The present invention relates to an apparatus as well as systems and methods for powering and controlling adjustable furniture, more particularly adjustable beds, using bi-directional communication.
Adjustable furniture, e.g., chairs, sofas and the like are well known in the art. In particular, adjustable beds are known for adjusting a user's orientation as well as the firmness/softness of the sleeping surface. For example, methods for using a fluid (i.e., liquids or gases) to pneumatically adjust characteristics of a bed are known in the prior art. Controlling such adjustable furniture is within the scope of the present invention, as is furniture that may be adjusted via a motor that does not use fluid to achieve the desired adjustment.
One aspect of controlling adjustable furniture generally includes power management. Power management of adjustable furniture typically involves controlling the power to actuators that adjust the furniture. However, modern adjustable furniture control units have not adjusted to encompass new and additional requirements. For example, users of adjustable furniture may desire additional devices to enhance their use of the adjustable furniture. However, the additional devices, or accessories, may require power. As such, there may be no way to configure the accessories at the location of the adjustable furniture, thereby depriving users of the aesthetics they desire.
Additional methods and devices for controlling adjustable furniture, such as remote (wired or wireless) controllers to communicate with control units, are also well known in the art. Quite often, manual controllers are needed, e.g., when the user is unable to speak or when quiet is desired such as when others are sleeping. The remote controllers of the prior art, however, do not send a command to the control unit of the device to be controlled, in this case adjustable furniture, wherein the control unit can then reply back to the remote controller with the command's execution status. These remote controllers are not configured to annunciate, or display, this information to the user. Also, control units for adjustable furniture typically accept only one type of remote. This presents a problem when a particular remote controller cannot be used in a particular environment, such as an infrared controller that may not ever be in the line of sight of the control unit of the adjustable furniture. Moreover, such adjustable furniture is not known to have the capability of programmed automation of surface orientation and/or firmness modifications for specified durations.
Normally, the control units of adjustable furniture are configured as part of the adjustable furniture. However, this configuration often imparts vibration and impact to the control unit, shortening its lifespan and increasing failure rates. Thus, the control unit must be replaced or repaired more frequently. In addition, typical adjustable furniture or control units are not configured with troubleshooting capabilities operable to display the cause of a failure or otherwise signal an alert about a condition. As such, when the adjustable furniture fails the user is normally forced to schedule a service call to repair the failure, rather than being able to diagnose or fix the problem themselves. Inasmuch, there is often no way to know which part of the adjustable furniture has failed, forcing a technician on the service call to bring as much equipment as they can. As such, there is often a waste of time and resources that is unacceptable.
Consequently, there is a need to overcome these deficiencies.
A system and methods of controlling a piece of adjustable furniture of the type that includes an adjustable configuration parameter are provided. The system may include a remote controller operable to receive a command from a user to adjust the adjustable configuration parameter, a control unit in communication with the remote controller, wherein the control unit is operable to receive the command from the remote controller and control the adjustment of the adjustable configuration parameter in compliance with the command. The system also includes an actuable device element in electrical communication with the control unit and operable to adjust the adjustable configuration parameter, a sensor electrically connected to the actuable device element and the control unit, wherein the sensor is operable to measure the adjustment of the adjustable configuration parameter and to generate a sensor signal. The control unit is operable to receive the signal unit and determining an execution status of the command, then send the execution status to the remote controller. The remote controller, in turn, is operable to indicate the execution status of the command.
These and other advantages will be apparent in light of the following figures and detailed description.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with a general description of the invention given above and the detailed description of the embodiments given below, serve to explain the principles of the invention.
While the invention is amenable to various modifications and alternative forms, specifics thereof are described in detail herein. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the scope of the invention.
Turning to the drawings, wherein like designations denote like parts throughout the several views,
The head 22 and/or foot 24 of the adjustable bed 20 may be adjusted by way of actuable device elements, such as motorized means and/or air pressure means, both of which are well known in the art. For example, and as illustrated in
Another actuable device element, such as massaging units 32a and 32b, may be provided in the adjustable bed 20 to allow the user to experience relaxing massaging and/or therapeutic benefits while resting. As illustrated in
As shown in
The ICPMM 34 is in communication with at least one remote controller 40 that is operable to receive commands from the user of the adjustable bed 20. As illustrated in
In one embodiment, the pump 52 comprises a pump motor 54 and a compressor 55. The compressor 55 may convert the rotary motion of the pump motor 54 into compressive force on a fluid (i.e., a gas or a liquid) when the pump motor 54 is engaged, thereby adjusting the firmness of the surface 26 of the adjustable bed 50. The ICPMM 34 may adjust the firmness through various control signals such that a control signal on one or more pump control lines may cause the pump 52 to increase the pressure in the internal bladder, thus increasing the firmness of the surface 26 of the adjustable bed 50. Similarly, another control signal on the one or more pump control lines may cause the pump 52 to decrease the pressure in the internal bladder, thus decreasing the firmness of the surface 26 of the adjustable bed 50. In this way, a user may control, via the remote controller 40, the firmness of the surface 26 of adjustable bed 50. As shown in
As illustrated in
As illustrated in
The sensors 58, in one embodiment, are operable to observe, measure, and collect data regarding the change of orientation, elevation, and/or firmness produced by the actuable device elements in response to a command. This data may be subsequently communicated to the remote controller or user. For example, and in one specific embodiment, those having ordinary skill in the art will recognize that the linear position and displacement of elevation units 28a-d may be monitored and/or measured using at least one electromechanical linear position and displacement sensor such as a resistive, capacitive, inductive, magnetic, and/or pulse encoding sensor. Such sensors may be capable of observing linear position and displacement, and measure incremental changes that occur in these parameters. Furthermore, vibration sensors, such as accelerometers, are also well known in the art and may be used to determine whether the command to increase and/or decrease the vibratory characteristics of massaging units 32a-d has been successful, or whether the command has failed. Similarly, pressure sensors are well known in the art and may be used to determine whether the command to increase and/or decrease the firmness of the surface 20 of the adjustable bed has been successful, or whether the command has failed. Such pressure sensors may also be configured to monitor and measure the pressure from the pumps 52a, 52b on an incremental basis.
For example, and in one specific embodiment, with reference to
With continued reference to
The microphone 43 on the remote controller 40 is configured to detect the voice of the user. In one embodiment, the microphone 43 is configured to convert sounds into electrical signals, then the remote controller 40 is configured convert those electrical signals into machine readable data (i.e., commands). These commands are then transferred to the ICPMM 34. In another embodiment, the microphone 43 is configured to convert sounds into electrical signals, then the remote controller 40 is configured to transmit those electrical signals to the ICPMM 34. In that embodiment, the ICPMM 34 converts the electrical signals into machine readable data. In some embodiments, after receiving a command, the ICPMM 34 acts to fulfill the command, determines the execution of the command (i.e., whether it was fulfilled, or how the command affect an adjustable bed component), and transmits information and/or the execution status to the remote controller 40 to indicate (i.e., play on the speaker 44 or provide on the display 45) the status of the adjustable bed to the user. For example, and in a specific embodiment, the information may include sounds indicating whether the last command received was understood (i.e., separate tones for success and failure may be provided), the execution status of a command, and/or the last command spoken by the user into the microphone 43 that was processed by the ICPMM 34.
The information relayed to the user through the remote controller 40, and more specifically, either through the speaker 44 or display 45, may include the current orientation (i.e., surface 26 elevations) of the adjustable bed, the current vibratory characteristics of the adjustable bed, the current firmness of the adjustable bed, whether a routine has been selected, or other information about the adjustable bed (i.e., the adjustable beds 20, 50, and 60 of
In this way, the remote controller 40 is operative to interact with the ICPMM 34 to command the ICPMM 34 as well as create and select routines for adjusting the adjustable bed. For example and without limitation, a user may wish to fall asleep on the adjustable bed while lying relatively flat, at a designed firmness of sleeping surface, and with a mild vibration profile. Prior to falling asleep, the user may program the ICPMM 34 to stop the massaging profile in one hour. The user may further desire to wake up at a certain time with the head 22 raised to a desired level and with an increase in surface firmness. Thus the user interacts with the remote controller 40 and programs a routine for the ICPMM 34 to execute and perform the desired actions by programming the time and date to wake up and the level of elevation change. The ICPMM 34 executes the routine accordingly.
For users that are fully or partially bedridden, routines may provide a level of automation that assist in the prevention of bed sores or assist in therapy. In addition, users with respiratory difficulties, circulatory conditions, and other maladies may benefit therapeutically from the present invention. Particularly, changing the orientation, firmness and vibratory characteristics of the bed periodically and/or on a programmed basis would be desirable in assisting in the treatment of users. For example, the head 22 and/or foot 24 orientation may be modified at fixed intervals, such as every two hours. In addition, the massaging units may be turned on and off with increasing and/or decreasing levels of massaging power as desired. Additionally, massaging patterns may be selected and changed periodically. Moreover, the surface firmness may be modified periodically.
The ICPMM 34 draws 120 VAC energy from the power supply 36, which may be a standard electrical outlet, and powers and adjusts the elevation units 28a-d, massaging units 32a-d, pumps 52a, 52b, and/or accessories (i.e., collectively, “actuable device elements”) connected to the adjustable bed. The ICPMM 34 may be easily replaced in the event of failure by disconnecting it from the actuable device elements, the power cord 62, and/or the remote controller 40, and removing it. To prevent damage to the ICPMM 34, the ICPMM 34 is configured to monitor the power from the power supply 36 and quickly save data and shut down in the event of a power failure.
The ICPMM 34 may include one or more control ports 64-70 configured to provide power, and control the operation of, actuable device elements. For example, the ICPMM 34 includes the control port 64, which may be a control port for at least one elevation unit. At least one elevation unit is in electrical communication with the ICPMM 34 through the control port 64. In this way, each elevation unit may be individually powered and adjusted by the ICPMM 34. Similarly, the ICPMM 34 may include the control port 66, which may be a control port for at least one massaging unit. Additionally, the ICPMM 34 may include the control port 68, which may be a control port for at least one pump. Finally, the ICPMM 34 may include the control port 70, which may be a control port for at least one accessory. In some embodiments, the control port 70 may provide power for at least one accessory. For example, one accessory may be a lamp that can be placed on a table or that is in electrical communication with ICPMM 34. In this way, the ICPMM 34 adjusts the energy to the control port 70 to control the accessory.
Each control port 64-70 may be configured to accept a quick-connect plug such that each at least one actuable device element and/or accessory may be quickly changed in the event of its, or the ICPMM's 34, failure. It will be appreciated by one having ordinary skill in the art that each actuable device element and/or accessory may draw power through its respective control port, and that multiple actuable device elements and/or accesories of the same type may be in electrical communication with the ICPMM 34 through one port. As such, the ICPMM 34 may include sufficient electrical couplings to power and control multiple actuable device elements per control port 64-68 and multiple accessories per control port 70.
In some embodiments, the ICPMM 34 may include a port 72, which may be a port for at least one sensor signal. As such, at least one sensor 58 may be in electrical communication with the ICPMM 34 through the port 72. It will be appreciated by one having ordinary skill in the art that the sensors 58 may communicate through control ports 64-70 rather than port 72.
One having ordinary skill in the art will appreciate that an ICPMM 34 may omit one or more of the control ports 64-70 or the port 72, yet still be within the scope of the present invention. Furthermore, one of ordinary skill in the art will appreciate that a plurality of each of the actuable device elements and/or accessories may be controlled through respective control ports 64-70. Additionally, though
The ICPMM 34 may include a status indicator 74, which, in one embodiment, may be comprised of a plurality of LEDs (i.e., single color or multi-color LEDs) that indicate the status of the actuable device elements, status of the ICPMM 34 itself, status of the accessories, and/or status of the adjustable bed. In this way, a green LED may indicate a nominal, or normal condition, while a yellow or red LED may indicate a failure. In this embodiment, the LEDs comprising the status indicator 74 may indicate whether there is acceptable energy from the power supply 36, whether signals from the remote controller 40 have been received and understood, whether there is acceptable energy to each actuable device element (i.e., one or more LEDs configured to show the power status of each elevation unit 28a-d, massaging unit 32a-d, and pump 52a, 52b), whether the actuable device elements of the adjustable bed are operating correctly (i.e., one or more LEDs configured to show the operational status of the actuable device elements), and whether there is acceptable energy to one or more accessory. The status indicator 74 may provide the user the capability to quickly troubleshoot failures of components of the adjustable bed. It will be appreciated by one having ordinary skill in the art that the status indicator 74, in alternate embodiments, may comprise a video display, LCD, or other display such that information about the actuable device elements, ICPMM 34, accessories, and/or adjustable bed may be displayed by the ICPMM 34.
The ICPMM 34 may include a light 76 to provide illumination for the user. The light 76 may be configured to provide illumination for the user in response to a command received at the remote controller 40. Although only one light 76 is shown in
As shown in
The ICPMM 34 may also be in communication with the remote controller 40 wirelessly through an infrared (“IR”) port 78 and/or by way of radio frequency communication. By communicating wirelessly, the user is provided freedom of movement with the remote controller 40.
The ICPMM 34 may include a plurality of buttons to enable the user to interact directly with the ICPMM 34. As illustrated in
To locate one or more remote controllers 40 associated with the adjustable bed, the user may press the RCL button 84. This induces the ICPMM 34 to send out a signal (i.e., through the cord connecting the one or more remote controllers 40 to the ICPMM 34, through the IR port 78, and/or through radio frequency communication) to induce the one or more remote controllers 40 associated with the adjustable bed to make a noise on their speakers 44, such as a beeping noise. Thus, the user may locate the one or more remote controllers 40 by tracking sounds from their speakers 44.
The memory 104 may include data that includes the relative expected values for surface orientation, massage profiles, and surface firmness. Thus, sensor data may be used to communicate, and the memory 104 may be operable to store, the elevation of portions of the adjustable bed, the massaging profile currently engaged, as well as the relative firmness. For example, the ICPMM 34 may determine and store data indicating that the foot section on the left side of the bed is raised 25%, the left head section is flat and the firmness on the left side of the bed is, e.g., at pressure number 45 or perhaps at pressure 65%, and/or the current massage profile.
Additionally, the memory 104 allows storage, access, and execution of programmed routines, such as routines created and programmed by the user, routines for surface orientation, routines for surface firmness, and/or routines for vibratory and massaging preferences. Mechanisms and methods for programming routines which are stored and executed upon command are well known in the art. The memory 104 may also store the adjustable bed's current adjustable configuration parameters, such as the elevation, the surface 26 firmness, and the massage profiles of the adjustable bed. Thus, the user may access, and determine, the current adjustable configuration parameters through the remote controller. The remote controller may annunciate the parameters through the speaker 44 or display 45.
As shown in
The ICPMM 34 may include at least one elevation unit module 108, massaging unit module 110, pump module 112, and/or accessory module 114. The processing unit 102 may use the elevation unit module 108, which may comprise a motor driver, to provide energy to at least one elevation unit. In this way, the processing unit 102 may control at least one elevation unit to raise and/or lower the elevation of a portion of the surface 26 of the adjustable bed through the elevation unit module 108. In one embodiment, each elevation unit module 108 includes an full-bridge motor driver to provide energy to one elevation unit, such as a VNH3SP30 full-bridge motor driver produced by STMicroelectronics of Carrollton, Tex. In alternate embodiments, each elevation unit module 108 includes two full-bridge motor drivers to provide energy to two elevation units.
To raise the elevation of a portion of the surface 26, the processing unit 102 sends a signal to the elevation unit module 108 to output forward energy. The elevation unit module 108 may then output a forward voltage to at least one elevation unit, increasing the elevation of a portion of the surface 26 of the adjustable bed. Similarly, to lower the elevation of a portion of the surface 26, the processing unit 102 sends a signal to the elevation unit module 108 to output reverse energy. In that embodiment, the elevation unit module 108 may then output a reverse voltage to at least one elevation unit, decreasing the elevation of a portion of the surface 26 of the adjustable bed. The elevation unit module 108 may be in electrical communication with the at least one elevation unit through the control port 64 of
With continued reference to
The processing unit 102 may use the pump module 112 to control at least one pump 52. In one embodiment, the pump module 112 may control the pump 52 through one or more control lines. When a first control signal on the one or more control lines is active, the pump 52 increases the pressure of an internal bladder beneath the surface 26 of the adjustable bed. When a second control signal on the one or more control lines is active, the pump 52 decreases the pressure of the internal bladder beneath the surface 26 of the adjustable bed. Although
The processing unit 102 may control one or more accessories through the accessories module 114. Each accessory module 114 may supply energy to one or more accessories and include an accessory control line that may be operable to control the one or more accessories. In one embodiment, the accessory control line instructs the one or more accessories to turn off. Although
The processing unit 102 receives signals from the sensors 58 through the port 72 of
Returning to
The ICPMM 34 may further include a light power circuit 122 to selectively energize the light 76 in response to a signal from the processing unit 102. Such power circuits as that for the light power circuit 122 are well known in the art.
The ICPMM 34 may include an IR module 124 operable to interface with the IR port 78 and communicate bi-directionally with the remote controller 40 in a manner that conforms with the standards published by the Infrared Data Association (or “IRDA standard”) and/or in a manner that conforms with the Classical Infrared standard (“CIR standard”) as is well known in the art. As such, the ICPMM 34 is configured to communicate wirelessly with the remote controller 40. The ICPMM 34 may further include an ICPMM speaker 126 to produce sounds. The ICPMM speaker 126 may be used to produce a sound corresponding to a power loss, error condition, acknowledgment, or that the limit for an elevation unit 28 has been reached.
The processing unit 102 receives signals from the power button 80, RCC button 82, and RCL button 84 through signal lines 128, 130, and 132, respectively. In one embodiment, the buttons 80, 82, and 84 are pushbuttons that close a circuit and provide a logic high on signal lines 128, 130, and 132, respectively, when depressed. The processing unit 102 is configured to monitor the signal lines 128, 130, and 132 to determine when they have reached a logic high state. The processing unit 102 then reacts accordingly. In one embodiment, the processing unit 102 begins power down procedures in response to a logic high on signal line 128. In one embodiment, the processing unit 102 initiates a remote control configuration sequence in response to a logic high on signal line 130. And, in one embodiment, the processing unit initiates a remote control location sequence in response to a logical high on signal line 132. To provide a sufficiently stable logic high, a resister R1 acts as a pull-up resistor on signal lines 128, 130, and 132.
As illustrated in
The remote controller 40 and ICPMM 34 may communicate wirelessly and bi-directionally through infrared communications (i.e., through the IR port 78 and IR module 124) and radio-frequency communications (i.e., through antenna 134 and circuit arrangement 135). However, the remote controller 40 may also be directly connected to the ICPMM 34 as shown in
As shown in
The remote controller includes a manual input module 310 to interface with the manual input device 42. The manual input module 310 is operable to detect which button or key of the manual input device 42 has been pressed. In embodiments of the remote controller where the manual input device 42 is integrated into the display 45, the manual input module 310 is operative to determine the location that the user has selected on the display 45 and input this information to the RCPU 302.
The remote controller in some embodiments includes the microphone 43 and speaker 44. In these embodiments, the microphone 43 is operative to convert sounds into electrical signals and relay those signals to the RCPU 302, which may process the electrical signals and convert them into machine readable input. In alternate embodiments, the RCPU 302 may relay the electrical signals to the ICPMM 34 to be converted into machine readable input. In some embodiments, the speaker 44 is operative to play a noise in response to a signal from the ICPMM 34, which may be itself in response to the user hitting the RCL button 84 on the ICPMM 34 or in response to a command from the remote controller. The speaker 44 may also be operative to play information to the user, including a sound indicating success or failure of the last command, the last recognized command, the execution status of commands, and/or information about the adjustable bed.
In some embodiments, the remote controller includes a display module 312 operative to interface with the display 45. In those embodiments, the display module 312 may be operative to display information about the adjustable bed, such as elevation of the adjustable bed, massaging profiles, firmness of the adjustable bed, routine programming interfaces, the execution status of commands, and/or errors and faults of the adjustable bed.
To communicate with the ICPMM 34, the remote controller may include a remote controller IR module 314, a remote controller antenna 316 and antenna circuit 317, and/or an ICPMM interface 318. The remote controller IR module 314 provides the capability for the remote controller to wirelessly communicate bi-directionally with the ICPMM 34 through IR. The remote controller IR module 314 may be coupled with a remote controller IR on the remote controller and communicate with the IR port 78 of the ICPMM 34 in a manner well known in the art, such as through the IRDA and/or CIR standard. The remote controller may also wirelessly communicate bi-directionally through a remote controller antenna 316 and antenna circuit 317. The antenna circuit 317 may be substantially the same as the circuit arrangement 135 of the ICPMM 34. In this way, the remote controller may receive and transmit RF signals through the remote controller antenna 316 and interact with the ICPMM 34 such that the remote controller antenna 316 and antenna circuit 317 operate as a remote controller transceiver.
The remote controller may further include the ICPMM interface 318 operable to communicate between the remote controller and ICPMM 34 when the remote controller is in electrical communication with the ICPMM 34 as shown in
In general, the routines executed to implement the embodiments of the invention, whether implemented as part of an operating system or a specific application, component, algorithm, program, object, module or sequence of instructions, or even a subset thereof, will be referred to herein as “computer program code” or simply “program code.” Program code typically comprises one or more instructions that are resident at various times in memory and storage devices and that, when read and executed by the processing units 102 and 302, cause that processing unit 102 and 302 to perform the steps necessary to execute steps or elements embodying the various aspects of the invention. Moreover, while the invention has and hereinafter will be described in the context of adjustable beds, ICPMMs, and remote controllers, those skilled in the art will appreciate that the various embodiments of the invention are capable of being distributed as a program product in a variety of forms, and that the invention applies regardless of the particular type of computer readable media used to actually carry out the invention. Examples of computer readable media include, but are not limited to, recordable type media such as volatile and non-volatile memory devices, floppy and other removable disks, hard disk drives, tape drives, optical disks (e.g., CD-ROM's, DVD's, HD-DVD's, Blu-Ray Discs), among others, and transmission type media such as digital and analog communications links
In addition, various program code described hereinafter may be identified based upon the application or software component within which it is implemented in specific embodiments of the invention. However, it should be appreciated that any particular program nomenclature that follows is merely for convenience, and thus the invention should not be limited to use solely in any specific application identified and/or implied by such nomenclature. Furthermore, given the typically endless number of manners in which computer programs may be organized into routines, procedures, methods, modules, objects, and the like, as well as the various manners in which program functionality may be allocated among various software layers that are resident within the ICPMM and remote controller, it should be appreciated that the invention is not limited to the specific organization and allocation of program functionality described herein.
Those skilled in the art will recognize that the environments illustrated in
When the ICPMM 34 has received a remote controller signal, the ICPMM 34 associates the remote controller with a remote identification (“ID”) supplied by the remote controller in block 410. Each remote controller is configured with a unique remote ID that includes a unique combination of numbers. When the remote controller transmits any data (i.e., commands, requests for information, other data) it sends the remote ID as part of the data. The ICPMM 34 is operable to store that remote ID in memory 104 and associate that remote ID with the remote controller. Once the remote ID is stored, the ICPMM 34 will ignore any received commands that do not include a stored remote ID, other than commands detected by depressions of buttons 80, 82, and 84. Furthermore, the ICPMM 34 will include that remote ID with any communications to that remote controller. In a similar manner as the ICPMM 34, a remote controller will ignore any received data that does not include its remote ID. In this way, the remote controller and ICPMM 34 are operable to communicate bi-directionally while advantageously avoiding cross-talk with other remote controllers or other ICPMMs 34.
By way of example, and in a specific embodiment, an adjustable bed consistent with embodiments of the invention that includes two sides controlled by separate ICPMMs 34 may be independently controlled by separate remote controllers. By configuring each ICPMM 34 with separate remote controllers, and therefore separate remote IDs, the ICPMMs 34 are unresponsive to cross-talk from other remote controllers as the ICPMMs 34 will only be responsive to remote controllers that transmit remote IDs that correspond to stored remote IDs.
In block 412, the ICPMM 34 indicates success. In particular, the ICPMM 34 may indicate success through the status indicator 74, the ICPMM speaker 126, or through the remote controller by instructing the remote controller to play a sound on the speaker 44 or display information on display 45.
To configure a second remote controller, the user may press the RCC button 82 again and configure the second remote controller on the ICPMM 34 in a substantially similar manner as that disclosed above illustrated in
When the ICPMM 34 is configured with one or more remote IDs, the ICPMM 34 sends out signals to those one or more remote controllers associated with those remote IDs to make a noise in block 428. Each signal may be sent out through the IR port 78, the remote controller port, and/or the antenna 134. If the remote controllers are able to receive the signals, the remote controllers will make a noise on their respective remote speakers 44.
In one embodiment, the remote controller determines whether the interaction came from the microphone 43 in block 446. In this embodiment, the remote controller transmits the interaction, which may be a voice command of the user, to the ICPMM 34 for processing in block 448. In one embodiment, the remote controller may not be configured to convert the voice of a user into machine readable data, while the ICPMM 34 is so configured. In alternate embodiments, such as when the remote controller is configured to convert the voice of the user into machine readable data, the remote controller determines if the interaction is a valid command in block 450. In this block, the remote controller may generally decode the interaction to determine if the interaction was a valid command. When the interaction was not a valid command (i.e., multiple buttons were pressed after configuration, the interaction was not completed, the interaction was an unintelligible noise) the interaction is ignored in block 452.
When the interaction is a valid command, the remote controller transmits the interaction to the ICPMM 34 in block 454. In blocks 448 and 454, the remote controller may transmit the interaction to the ICPMM 34 through a remote controller IR port, remote controller antenna 316, or ICPMM interface 318.
When the signal contains a valid remote ID, the ICPMM 34 determines if the signal is a valid command in block 468. In one embodiment, the signal may be a voice of the user that the ICPMM 34 converts into machine readable input in block 468. In that embodiment, the ICPMM 34 then determines whether the machine readable input is a valid command in block 468. In other embodiments, the ICMM 34 analyzes the data in the signal to determine whether the signal includes a valid command in block 468. For example, and not intending to be limiting, the signal may experience interference, causing the command originally in the signal to become distorted. When the signal does not contain a valid command, the ICPMM 34 may annunciate an error in block 470. The ICPMM 34 may annunciate an error on the status indicator 74 and/or through the ICPMM speaker 126 in block 470. Additionally, the ICPMM 34 may store information about the error in block 470 in memory 104 and determine whether to annunciate the error in block 486.
When the signal contains a valid command, the ICPMM 34 determines if the command is a routine in block 472. In one embodiment, the signal may include a routine for the ICPMM 34 to execute. As such, the routine may include conditions that must be met before the routine execution. In block 474, the ICPMM 34 determines if the conditions for a routine have been met. The condition check in block 474 may be configured to run in the background so as not to use too many resources of the ICPMM 34. For example, and not intending to be limiting, one suitable condition may be a time for the routine to run or otherwise adjust an actuable device element.
When the signal does not contain a routine, or when routine conditions have been met, the ICPMM 34 determines whether the command is to adjust at least one actuable device element in block 476. In one embodiment, the signal does not include a command to adjust at least one actuable device element. In this embodiment, the ICPMM 34 executes the command in block 478. For example, and not intending to be limiting, the command executed in block 478 may be to send information to the remote controller.
When the command instructs the ICPMM 34 to adjust at least one actuable device element, the ICPMM 34 adjusts the at least one actuable device element and monitors the at least one actuable device element with at least one sensor 58 in block 480. In this way, the ICPMM 34 may determine the status of the command as it is executed. For example, and in one specific embodiment, the command may be to raise the head 22 of the adjustable bed by one inch. As the ICPMM 34 elevates the elevation unit for the head 22, a sensor 58 may determine the change in elevation as the head 22 is raised and generate a sensor signal that is received by the ICPMM 34. In this way, the ICPMM 34 may be operable to receive feedback from sensors 58 as the actuable device elements are adjusted, and convert this feedback into an execution state. In block 482, the ICPMM 34 determines whether the adjustment was successful. The ICPMM 34 may determine that the adjustment has been successful from information gathered by the sensors 58. In block 484, the ICPMM 34 annunciates an error when the adjustment has not been successful. The ICPMM 34 may annunciate an error on the status indicator 74 and/or through the ICPMM speaker 126 in block 484. Additionally, the ICPMM 34 may store information about the error in block 484 in memory 104 and determine whether to annunciate the error in block 486.
After the annunciation of errors in block 470 or 484, the execution of a command in block 478, or the successful adjustment of an adjustable bed component in block 482, the ICPMM 34 may communicate information to the remote controller to be annunciated on the speaker 44 or display 45. For example, the ICPMM 34 may communicate the execution status of a command. In block 486, the ICPMM 34 determines whether to communicate to the remote controller to play a sound on the speaker 44 or make an indication on display 45. The ICPMM 34 may determine that it should communicate to the remote controller when there is an error to report, when the remote controller has requested information be sent, an indication of the last command translated from the users voice, when there is an execution status to send to the remote controller, and/or in response to adjustment of the at least one component of the adjustable bed. When the ICPMM 34 determines not to communicate to the remote controller, the ICPMM 34 returns to monitoring the adjustable bed in block 488. When the ICPMM 34 determines that it should communicate the information to the remote controller the, ICPMM 34 sends the information in block 490, then returns to monitoring the adjustable bed in block 488.
While the present invention has been illustrated by a description of various embodiments and while these embodiments have been described in considerable detail, it is not the intention of the applicants to restrict, or in any way limit, the scope of the appended claims to such detail. As such, additional advantages and modifications will readily appear to those skilled in the art. For example, one having skill in the art will appreciate that the blocks in the flowcharts of
The present application claims the benefit and priority of U.S. Provisional Application Ser. No. 60/912,277, filed Apr. 17, 2007, and U.S. Provisional Application Ser. No. 61/035,550, filed Mar. 11, 2008, the disclosures of which are hereby incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61035550 | Mar 2008 | US | |
60912277 | Apr 2007 | US |