769 | Hejna, Jr. et al. | Dec 1992 | A |
5187776 | Yanker | Feb 1993 | A |
5208864 | Kaneda | May 1993 | A |
5210366 | Sykes, Jr. | May 1993 | A |
5230022 | Sakata | Jul 1993 | A |
5319736 | Hunt | Jun 1994 | A |
5323459 | Hirano | Jun 1994 | A |
5341432 | Suzuki et al. | Aug 1994 | A |
5381473 | Andrea et al. | Jan 1995 | A |
5381512 | Holton et al. | Jan 1995 | A |
5400409 | Linhard | Mar 1995 | A |
5402493 | Goldstein | Mar 1995 | A |
5402496 | Soli et al. | Mar 1995 | A |
5471195 | Rickman | Nov 1995 | A |
5473702 | Yoshida et al. | Dec 1995 | A |
5473759 | Slaney et al. | Dec 1995 | A |
5479564 | Vogten et al. | Dec 1995 | A |
5502663 | Lyon | Mar 1996 | A |
5544250 | Urbanski | Aug 1996 | A |
5574824 | Slyh et al. | Nov 1996 | A |
5583784 | Kapust et al. | Dec 1996 | A |
5587998 | Velardo, Jr. et al. | Dec 1996 | A |
5590241 | Park et al. | Dec 1996 | A |
5602962 | Kellermann | Feb 1997 | A |
5675778 | Jones | Oct 1997 | A |
5682463 | Allen et al. | Oct 1997 | A |
5694474 | Ngo et al. | Dec 1997 | A |
5706395 | Arslan et al. | Jan 1998 | A |
5717829 | Takagi | Feb 1998 | A |
5729612 | Abel et al. | Mar 1998 | A |
5732189 | Johnston et al. | Mar 1998 | A |
5749064 | Pawate et al. | May 1998 | A |
5757937 | Itoh et al. | May 1998 | A |
5792971 | Timis et al. | Aug 1998 | A |
5796819 | Romesburg | Aug 1998 | A |
5806025 | Vis et al. | Sep 1998 | A |
5809463 | Gupta et al. | Sep 1998 | A |
5825320 | Miyamori et al. | Oct 1998 | A |
5839101 | Vahatalo et al. | Nov 1998 | A |
5920840 | Satyamurti et al. | Jul 1999 | A |
5933495 | Oh | Aug 1999 | A |
5943429 | Handel | Aug 1999 | A |
5956674 | Smyth et al. | Sep 1999 | A |
5974380 | Smyth et al. | Oct 1999 | A |
5978824 | Ikeda | Nov 1999 | A |
5983139 | Zierhofer | Nov 1999 | A |
5990405 | Auten et al. | Nov 1999 | A |
6002776 | Bhadkamkar et al. | Dec 1999 | A |
6061456 | Andrea et al. | May 2000 | A |
6072881 | Linder | Jun 2000 | A |
6097820 | Turner | Aug 2000 | A |
6108626 | Cellario et al. | Aug 2000 | A |
6122610 | Isabelle | Sep 2000 | A |
6134524 | Peters et al. | Oct 2000 | A |
6137349 | Menkhoff et al. | Oct 2000 | A |
6140809 | Doi | Oct 2000 | A |
6173255 | Wilson et al. | Jan 2001 | B1 |
6180273 | Okamoto | Jan 2001 | B1 |
6216103 | Wu et al. | Apr 2001 | B1 |
6222927 | Feng et al. | Apr 2001 | B1 |
6223090 | Brungart | Apr 2001 | B1 |
6226616 | You et al. | May 2001 | B1 |
6263307 | Arslan et al. | Jul 2001 | B1 |
6266633 | Higgins et al. | Jul 2001 | B1 |
6317501 | Matsuo | Nov 2001 | B1 |
6339758 | Kanazawa et al. | Jan 2002 | B1 |
6355869 | Mitton | Mar 2002 | B1 |
6363345 | Marash et al. | Mar 2002 | B1 |
6381570 | Li et al. | Apr 2002 | B2 |
6430295 | Handel et al. | Aug 2002 | B1 |
6434417 | Lovett | Aug 2002 | B1 |
6449586 | Hoshuyama | Sep 2002 | B1 |
6469732 | Chang et al. | Oct 2002 | B1 |
6487257 | Gustafsson et al. | Nov 2002 | B1 |
6496795 | Malvar | Dec 2002 | B1 |
6513004 | Rigazio et al. | Jan 2003 | B1 |
6516066 | Hayashi | Feb 2003 | B2 |
6529606 | Jackson, Jr. II et al. | Mar 2003 | B1 |
6549630 | Bobisuthi | Apr 2003 | B1 |
6584203 | Elko et al. | Jun 2003 | B2 |
6622030 | Romesburg et al. | Sep 2003 | B1 |
6717991 | Gustafsson et al. | Apr 2004 | B1 |
6718309 | Selly | Apr 2004 | B1 |
6738482 | Jaber | May 2004 | B1 |
6760450 | Matsuo | Jul 2004 | B2 |
6785381 | Gartner et al. | Aug 2004 | B2 |
6792118 | Watts | Sep 2004 | B2 |
6795558 | Matsuo | Sep 2004 | B2 |
6798886 | Smith et al. | Sep 2004 | B1 |
6810273 | Mattila et al. | Oct 2004 | B1 |
6882736 | Dickel et al. | Apr 2005 | B2 |
6915264 | Baumgarte | Jul 2005 | B2 |
6917688 | Yu et al. | Jul 2005 | B2 |
6944510 | Ballesty et al. | Sep 2005 | B1 |
6978159 | Feng et al. | Dec 2005 | B2 |
6982377 | Sakurai et al. | Jan 2006 | B2 |
6999582 | Popovic et al. | Feb 2006 | B1 |
7016507 | Brennan | Mar 2006 | B1 |
7020605 | Gao | Mar 2006 | B2 |
7031478 | Belt et al. | Apr 2006 | B2 |
7054452 | Ukita | May 2006 | B2 |
7065485 | Chong-White et al. | Jun 2006 | B1 |
7076315 | Watts | Jul 2006 | B1 |
7092529 | Yu et al. | Aug 2006 | B2 |
7092882 | Arrowood et al. | Aug 2006 | B2 |
7099821 | Visser et al. | Aug 2006 | B2 |
7142677 | Gonopolskiy et al. | Nov 2006 | B2 |
7146316 | Alves | Dec 2006 | B2 |
7155019 | Hou | Dec 2006 | B2 |
7164620 | Hoshuyama | Jan 2007 | B2 |
7171008 | Elko | Jan 2007 | B2 |
7171246 | Mattila et al. | Jan 2007 | B2 |
7174022 | Zhang et al. | Feb 2007 | B1 |
7206418 | Yang et al. | Apr 2007 | B2 |
7209567 | Kozel et al. | Apr 2007 | B1 |
7225001 | Eriksson et al. | May 2007 | B1 |
7242762 | He et al. | Jul 2007 | B2 |
7246058 | Burnett | Jul 2007 | B2 |
7254242 | Ise et al. | Aug 2007 | B2 |
7359520 | Brennan et al. | Apr 2008 | B2 |
7412379 | Taori et al. | Aug 2008 | B2 |
20010016020 | Gustafsson et al. | Aug 2001 | A1 |
20010031053 | Feng et al. | Oct 2001 | A1 |
20020002455 | Accardi et al. | Jan 2002 | A1 |
20020009203 | Erten | Jan 2002 | A1 |
20020041693 | Matsuo | Apr 2002 | A1 |
20020080980 | Matsuo | Jun 2002 | A1 |
20020106092 | Matsuo | Aug 2002 | A1 |
20020116187 | Erten | Aug 2002 | A1 |
20020133334 | Coorman et al. | Sep 2002 | A1 |
20020147595 | Baumgarte | Oct 2002 | A1 |
20020184013 | Walker | Dec 2002 | A1 |
20030014248 | Vetter | Jan 2003 | A1 |
20030026437 | Janse et al. | Feb 2003 | A1 |
20030033140 | Taori et al. | Feb 2003 | A1 |
20030039369 | Bullen | Feb 2003 | A1 |
20030040908 | Yang et al. | Feb 2003 | A1 |
20030061032 | Gonopolskiy | Mar 2003 | A1 |
20030063759 | Brennan et al. | Apr 2003 | A1 |
20030072382 | Raleigh et al. | Apr 2003 | A1 |
20030072460 | Gonopolskiy et al. | Apr 2003 | A1 |
20030095667 | Watts | May 2003 | A1 |
20030099345 | Gartner et al. | May 2003 | A1 |
20030101048 | Liu | May 2003 | A1 |
20030103632 | Goubran et al. | Jun 2003 | A1 |
20030128851 | Furuta | Jul 2003 | A1 |
20030138116 | Jones et al. | Jul 2003 | A1 |
20030147538 | Elko | Aug 2003 | A1 |
20030169891 | Ryan et al. | Sep 2003 | A1 |
20030228023 | Burnett et al. | Dec 2003 | A1 |
20040013276 | Ellis et al. | Jan 2004 | A1 |
20040047464 | Yu et al. | Mar 2004 | A1 |
20040057574 | Faller | Mar 2004 | A1 |
20040078199 | Kremer et al. | Apr 2004 | A1 |
20040131178 | Shahaf et al. | Jul 2004 | A1 |
20040133421 | Burnett et al. | Jul 2004 | A1 |
20040165736 | Hetherington et al. | Aug 2004 | A1 |
20040196989 | Friedman et al. | Oct 2004 | A1 |
20040263636 | Cutler et al. | Dec 2004 | A1 |
20050025263 | Wu | Feb 2005 | A1 |
20050027520 | Mattila et al. | Feb 2005 | A1 |
20050049864 | Kaltenmeier et al. | Mar 2005 | A1 |
20050060142 | Visser et al. | Mar 2005 | A1 |
20050152559 | Gierl et al. | Jul 2005 | A1 |
20050185813 | Sinclair et al. | Aug 2005 | A1 |
20050213778 | Buck et al. | Sep 2005 | A1 |
20050216259 | Watts | Sep 2005 | A1 |
20050228518 | Watts | Oct 2005 | A1 |
20050276423 | Aubauer et al. | Dec 2005 | A1 |
20050288923 | Kok | Dec 2005 | A1 |
20060072768 | Schwartz et al. | Apr 2006 | A1 |
20060074646 | Alves et al. | Apr 2006 | A1 |
20060098809 | Nongpiur et al. | May 2006 | A1 |
20060120537 | Burnett et al. | Jun 2006 | A1 |
20060133621 | Chen et al. | Jun 2006 | A1 |
20060149535 | Choi et al. | Jul 2006 | A1 |
20060184363 | McCree et al. | Aug 2006 | A1 |
20060198542 | Benjelloun Touimi et al. | Sep 2006 | A1 |
20060222184 | Buck et al. | Oct 2006 | A1 |
20070021958 | Visser et al. | Jan 2007 | A1 |
20070027685 | Arakawa et al. | Feb 2007 | A1 |
20070033020 | (Kelleher) Francois et al. | Feb 2007 | A1 |
20070067166 | Pan et al. | Mar 2007 | A1 |
20070078649 | Hetherington et al. | Apr 2007 | A1 |
20070094031 | Chen | Apr 2007 | A1 |
20070100612 | Ekstrand et al. | May 2007 | A1 |
20070116300 | Chen | May 2007 | A1 |
20070150268 | Acero et al. | Jun 2007 | A1 |
20070154031 | Avendano et al. | Jul 2007 | A1 |
20070165879 | Deng et al. | Jul 2007 | A1 |
20070195968 | Jaber | Aug 2007 | A1 |
20070230712 | Belt et al. | Oct 2007 | A1 |
20070276656 | Solbach et al. | Nov 2007 | A1 |
20080019548 | Avendano | Jan 2008 | A1 |
20080033723 | Jang et al. | Feb 2008 | A1 |
20080140391 | Yen et al. | Jun 2008 | A1 |
20080201138 | Visser et al. | Aug 2008 | A1 |
20080228478 | Hetherington et al. | Sep 2008 | A1 |
20080260175 | Elko | Oct 2008 | A1 |
20090012783 | Klein | Jan 2009 | A1 |
20090012786 | Zhang et al. | Jan 2009 | A1 |
20090129610 | Kim et al. | May 2009 | A1 |
20090220107 | Every et al. | Sep 2009 | A1 |
20090238373 | Klein | Sep 2009 | A1 |
20090253418 | Makinen | Oct 2009 | A1 |
20090271187 | Yen et al. | Oct 2009 | A1 |
20090323982 | Solbach et al. | Dec 2009 | A1 |
20100094643 | Avendano et al. | Apr 2010 | A1 |
20100278352 | Petit et al. | Nov 2010 | A1 |
20110178800 | Watts | Jul 2011 | A1 |
Number | Date | Country |
---|---|---|
62110349 | May 1987 | JP |
4184400 | Jul 1992 | JP |
5053587 | Mar 1993 | JP |
6269083 | Sep 1994 | JP |
10-313497 | Nov 1998 | JP |
11-249693 | Sep 1999 | JP |
2005110127 | Apr 2005 | JP |
2005195955 | Jul 2005 | JP |
0174118 | Oct 2001 | WO |
03043374 | May 2003 | WO |
03069499 | Aug 2003 | WO |
2007081916 | Jul 2007 | WO |
2007140003 | Dec 2007 | WO |
2010005493 | Jan 2010 | WO |
Entry |
---|
International Search Report dated May 29, 2003 in Application No. PCT/US03/04124. |
International Search Report and Written Opinion dated Oct. 19, 2007 in Application No. PCT/US07/00463. |
International Search Report and Written Opinion dated Apr. 9, 2008 in Application No. PCT/US07/21654. |
International Search Report and Written Opinion dated Sep. 16, 2008 in Application No. PCT/US07/12628. |
International Search Report and Written Opinion dated Oct. 1, 2008 in Application No. PCT/US08/08249. |
International Search Report and Written Opinion dated May 11, 2009 in Application No. PCT/US09/01667. |
International Search Report and Written Opinion dated Aug. 27, 2009 in Application No. PCT/US09/03813. |
International Search Report and Written Opinion dated May 20, 2010 in Application No. PCT/US09/06754. |
Fast Cochlea Transform, US Trademark Reg. No. 2,875,755 (Aug. 17, 2004). |
Dahl, Mattias et al., “Acoustic Echo and Noise Cancelling Using Microphone Arrays”, International Symposium on Signal Processing and its Applications, ISSPA, Gold coast, Australia, Aug. 25-30, 1996, pp. 379-382. |
Demol, M. et al. “Efficient Non-Uniform Time-Scaling of Speech With WSOLA for CALL Applications”, Proceedings of InSTIL/ICALL2004—NLP and Speech Technologies in Advanced Language Learning Systems—Venice Jun. 17-19, 2004. |
Laroche, Jean. “Time and Pitch Scale Modification of Audio Signals”, in “Applications of Digital Signal Processing to Audio and Acoustics”, The Kluwer International Series in Engineering and Computer Science, vol. 437, pp. 279-309, 2002. |
Moulines, Eric et al., “Non-Parametric Techniques for Pitch-Scale and Time-Scale Modification of Speech”, Speech Communication, vol. 16, pp. 175-205, 1995. |
Verhelst, Werner, “Overlap-Add Methods for Time-Scaling of Speech”, Speech Communication vol. 30, pp. 207-221, 2000. |
Allen, Jont B. “Short Term Spectral Analysis, Synthesis, and Modification by Discrete Fourier Transform”, IEEE Transactions on Acoustics, Speech, and Signal Processing. vol. ASSP-25, No. 3, Jun. 1977. pp. 235-238. |
Allen, Jont B. et al. “A Unified Approach to Short-Time Fourier Analysis and Synthesis”, Proceedings of the IEEE. vol. 65, No. 11, Nov. 1977. pp. 1558-1564. |
Avendano, Carlos, “Frequency-Domain Source Identification and Manipulation in Stereo Mixes for Enhancement, Suppression and Re-Panning Applications,” 2003 IEEE Workshop on Application of Signal Processing to Audio and Acoustics, Oct. 19-22, pp. 55-58, New Paltz, New York, USA. |
Boll, Steven F. “Suppression of Acoustic Noise in Speech using Spectral Subtraction”, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-27, No. 2, Apr. 1979, pp. 113-120. |
Boll, Steven F. et al. “Suppression of Acoustic Noise in Speech Using Two Microphone Adaptive Noise Cancellation”, IEEE Transactions on Acoustic, Speech, and Signal Processing, vol. ASSP-28, No. 6, Dec. 1980, pp. 752-753. |
Boll, Steven F. “Suppression of Acoustic Noise in Speech Using Spectral Subtraction”, Dept. of Computer Science, University of Utah Salt Lake City, Utah, Apr. 1979, pp. 18-19. |
Chen, Jingdong et al. “New Insights into the Noise Reduction Wiener Filter”, IEEE Transactions on Audio, Speech, and Language Processing. vol. 14, No. 4, Jul. 2006, pp. 1218-1234. |
Cohen, Israel et al. “Microphone Array Post-Filtering for Non-Stationary Noise Suppression”, IEEE International Conference on Acoustics, Speech, and Signal Processing, May 2002, pp. 1-4. |
Cohen, Israel, “Multichannel Post-Filtering in Nonstationary Noise Environments”, IEEE Transactions on Signal Processing, vol. 52, No. 5, May 2004, pp. 1149-1160. |
Dahl, Mattias et al., “Simultaneous Echo Cancellation and Car Noise Suppression Employing a Microphone Array”, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, Apr. 21-24, pp. 239-242. |
Elko, Gary W., “Chapter 2: Differential Microphone Arrays”, “Audio Signal Processing for Next-Generation Multimedia Communication Systems”, 2004, pp. 12-65, Kluwer Academic Publishers, Norwell, Massachusetts, USA. |
“ENT 172.” Instructional Module. Prince George's Community College Department of Engineering Technology. Accessed: Oct. 15, 2011. Subsection: “Polar and Rectangular Notation”. <http://academic.ppgcc.edu/ent/ent172—instr—mod.html>. |
Fuchs, Martin et al. “Noise Suppression for Automotive Applications Based on Directional Information”, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, May 17-21, pp. 237-240. |
Fulghum, D. P. et al., “LPC Voice Digitizer with Background Noise Suppression”, 1979 IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 220-223. |
Goubran, R.A. “Acoustic Noise Suppression Using Regression Adaptive Filtering”, 1990 IEEE 40th Vehicular Technology Conference, May 6-9, pp. 48-53. |
Graupe, Daniel et al., “Blind Adaptive Filtering of Speech from Noise of Unknown Spectrum Using a Virtual Feedback Configuration”, IEEE Transactions on Speech and Audio Processing, Mar. 2000, vol. 8, No. 2, pp. 146-158. |
Haykin, Simon et al. “Appendix A.2 Complex Numbers.” Signals and Systems. 2nd Ed. 2003. p. 764. |
Hermansky, Hynek “Should Recognizers Have Ears?”, In Proc. ESCA Tutorial and Research Workshop on Robust Speech Recognition for Unknown Communication Channels, pp. 1-10, France 1997. |
Hohmann, V. “Frequency Analysis and Synthesis Using a Gammatone Filterbank”, ACTA Acustica United with Acustica, 2002, vol. 88, pp. 433-442. |
Jeffress, Lloyd A. et al. “A Place Theory of Sound Localization,” Journal of Comparative and Physiological Psychology, 1948, vol. 41, p. 35-39. |
Jeong, Hyuk et al., “Implementation of a New Algorithm Using the STFT with Variable Frequency Resolution for the Time-Frequency Auditory Model”, J. Audio Eng. Soc., Apr. 1999, vol. 47, No. 4., pp. 240-251. |
Kates, James M. “A Time-Domain Digital Cochlear Model”, IEEE Transactions on Signal Processing, Dec. 1991, vol. 39, No. 12, pp. 2573-2592. |
Lazzaro, John et al., “A Silicon Model of Auditory Localization,” Neural Computation Spring 1989, vol. 1, pp. 47-57, Massachusetts Institute of Technology. |
Lippmann, Richard P. “Speech Recognition by Machines and Humans”, Speech Communication, Jul. 1997, vol. 22, No. 1, pp. 1-15. |
Liu, Chen et al. “A Two-Microphone Dual Delay-Line Approach for Extraction of a Speech Sound in the Presence of Multiple Interferers”, Journal of the Acoustical Society of America, vol. 110, No. 6, Dec. 2001, pp. 3218-3231. |
Martin, Rainer et al. “Combined Acoustic Echo Cancellation, Dereverberation and Noise Reduction: A two Microphone Approach”, Annales des Telecommunications/Annals of Telecommunications. vol. 49, No. 7-8, Jul.-Aug. 1994, pp. 429-438. |
Martin, Rainer “Spectral Subtraction Based on Minimum Statistics”, in Proceedings Europe. Signal Processing Conf., 1994, pp. 1182-1185. |
Mitra, Sanjit K. Digital Signal Processing: a Computer-based Approach. 2nd Ed. 2001. pp. 131-133. |
Mizumachi, Mitsunori et al. “Noise Reduction by Paired-Microphones Using Spectral Subtraction”, 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, May 12-15. pp. 1001-1004. |
Moonen, Marc et al. “Multi-Microphone Signal Enhancement Techniques for Noise Suppression and Dereverbration,” http://www.esat.kuleuven.ac.be/sista/yearreport97//node37.html, accessed on Apr. 21, 1998. |
Watts, Lloyd Narrative of Prior Disclosure of Audio Display on Feb. 15, 2000 and May 31, 2000. |
Cosi, Piero et al. (1996), “Lyon's Auditory Model Inversion: a Tool for Sound Separation and Speech Enhancement,” Proceedings of ESCA Workshop on ‘The Auditory Basis of Speech Perception,’ Keele University, Keele (UK), Jul. 15-19, 1996, pp. 194-197. |
Parra, Lucas et al. “Convolutive Blind Separation of Non-Stationary Sources”, IEEE Transactions on Speech and Audio Processing. vol. 8, No. 3, May 2008, pp. 320-327. |
Rabiner, Lawrence R. et al. “Digital Processing of Speech Signals”, (Prentice-Hall Series in Signal Processing). Upper Saddle River, NJ: Prentice Hall, 1978. |
Weiss, Ron et al., “Estimating Single-Channel Source Separation Masks: Revelance Vector Machine Classifiers vs. Pitch-Based Masking”, Workshop on Statistical and Perceptual Audio Processing, 2006. |
Schimmel, Steven et al., “Coherent Envelope Detection for Modulation Filtering of Speech,” 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 1, No. 7, pp. 221-224. |
Slaney, Malcom, “Lyon's Cochlear Model”, Advanced Technology Group, Apple Technical Report #13, Apple Computer, Inc., 1988, pp. 1-79. |
Slaney, Malcom, et al. “Auditory Model Inversion for Sound Separation,” 1994 IEEE International Conference on Acoustics, Speech and Signal Processing, Apr. 19-22, vol. 2, pp. 77-80. |
Slaney, Malcom. “An Introduction to Auditory Model Inversion”, Interval Technical Report IRC 1994-014, http://coweb.ecn.purdue.edu/˜maclom/interval/1994-014/, Sep. 1994, accessed on Jul. 6, 2010. |
Solbach, Ludger “An Architecture for Robust Partial Tracking and Onset Localization in Single Channel Audio Signal Mixes”, Technical University Hamburg-Harburg, 1998. |
Stahl, V. et al., “Quantile Based Noise Estimation for Spectral Subtraction and Wiener Filtering,” 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing, Jun. 5-9, vol. 3, pp. 1875-1878. |
Syntrillium Software Corporation, “Cool Edit User's Manual”, 1996, pp. 1-74. |
Tashev, Ivan et al. “Microphone Array for Headset with Spatial Noise Suppressor”, http://research.microsoft.com/users/ivantash/Documents/Tashev—MAforHeadset—HSCMA—05.pdf. (4 pages). |
Tchorz, Jurgen et al., “SNR Estimation Based on Amplitude Modulation Analysis with Applications to Noise Suppression”, IEEE Transactions on Speech and Audio Processing, vol. 11, No. 3, May 2003, pp. 184-192. |
Valin, Jean-Marc et al. “Enhanced Robot Audition Based on Microphone Array Source Separation with Post-Filter”, Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sep. 28-Oct. 2, 2004, Sendai, Japan. pp. 2123-2128. |
Watts, Lloyd, “Robust Hearing Systems for Intelligent Machines,” Applied Neurosystems Corporation, 2001, pp. 1-5. |
Widrow, B. et al., “Adaptive Antenna Systems,” Proceedings of the IEEE, vol. 55, No. 12, pp. 2143-2159, Dec. 1967. |
Yoo, Heejong et al., “Continuous-Time Audio Noise Suppression and Real-Time Implementation”, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, May 13-17, pp. IV3980-IV3983. |
International Search Report dated Jun. 8, 2001 in Application No. PCT/US01/08372. |
International Search Report dated Apr. 3, 2003 in Application No. PCT/US02/36946. |
Number | Date | Country | |
---|---|---|---|
Parent | 12215980 | Jun 2008 | US |
Child | 12286995 | US |