The present disclosure relates generally to additive manufacturing, and more particularly to controlling the temperature inside of a build chamber and around a build-piece.
Laser cladding is a generative manufacturing method for metals. The process is used in industries such as the aviation and aerospace industry, energy technology, petrochemicals, the automotive industry, as well as medical technology. When additive manufacturing takes place within an enclosed build chamber, gas flow is used to remove soot created by the welding process. The build pieces created during the process can be sensitive to the temperature of the gas. For instance, when the temperature of the gas becomes too cold or too hot, it has been found that the material can become porous and loses strength. The average temperature of the build chamber and the temperature in close proximity of the weld material is of particular importance so as not to shock the material with a colder temperature. Also it is not recommended that a temperature. of the material is not kept at significantly hot temperature for a significant amount of time without cooling. Conventional additive manufacturing components and methods have generally been considered satisfactory for their intended purpose. However, there is still a need in the art for improved control of the manufacturing process. The present disclosure provides a solution for this need.
An additive manufacturing system includes an enclosure defining a build chamber, a powder bed within the build chamber, an energy source for directing a heat at the powder bed to melt a portion of the powder, a gas flow system connected to the enclosure, a gas outlet for directing gas into the build chamber for removing soot from the powder bed, and a temperature control module for controlling a build chamber temperature and a gas temperature. The gas outlet can include a top outlet and a bottom outlet, can be continuously spread through a portion of the rear wall, or can include a single outlet. A portion of at least one of the outlets can be coplanar with the powder bed.
In one embodiment the top outlet and the bottom outlet can include an independent heating element for controlling a gas temperature of the gas flowing there through. In one embodiment the top outlet and the bottom outlet can include an independent heat sink element for controlling a gas temperature of the gas flowing there through.
A temperature sensor can be configured to measure temperature within the build chamber or at a build location. The temperature sensor can be configured to feed temperature data to a controller responsible for regulating the build chamber temperature and the gas temperature. The temperature control module can include a central heating element.
In a further embodiment of the disclosure, a suction can be configured to evacuate the gas from the build chamber. A heating element or heat sink can be located downstream of the suction.
A method for controlling an additive manufacturing build chamber temperature is also disclosed. The method includes producing at least a portion of a work piece by powder-laser deposition, flowing a gas over the produced portion, monitoring a temperature of at least at a first location within the build chamber, and changing a temperature of the flowing gas to change the temperature at the first location. The first location can be adjacent to the production of the work piece or at another fixed location. The first location can be furthest from the production of the work piece. The method can further include monitoring the temperature at a second location within the build chamber. The method can include flowing the gas over a second location. A temperature of the gas over the produced portion and a temperature of the gas at a second location can be the same. A temperature of the gas over the produced portion and a temperature of the gas at a second location can be different. The method can include evacuating the gas from the build chamber and cooling or heating the evacuated gas.
These and other features of the systems and methods of the subject disclosure will become more readily apparent to those skilled in the art from the following detailed description of the preferred embodiments taken in conjunction with the drawings.
So that those skilled in the art to which the subject disclosure appertains will readily understand how to make and use the devices and methods of the subject disclosure without undue experimentation, embodiments thereof will be described in detail herein below with reference to certain figures, wherein:
Reference will now be made to the drawings wherein like reference numerals identify similar structural features or aspects of the subject disclosure. For purposes of explanation and illustration, and not limitation, a partial view of an exemplary embodiment of a temperature control for an additive manufacturing system in accordance with the disclosure is shown in
Referring again to
The methods and systems of the present disclosure, as described above and shown in the drawings, provide for improved control over the temperatures and temperature gradients with the additive manufacturing build chambers. While the apparatus and methods of the subject disclosure have been shown and described with reference to preferred embodiments, those skilled in the art will readily appreciate that changes and/or modifications may be made thereto without departing from the scope of the subject disclosure.