This invention relates generally to elevator systems, and more particularly to controlling elevator door systems.
Automatic sliding doors used in high performance elevators must meet various operating regulations. For example, to protect against wedging, it is required that a maximal movement energy of all parts connected together mechanically do not exceed a preset maximum value (for example 10 joules) at a mean closing speed. This requirement sets an upper limit value for the mean closing speed. On the other hand, short door closing times are a prerequisite for good transport performance in high performance elevators. The mass of the elevator doors is related to the kinetic energy of the elevator door system, and, thus, needs to be determined.
Similarly, a control module in the elevator door system controls the motion of the elevator door using an electric motor as an actuator. To improve ride comfort of passengers, it is desirable to operate the elevator door movement smoothly. Hence, the control module needs to reduce vibration and noise while opening and closing the elevator door. The control module controls the motion of the elevator door according to at least the mass of the elevator door, which also necessitates the knowledge of the mass of the doors.
Different methods have been used to determine the mass of the doors in the elevator system. For example, one method weighs the doors of the elevator system before commissioning the elevator system. However, the weight of the door can change over time in many cases. For example, customers may change the decoration of the doors that affect its weight. Thus, there is a need to determine the mass of the elevator door online during the operation of the elevator system.
Another method estimates the mass of the elevator door based on a linear static model, which represents the relationship between a translational acceleration of the door and a torque of the electric motor moving the door. However, the linear static model fails to capture various physical factors affecting the movement of the door. For example, the linear static models do not take into consideration friction forces affecting dynamics of the elevator door system, and thus can produce an inaccurate estimation of the door mass. In addition, the existing methods generally estimate the mass of the elevator doors offline.
Some embodiments of the invention are based on recognition that the mass of the doors and/or other parameters of the elevator door system can be recursively estimated by analyzing and utilizing dynamic behavior of the door system. For example, a comparison between performances of the elevator door system estimated based on a model of the door system and measured during the operation of the door system can be used to determine parameters of the model, such as a mass of the elevator door. However, the dynamics of the elevator door system are complex and the model of the door system includes high order differential equations and numerous model parameters. To that end, identification of all parameters of the model necessarily requires persistent excitation conditions of the operation of the door system, which can lead to undesirable vibration. Therefore, it is impractical to perform parameter identification of the full model parameters of the elevator door system based on routine operations of the door system.
Some embodiments of the invention are based on another recognition that it is possible to concurrently reduce the order of the model of the elevator door system and reduce the complexity of the measured signal by filtering out the harmonics not represented by the reduced order model. In such a manner, the complexity of the calculation is reduced without significant drop in accuracy, but the reduction of the complexity allows estimation of the parameters of the system in real time.
For example, the frequency response of the reduced order model can approximate a dominant frequency response of a higher order model of the door system. The approximation reduces the number of parameters to be identified to a subset of dominant parameters of the higher order model. For example, the reduced order model can be a second order model. However, the model reduction results in the mismatch between harmonics of the signal representing the actual operation of the door system and harmonics of the frequency response of the reduced order model, which can lead inaccurate estimation of the parameters of the reduced order model. Accordingly, some embodiments of the invention remove the undesirable harmonics of the signal absent from a frequency response of the reduced order model to match the harmonics of the filtered signal to the frequency response of the reduced order model. Such a joint reduction allows recursively updating parameters of the reduced order model by reducing an error between filtered measured signals and signals estimated on the basis of the reduced order model with updated parameters.
Accordingly, one embodiment of an invention discloses a method for controlling an operation of a door system of an elevator system arranged in a building. The method includes controlling the operation of the door system using one or combination of parameters of a reduced order model of the door system, wherein the operation includes moving at least one door of the door system; measuring a signal representing the operation of the door system; filtering the measured signal by removing at least one dynamic of the measured signal absent from a frequency response of the reduced order model of the door system; and updating parameters of the reduced order model of the door system to reduce an error between the filtered signal and an estimated signal of the operation estimated using the updated reduced order model of the door system, wherein the parameters of the reduced order model include a mass parameter and a friction parameter. The steps of the method are performed by a processor.
Another embodiment discloses an elevator door system, including a motor and a pulley; a cabin door guarding an entrance to an elevator car; a landing door guarding an entrance to an elevator shaft, wherein the motor drives the pulley to move the cabin door using a belt, and wherein the cabin door is mechanically connected to the landing door for a period of time during an operation of the elevator door system; sensors for measuring a signal representing the operation of the door system; a filter for filtering the signal by removing at least one dynamic of the measured signal absent from a frequency response of a reduced order model of the elevator door system, wherein the frequency response of the reduced order model approximates a dominant frequency response of a higher order model of the door system; and a controller for controlling the operation of the elevator door system using the reduced order model of the elevator door system, wherein the controller updates parameter of the reduced order model to reduce an error between the filtered signal and an estimated signal of the operation estimated using the updated reduced order model of the door system.
Yet another embodiment discloses a method for controlling an operation of a door system of an elevator arranged in a building, wherein the door system includes a motor, a pulley, an elevator door guarding an entrance to an elevator car and a floor door guarding an entrance to a floor of the building, wherein the motor drives the pulley to move the elevator door, and wherein the elevator door is mechanically connected to the floor door when the elevator car stops at the floor of the building to move the floor door. The method includes controlling the operation of the door system for an operating cycle using one or combination of parameters of a reduced order model of the door system, wherein the operating cycle includes one or combination of opening and closing the elevator and the floor doors; measuring a signal of the operation of the door system; filtering the signal by removing at least one dynamic of the measured signal absent from a frequency response of the reduced order model of the door system, wherein the frequency response of the reduced order model approximates a dominant frequency response of a higher order model of the door system; and updating parameters of the reduced order model of the door system to reduce an error between the filtered signal and a signal of the operation estimated using the updated reduced order model of the door system, wherein the parameters of the reduced order model include a mass parameter and a friction parameter.
Some embodiments of the invention are based on recognition that the mass of the doors and/or other parameters of the elevator door system can be recursively estimated by analyzing and utilizing dynamic behavior of the door system. For example, a comparison between performances of the elevator door system estimated based on a model of the door system and measured during the operation of the door system can be used to determine parameters of the model, such as a mass of the elevator door.
However, the dynamics of the elevator door system are complex and the model of the door system includes high order differential equations and numerous model parameters. For example, the full model of the elevator door system can include eight first order differential equations (DEs), i.e., an eighth order model. To that end, identification of all parameters of the model necessarily requires persistent excitation conditions of the operation of the door system, which can lead to undesirable vibration. The persistent excitation conditions typically cannot be satisfied during routine operation of the door system. Therefore, it can be difficult to perform parameter identification of the full model of the elevator door system based on routine operations of the door system.
Some embodiments of the invention are based on another recognition that it is possible to concurrently reduce one order of the model of the elevator door system and reduce the complexity of the measured signal by filtering out the harmonics not represented by the reduced order model. Estimation of model parameters can be performed by comparing the reduced order model and the filtered measured signals according certain criteria. The reduced order model parameters can be estimated from routine operation of the door system. In such a manner, not only the complexity of the calculation is reduced without significant drop in accuracy, but also the reduction of the complexity allows estimation of the parameters of the system in real time.
For example, the frequency response of the reduced order model can approximate a dominant frequency response of a higher order model of the door system. The approximation reduces the number of parameters to be identified to a subset of dominant parameters of the higher order model. For example, the reduced order model can be a second order model. However, the model reduction results in the mismatch between harmonics of the signal representing the actual operation of the door system and harmonics of the frequency response of the reduced order model, which can lead to inaccurate estimation of the parameters of the reduced order model. Accordingly, some embodiments of the invention remove the undesirable harmonics of the measured signal absent from a frequency response of the reduced order model so that the harmonics of the filtered signal match the frequency response of the reduced order model. Such a joint reduction allows recursively updating parameters of the reduced order model by reducing an error between filtered measured signals and signals estimated by the reduced order model with updated parameters.
The embodiment filters 204 the measured signal by removing at least one dynamic of the measured signal absent from a frequency response of the reduced order model of the door system. The frequency response of the reduced order model approximates a dominant frequency response of a higher order model of the door system, and the filtering matches the harmonics of the filtered signal to the frequency response of the reduced order model. Next, the embodiment updates 205 parameters of the reduced order model of the door system to reduce an error between the filtered signal and a signal of the operation estimated using the updated reduced order model of the door system. In some implementations of the embodiment, the parameters are updated recursively. Also, the filtering 204 can produce the filtered signals for the updating 205.
For example, the controller 302 determines the commands for the motor drives, represented by desired voltages or currents of the electric motor, according to the parameters of the reduced order model of the elevator door system, measured signals 312, and the operation command 201. The measured signals 312 can include a position signal from an encoder of the electric motor, and current signals of the electric motor from current sensors. Current signals can be used to compute a torque signal which is generated by the electric motor to drive the elevator door.
A parameter identifier 323 updates and outputs parameter 311 of the reduced order model based on the filter signals 332. For example, the parameter identifier 323 solves a least squares problem to reduce the error between the filter signal and an estimated signal of the operation estimated using the updated reduced order model of the door system. For example, the parameter identifier solves a least squares problem reducing the error between an estimated position of the door and the filtered position of the door, between an estimated acceleration of the door and the filtered acceleration of the door, between an estimated velocity of the door and the filtered velocity of the door, and between an estimated torque of the motor and the filtered torque of the motor.
In some implementations, the trajectory generator uses the updated parameters 311 for planning the entire cycle of the trajectory. In contrast, the tracking controller can use the parameters 311 updated for each time step of the control, e.g., as fast as the online parameter identifier 301 outputs the updated parameters. The trajectory generator can also use the update parameters 311 for each step of the control for updating the trajectory 361.
Some embodiments of the invention concurrently reduce the order of the model of the elevator door system that allows estimation of the parameters of the system in real time. For example, a higher order model of the door system is simplified such that the frequency response of the reduced order model approximates a dominant frequency response of the higher order model of the door system.
Assuming no slip between pulleys and the belt, a full elevator door system model can be written as follows
M
r
{umlaut over (x)}=k
1(Rθr−xr)+c1(R{dot over (θ)}r−{dot over (x)}r)+k2(Rθl−xr)+c2(R{dot over (θ)}l−{dot over (x)}r)+krxr+Cr{dot over (x)}r,
(Ml+Mn){umlaut over (x)}l=k4(Rθl−xl)+c4(R{dot over (θ)}l−{dot over (x)}l)+k3(Rθr−xl)+c3(R{dot over (θ)}r−{dot over (x)}r)+klxl+cl{dot over (x)}l,
J
r{umlaut over (θ)}r=Rk3(x1−Rθr)+Rc3({dot over (x)}r−R{dot over (θ)}r)+Rk1(xr−Rθr)+Rc1({dot over (x)}r−R{dot over (θ)}r)+T,
J
l{umlaut over (θ)}l=Rk2(xr−Rθl)+Rc2({dot over (x)}r−Rθl)+Rk4(xl−Rθl)+Rc4({dot over (x)}l−R{dot over (θ)}l),
where T is the motor torque, M is the mass of the elevator door panels, J is the inertia of the pulleys, x is the position of the elevator door panels, θ is the rotation angle of pulleys, and subscripts r and l represent the right and left, respectively, and dots represent derivatives.
With ki=kj,ci=cj, 1≦i,j≦4, the stiffness and damping coefficients, the 8th-order dynamics are further written in state space form
where x1=xr,x2=xl,x3=θr,x4=θl.
Simplify the notation Ml:Ml+Mn. The model (1) is abbreviated as follows
{dot over (x)}=Ax+Bu,
y=Cx, (2)
where x=(x1, . . . , x8)T, and
The frequency analysis 402 performed by some embodiments demonstrates that the full elevator door system model can be reduced to a simplified second or forth order model. Moreover, such a reduced order model is sufficiently accurate for determining mass of the elevator door and other parameters of the elevator door system. As an example, one embodiment uses the following parameter values of the elevator door system during frequency analysis.
In this case, Mr, Ml are symmetric, thus y1=xr and y2=xl have the same transfer functions
where k is a constant gain.
The states 421 and 422 correspond to s2+2ζ2ω2s+ω22, and the states 423 and 424 correspond to s2+2ζ1ω1s+ω12. A transfer function including the four states, corresponding to a reduced forth order model, is
The first two states 421 and 422 are far from the frequency range of, and thus ignored by some embodiments. The transfer function G(s) can be further reduced to a reduced second order model:
{dot over (x)}
1
=x
2,
{dot over (x)}
2
=−d
1
x
2
−kx
1
+bu,
y=x
1, (3)
with appropriate values of d1, k, b, wherein d1, k, b typically represent viscous damping coefficient, stiffness, and control gain constant, respectively.
Some embodiments of the invention determine the parameters d1, k, b in the second order model. In addition, some embodiments establish a relationship between parameters d1, k, b and the parameters of the actual, i.e., physical, elevator door system, such as door mass.
Based on the aforementioned model reduction results, the order reduction filter is designed to remove harmonics with frequencies higher than the dominant frequency, but to keep the dominant frequency as much as possible. In one embodiment, the order reduction filter is a low pass filter. Given the knowledge of the dominant frequency (or the bandwidth of the low-pass filter), different signal processing methods are used by various embodiments to design the order reduction filter to preserve the dominant frequency according to the frequency analysis results.
According the frequency analysis, the mechanical sub-system of the elevator door system, if ignoring the coulomb friction effect, can be simplified as a second order mass-spring-damper system (3). With the coulomb friction effect, between door panels and its rails, modeled as −d0 sgn(x2) where sgn(.) is a sign function and sgn(x2)>0 for x2>0, one embodiment of the simplified second order model of the elevator door system is given as follows
{dot over (x)}
1
=x
2,
{dot over (x)}
2
=−d
0
−d
1
x
2
−kx
1
+bu,
y=x
1, (4)
where x1 and x2 are the position and velocity of the elevator door, respectively, u is the control input (electric motor torque), d0 denotes the static coulomb friction force, d1 the viscous damping coefficient, k the stiffness, and b is the control gain constant. Note that assuming sgn(x2)>0 is without loss of generality. All parameters d0,d1>0,k,b>0 are unknown and to be identified. The model (4) is valid under the assumption that the linkage between the motor drive and the elevator door is rigid, i.e., no deformation or relative movement.
Some embodiments assume parameters d1,d2 and b are the same during the opening and closing operations of the elevator door. Thus the sampled data whiling opening the door are useful to identify parameters d1,d0,k,b.
Another embodiment of the reduced order model is based on recognition that modelling the spring force as a linear function of the door position, i.e., kx1 is inaccurate due to factors such as elastic belts. Accordingly, the embodiment address this issue in another simplified second model of the elevator door system as follows
{dot over (x)}
1
=x
2,
{dot over (x)}
2
=−d
0
−d
1
x
2
−ksat(x1)+bu,
y=x
1, (5)
where sat is a saturation function.
Another embodiment further neglects the spring force from the model (4), which yields the following simplified second order model
{dot over (x)}
1
=x
2,
{dot over (x)}
2
=−d
0
−d
1
x
2
+bu,
y=x
1, (6)
In some implementations, the elevator door system has a switching feature due to different dynamics of movement of the cabin and the landing doors. That is, the model parameter values are different over different periods of time. If model (6) is appropriate for no-switching case, the switching dynamics and the corresponding reduced order model of the elevator door system for the switching case can be written as follows
{dot over (x)}
1
=x
2,
{dot over (x)}
2
=−d
01
−d
11
x
2
+b
1
u,
y=x
1, (7)
for 0≦t≦t1, and
{dot over (x)}
1
=x
2,
{dot over (x)}
2
=−d
02
−d
12
x
2
+b
2
u,
y=x
1, (8)
for t1≦t≦tf, where tf is the time duration of one open or close cycle of the elevator door, t1 is the time instant when the switch happens.
Some embodiments formulate model parameter estimation as a least squares problem. For example, the reduced second order model of the elevator door system of
(MR2+J){umlaut over (x)}(t)=Ru+d1R2{dot over (x)}+R2d0, (9)
where x is the filtered position signal output from the order reduction filter, u the filtered motor torque signal output from the order reduction filter, M=Mr+Ml,J=Jr+Jl,d1=cl+cr and d0 captures the coulomb friction effect. Note that the simplified second order model in the form of (9) is equivalent to the form of (6), and the form (9) is suitable to formulate the parameter estimation as a least squares problem.
The simplified second order model (9) can be rewritten as the following linear regression formula:
A concise representation of the linear regression formula is
{umlaut over (x)}(t)=Ψ(t)θ.
With {umlaut over (x)}(t) and Ψ(t) measured or estimated, estimation of θ is reduced to a least squares problem
Alternative linear regression form is
Assuming u(t) and Ψ(t) are known, the parameter estimation is formulated as a least squares problem according to the linear regression formula (11). That is to find θ* by solving the following optimization problem:
Given linear regression formulas, numerous least squares (LS) or reclusive least squares (RLS) solvers can be used to produce estimates of θ, on the basis of which the physical parameter M,d0,d1 can be uniquely determined. However, inappropriate uses of existing estimation algorithms can result in inaccurate or biased estimation.
Accordingly, some embodiments modify least squares algorithms to accurately estimate parameters d0,d1,M from positions and/or torque measurements x and u. Because only the filtered door position x and the filtered motor torque u are measured, some embodiments reconstruct the filtered door acceleration {umlaut over (x)} and the filtered door velocity x from the measurements to form Ψ(t). A number of different filters are used by the embodiments to estimate {dot over (x)} and {umlaut over (x)} from x, such as sliding-mode-based filter and a high-gain-based filter.
One embodiment uses the high-gain-based high-bandwidth low pass filter Gf defined by following differential equations
where λ is the value of poles of the filter, and is taken much larger than the dominant frequency of the simplified second order model, e.g., λ>100, {circumflex over (x)}=ξ1 is the second filtered position, {dot over ({circumflex over (x)})}=ξ2 is the filtered velocity, and {umlaut over ({circumflex over (x)})}=ξ3 is the filtered acceleration.
Alternative embodiment also applies the filter Gf to the electric motor torque to ensure that the equality of linear regression formula holds. The embodiment reconstructs the second filtered torque signal from u by the following filter (which has the exactly same expression as Gf)
where û=ζ1 is the second filtered torque signal.
Thus the aforementioned linear regression formulae (10) and (11) are rewritten as follows
respectively.
The aforementioned least squares problem formulations assume measurement errors on the left hand side of (10) or (11), which can be suboptimal if the used sensors generating Ψ(t) are not of high quality. To that end, one embodiment formulates the model parameter estimation as a total least squares problem. That is, taking (11) as an example, instead of instead of solving (11), the embodiment solves the following problem
where |[δu(t),δΨ(t)]|p represents p—norm of the vector [δu(t), δΨ(t)]. Usually, p=2.
Thus, the embodiment can improve accurate estimation of model parameters by removing the samples of measurements corrupted by the model mismatch and sensor noises. Accordingly, the embodiment filters 510 the signal in a frequency domain to produce an intermediate signal 515 and filters 520 the intermediate signal in a time domain to produce the filtered signal 525.
Similarly, the embodiment update 614 the second set of parameters 611 if the error 631 between the filtered signal 341 and the estimated signal of the operation estimated 612 using the reduced order model of the door system with the second set of parameters is below 613 a threshold. Otherwise, the embodiment updates 604 the first set of parameters.
For example, the parameter updater #0, labeled 703, estimates parameters based on a short memory of filtered signals 341 (one way to implement this is to use a small forgetting factor in standard recursive least squares algorithms). On the other hands, the parameter updaters #1/#2, labeled 701 and 702 respectively, estimate parameters based on a long memory of filtered signals 341 (one way to implement this is to use a large forgetting factor in standard recursive least squares algorithms). Using an output of parameter updater 703 as benchmark, outputs of blocks 701 and 702, labeled as 711 and 712, are compared to 713, which yields absolute values 714 and 715 of error signals. A referee block 704, based on absolute values of 714 and 715, determines which parameter updater should run at the current step, and outputs decision signal as 716 to enable the parameter updater #1 or #2. One embodiment of output signal 711 is Ψ(k){circumflex over (θ)}1 (k) with k the current time step and {circumflex over (θ)}1 (k) the parameter estimates of parameter updater #1, when the estimation algorithm is based on the regression formula (11). Another embodiment of output signal 711 could be the estimated value of parameter, such as elevator door mass.
The embodiments of the present invention can be implemented in any of numerous ways. For example, the embodiments may be implemented using hardware, software or a combination thereof. When implemented in software, the software code can be executed on any suitable processor or collection of processors, whether provided in a single computer or distributed among multiple computers. Such processors may be implemented as integrated circuits, with one or more processors in an integrated circuit component. Though, a processor may be implemented using circuitry in any suitable format.
Computer-executable instructions may be in many forms, such as program modules, executed by one or more computers or other devices. Generally, program modules include routines, programs, objects, components, data structures that perform particular tasks or implement particular abstract data types. Typically the functionality of the program modules may be combined or distributed as desired in various embodiments.
Also, the embodiments of the invention may be embodied as a method, of which an example has been provided. The acts performed as part of the method may be ordered in any suitable way. Accordingly, embodiments may be constructed in which acts are performed in an order different than illustrated, which may include performing some acts simultaneously, even though shown as sequential acts in illustrative embodiments.
Although the invention has been described by way of examples of preferred embodiments, it is to be understood that various other adaptations and modifications can be made within the spirit and scope of the invention. Therefore, it is the object of the appended claims to cover all such variations and modifications as come within the true spirit and scope of the invention.